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1. Introduction

   Leishmaniasis is one of the deadliest neglected tropical diseases 
worldwide caused by intracellular hemoflagellate digenetic 
Leishmania species. This protozoan associated disorder is known 
to affect 12 million people globally, mostly in developing countries, 
and causing 30 000–50 000 mortalities annually. The disease is 
highly prevalent in tropical as well as subtropical regions such as 
Indian subcontinent and Southern Europe, and it has become a 
major health issue due to the lack of satisfactory treatment so far. 
The incidence of this disease is probably highly underestimated in 
most countries because of the lack of recognition and obligation. 
It is transmitted by the bite of infected female sandflies, 
Phlebotomus sp. which are the vectors of Leishmania parasites. 
The vector replicates as intracellular and aflagellated amastigotes 

in mammalian host[1]. In fact, off 600, only 60 sandflies are vectors 
for Leishmania around which 20 Leishmania sp. are associated 
with human pathogenicity. Leishmaniasis depends not only on 
the types of Leishmania sp., types of sandflies, and parasite genus 
but also number of bites, site of bites, and genetic potentiality[2]. 
Leishmaniasis occurs in three different clinical forms – cutaneous 
leishmaniasis (CL), mucocutaneous leishmaniasis, and visceral 
leishmaniasis (VL). Leishmania major (L. major), Leishmania 
tropica (L. tropica), Leishmania aethiopica, Leishmania mexicana 
(L. mexicana), Leishmania amazonensis, and Leishmania 
braziliensis (L. braziliensis) are the major causative female 
parasites of CL. This dermal manifestation is known to affect sub-
continent and Middle Eastern regions of the world. Although CL 
is non-lethal, it can cause psychological and social repercussion, 
stigmatization, painful disfiguration, severe secondary dermal 
manifestations neoplasms, and sarcoidosis. Lesions on face, nose, 
forehead, and lower limbs are the common symptoms of localized 
CL that usually heal naturally. On the other hand, nodules, lumps on 
the face, arms and legs are the symptoms of diffuse CL that never 
heal spontaneously[2]. In general, CL is known to affect the surface 
skin consisting mostly of ulcerated lesions, warty lesions or spots. 
Approximately 75% of CL is reported from Afghanistan, Algeria, 
Brazil, Colombia, Costa Rica, Ethiopia, Islamic Republic of Iran, 
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North Sudan, Peru, and the Syrian Arab Republic[3,4].
   In contrary to CL, mucocutaneous leishmaniasis is generally 
characterized by nasal obstruction and bleeding, disfiguration and 
generation of painful mucosal lesions, and cartilage of the mouth, ear 
and pharynx[2]. Particularly, mucocutaneous leishmaniasis is known 
to affect mucous membranes of the nose, laryngeal and pharynx.
   Among three different clinical forms of leishmaniasis, visceral 
leishmaniasis (VL) is the most lethal form, representing a major 
public health problem in Indian subcontinent, East Africa, 
Mediterranean region and Latin America. VL is also termed as 
kala-azar that indicates a kind of systemic disease caused by 
Leishmania donovani, Leishmania infantum (L. infantum), and 
Leishmania chagasi. The irregular fever, weight loss, lack of 
appetite, hepatosplenomegaly, invasion of bone-marrow, skin 
pigmentation, and oral mucosa are the most common symptoms of 
kala-azar. In fact, the transmission of parasites in humans occurs 
from infected dogs or humans by the bite of sandflies. Kala-azar is 
the most severe form of the leishmaniasis and accounts for 200–400 
thousands new cases and about 50 000 mortalities per annum[5]. 
Leishmania donovani causes anthroponotic transmission of kala-
azar in Indian subcontinent as well as East Africa; while L. infantum 
is the causative agent of zoonotic transmission of kala-azar in the 
Mediterranean region, South America, and South-west and Central 
Asia[6]. In a nutshell, VL is known to affect bone marrow or internal 
organs, such as the liver, spleen and lymph nodes. Symptoms can 
also include anaemia, clotting problems, enlargement of the spleen, 
liver and lymph nodes.
   The prevailing treatments for leishmaniasis caused severe side 
effects and emerged drug-resistant parasites, exhibiting major 
problems globally. From this point of view, there is an urgency 
to identify and design new, non-toxic, and inexpensive anti-
leishmaniasis drug compounds from diversified anti-leishmaniasis 
agents. For these reasons, the complete genomes of Leishmania 
sp. have been decoded in order to investigate the proteins and 
mechanisms essential for the survival of the parasite. Certain 
Leishmania sp. proteins have been identified as potential targets 
through various computational tools.

