
International Journal of Mathematics and Soft Computing
Vol.6, No.2 (2016), 75 - 85. ISSN Print : 2249 - 3328

ISSN Online : 2319 - 5215

Recurrence relation on the number of spanning trees of
generalized book graphs and related family of graphs

Nithya Sai Narayana

N.E.S. Ratnam College of Arts, Science and Commerce
Bhandup, Mumbai-400078, India.

narayana nithya@yahoo.com

Abstract

The book graph denoted by Bn,2 is the cartesian product Sn+1 × P2 where Sn+1 is a
star graph with n vertices of degree 1 and one vertex of degree n and P2 is the path graph
of 2 vertices. Let τ(Bn,2) denote the number of spanning trees of Bn,2. Let Xn,p denote the
generalized form of book graph where a family of p-cycles which are n in number is merged
at a common edge. In this paper, we discuss some recurrence relations satisfied by Xn,p

and spanning trees of these associated family of graphs.
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1 Introduction and Preliminaries

Number of spanning trees of a graph representing a network represents the strength of the
network and it is one of the important parameter associated with a graph. Cartesian product
of two graphs G1, G2 denoted by G1 ×G2 is a graph with V (G1 ×G2) = V (G1)× V (G2) and
two vertices (u1, v1), (u2, v2) of G1 ×G2 are adjacent if and only if either u1 = u2 and (v1, v2)
is an edge in G2 or v1 = v2 and (u1, u2) is an edge of G1. The book graph denoted by Bn,2

is the cartesian product Sn+1 × Pn where Sn+1 is a star graph with n vertices of degree 1 and
one vertex of degree n and P2 is the path graph of n vertices. First observe that book graphs
are planar graphs and examples of few book graphs and their planar representation are given
below.

Figure 1: Book graphs B4,2 and B5,2 and their planar representation.
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Definition 1.1. (i) Let G = (V,E) be a graph. Let e = xy ∈ E be an edge which is not a loop.
The graph G− e is obtained by removing the edge e from G and the graph G.e is obtained by
removing the edge e and merging the vertices x, y to a single vertex. Note that this new vertex
is adjacent to all the vertices originally adjacent to the vertices x and y in G.
(ii) Suppose the vertices x, y are connected by the a simple path P : x = v0v1, v2 · · · vk = y. We
assume that the vertices v1, v2, · · · vk−1 are not adjacent with any other vertices of G. We define
G−P is the graph obtained by removing the vertices v1, v2, · · · vk−1 from G and the graph G.P
is obtained by removing v1, v2, · · · vk−1 from G and merging x, y to a single vertex. Note that
this new vertex is adjacent to all the vertices originally adjacent to the vertices x and y in G

except the vertices v1 and vk−1.
(iii) Let V1 ⊂ V then the graph generated by V1 denoted by < V1 > is a sub-graph of G whose
vertex set is V1 and edge set is the set of all edges of G having both the end vertices in V1.

Theorem 1.2. (Fundamental recurrence relation of spanning trees of a graph)
Let G = (V.E) be a graph and e ∈ E(G) be an edge of G which is not a loop, then τ(G) =
τ(G− e) + τ(G.e).

Theorem 1.3. If G = (V,E) is a graph such that V (G) = V1∪V2∪· · ·∪Vn where Vi∩Vj = {x}
for i 6= j. Let Gi =< Vi > for i = 1, 2 · · ·n and suppose the graph generated by < V i > does
not have any edge common with < Vj > for i 6= j then τ(G) = τ(G1)τ(G2) · · · τ(Gn).

Theorem 1.4. If G = (V,E) is a graph such that V (G) = V1∪V2∪ · · ·∪Vn such that Vi∩Vi+1

has exactly one vertex common and < Vi > and < Vj > has no edge common for i 6= j then
τ(G) = τ(G1)τ(G2) · · · τ(Gn).

Theorem 1.5. [2] Let G = (V,