2. Drug Search for Leishmaniasis (DSFL) database: 
Project overview

   DSFL database is a unique part of World Community Grid that 
makes us available the best results for 50 crystallized proteins used 
during the project. These targeted proteins can be used as inputs 
for computational strategies in order to predict intermolecular 
interactions and relative binding energies to small organic 
molecules[7].
   The identification of potential molecule candidates that could 
possibly be used in the designing and development of new 
efficacious drugs to combat leishmaniasis is the ultimate mission 
of DSFL. The extensive computing power of World Community 
Grid will be involved to execute computational study describing the 
interaction between several potent bioactive compounds from diverse 
sources and certain target proteins of Leishmania sp. The outcome 
will contribute towards the selection of the most active compounds 
that may lead to effective treatments for leishmaniasis. Table 1 
enlists 50 crystallized target proteins along with their corresponding 
Leishmania sp., and expression system.
   DSFL research team used AutoDock VINA software to search the 
ZINC database of commercially available effective compounds, 

best binding to selected target proteins of parasite. The database 
allows the selection of specific protein and provides the necessary 
information, including PDB link, protein’s structure, data 
downloading in CSV format, VINA docking score of compound, 2D 
structure and ZINC database link.
   The researchers involved in the DSFL project are Carlos Muskus 
(Principle investigator, PECET, University of Antioquia, Medellín, 
Colombia), Andres Florez (PECET, University of Antioquia, Medellín, 
Colombia), Rodrigo Ochoa (PECET, University of Antioquia, 
Medellín, Colombia), and Stan Watowich (The University of Texas 
Medical Branch, Galveston, Texas, USA). They identified protein 
drug targets by screening 6 00 000 molecules which might lead to 
the development of new drugs for this neglected and deadly disease. 
In fact, they searched for the most active drugs which target and 
bind to the protozoan proteins, resulting killing of Leishmania 
sp. Additionally, the investigation described the modification in 
the shape of proteins, which discusses few hurdles in identifying 
effective molecules. Further, in vitro study demonstrated the 
selection of one best drug candidate (3MJYcZ01) that was able to 
kill the parasite without affecting human cells[7].

3. DSFL database: A necessity in the current scenario

   The classical treatments of leishmaniasis have serious side effects 
as well as high mortality rate which include the implementation of 
certain compounds such as sodium stibogluconate and meglumine 
antimoniate. Additionally, few other antileishmanial drugs viz. 
pentamidine and amphotericin B are not only very expensive and 
have severe side effects but also show difficulty in their mode 
of administration. Furthermore, the emergence of drug resistant 
parasites is the leading problem in several endemic countries. 
Currently, miltefosine (an oral antileishmanial drug) has been used 
successfully for the treatment of CL in Central and South America, 
and VL in India. But Phase IV clinical trial status of this drug in 
India has shown an enhancement in the relapse rate, indicating 
the possible development of drug resistance parasite in future. 
Surprisingly, there is no vaccine available against any form of 
leishmaniasis. The main reasons for the unavailability of vaccine 
against leishmaniasis are – (a) high cost of vaccine development 
and (b) lack of large enough market for pharmaceutical companies 
to invest a considerable amount of time and money to develop an 
effective vaccine. Therefore, a strong political will and considerable 
resources are required from the emerging market economies[58]. In 
view of the ongoing situation of leishmaniasis and lack of effective 
drugs for its treatment, we desperately need to test new bioactive 
molecules against target proteins of Leishmania sp. for beginning a 
new era in order to combat this disease.
   The main mission of DSFL is to identify potential bioactive 
compounds or molecules from varied sources that could possibly 
be tested for the designing and development of new drugs against 
Leishmaniasis. The computational strategies of World Community 
Grid will be applied to understand the interactions between millions 
of bioactive compounds and certain target proteins of Leishmania sp. 
This will help to find the most promising and effective compounds 
that may lead to the possible treatments for this disease not only in a 
cost-effective manner but also without any side effects to mankind. 
The database helps to find unique target proteins of Leishmania 
sp. along with their necessary details. The structures of proteins of 
interest from different Leishmania sp. can be selected for molecular 
dynamics simulations.



Ameer Khusro and Chirom Aarti/Asian Pac J Trop Dis 2017; 7(7): 444-448446

4. ‘End Leishmaniasis’ strategy through DSFL: How to 
achieve the goal?

   Molecular docking will be performed using VINA software 
program from the Scripps Research Institute in La Jolla, 
California. The docking will be performed between the target 
protein of Leishmania sp. (selected from DSFL), and compound 
of interest obtained from various drug data bases. Further, 
the binding energy will be computed based on all possible 

orientation. If a compound or molecule binds to the target 
protein, it will disable the function of target protein and thus 
the multiplication of the parasite will be reduced, causing the 
prevention of progression of this tropical disease. In fact, DSFL 
will help to find the most promising compounds or molecules 
that may lead to ‘End Leishmaniasis’ strategy by targeting the 
specific protein of parasite. The computational study using DSFL 
database will be a significant replacement of expensive and time-
consuming laboratory experiments.

Table 1
List of 50 crystallized target proteins of diverse Leishmania sp. for the development of new efficacious antileishmanial drugs.

Protein card Protein name Classification Organism Expression system References
1E92 Pteridine reductase Pteridine reductase L. major E. coli [8]
1EVY Glycerol-3-phosphate dehydrogenase Oxidoreductase L. mexicana E. coli [9]
1EZR Nucleoside hydrolase Hydrolase L. major E. coli [10]
1IF2 Triosephosphate isomerise Isomerise L. mexicana E. coli BL21 [11]
1LML Leishmanolysin Leishmanolysin L. major Not Available [12]
1OKG 3-mercaptopyruvate Transferase L. major E. coli [13]
1Q50 Phosphoglucose isomerise Isomerase L. mexicana E. coli [14]
1R9J Transketolase Transferase L. mexicana E. coli [15]
1SVV Threonine aldolase Lyase L. major E. coli [16]
1TC5 tRNA deacylase putative Structural genomics unknown function L. major E. coli [17]
1X6O Initiation factor 5a Translation L. braziliensis E. coli [18]
1XN4 Mar1 ribonuclease putative Structural genomics unknown function L. major E. coli [19]
1XTP Sam-dependent methyltransferase Structural genomics transferase L. major E. coli [20]
1Y1X Cell death 6 protein Structural genomics unknown function L. major E. coli [21]
1Y63 Kinase putative Structural genomics unknown function L. major E. coli [22]
1YF9 Ubiquitin conjugating enzyme e2 Structural genomics unknown function L. major E. coli [23]
1YQF Hypothetical protein 2 Structural genomics unknown function L. major E. coli [24]
1Z2Q Lm5-1 FYVE domain Membrane protein L. major E. coli BL21 (DE3) [25]

2A0U EIF2 Translation L. major E. coli [26]
2AR1 Hypothetical protein1 Structural genomics unknown function L. major E. coli [27]
2B4W Hypothetical protein 3 Structural genomics unknown function L. major E. coli [28]
2C21 Glyoxalase I Lyase L. major E. coli [29]
2HFU Mevalonate kinase Transferase L. major E. coli BL21 (DE3) [30]
2HQJ Cyclophilin Isomerase L. major E. coli [31]
2I54 Phosphomannomu-tase Isomerase L. mexicana E. coli BL21 [32]
2J63 Ap Endonuclease Lyase L. major E. coli [33]
2OEF UDP-glucose pyrophosphorylase Transferase L. major E. coli [34]
2P18 Glyoxalase Hydrolase L. infantum E. coli [35]
2R8Q PDEB1 Hydrolase L. major E. coli BL21 [36]
2VPS Trypanothione synthase amidase Ligase L. major E. coli [37]
2W0H Trypanothione reductase Oxidoreductase L. infantum E. coli [38]
2WSA N-myristoyltransferase Transferase L. major E. coli [39]
2X77 Adp ribosylation factor-like 1 GTP Binding protein L. major E. coli [40]
2XE4 Oligopeptidase B Hydrolase L. major E. coli [41]
2YAY Dutpase Hydrolase L. major E. coli [42]
3CH7 6-phosphogluconolactonase Hydrolase L. braziliensis E. coli BL21 (DE3) [43]
3DWR Coproporphyrinogen Oxidoreductase L. major E. coli [44]
3E3P Glycogen synthase kinase Transferase L. major E. coli [45]
3FWU Mif1 Cytokine L. major E. coli [46]
3HA4 MIX Protein Unknown function L. major E. coli [47]
3IGZ Phosphoglycerate mutase Isomerise L. mexicana E. coli BL21 [48]
3KFL Methionyl-tRNA synthetase Ligase L. major E. coli [49]
3KSV Hypothetical protein 4 Unknown function L. major E. coli [50]
3L4D CYP51 Oxidoreductase L. infantum E. coli [51]
3M3I Hypothetical protein 5 Unknown function L. major E. coli [52]
3MJY Dihydroorotate dehydrogenase Oxidoreductase L. major E. coli [53]
3OH1 USP Transferase L. major E. coli [54]
3P01 Tyrosyl-tRNA synthetase Ligase L. major E. coli [55]
3PP7 Pyruvate kinase Transferase L. mexicana E. coli [56]
3Q5K Hsp90 (amino-terminal) Chaperone L. major E. coli [57]

E. coli: Escherichia coli.



Ameer Khusro and Chirom Aarti/Asian Pac J Trop Dis 2017; 7(7): 444-448 447

5. Conclusions and future remarks

   At present, the existing antileishmanial drugs, chemotherapeutic 
attempts, and immunotherapy options remain a dilemma to combat 
the leishmaniasis. The failure of antileishmanial drugs at clinical trial 
phase puts effort to identify new compounds from varied sources 
and to insight into the treatment of this parasitic disease by targeting 
the proteins of specific parasite. DSFL database provides the list of 
selected proteins of diverse Leishmania sp. that can be used for the 
development of new efficacious antileishmanial drugs. The effective 
bioactive compounds or molecules can be selected for designing and 
formulating new drugs after docking with specific target proteins 
available in DSFL database.
   The information regarding unique target proteins of Leishmania sp. 
available in DSFL will be valuable for researchers to investigate new, 
non-toxic and inexpensive drugs for the treatment of leishmaniasis 
in future. Further, in vitro/in vivo study using the best compounds 
or molecules identified by inactivating the target proteins could lead 
to combat this neglected deadly tropical disease. In a nutshell, this 
database will help accelerate the ongoing research to begin ‘End 
Leishmaniasis’ strategy and to get rid of the era of drug resistance 
Leishmania sp. in future.
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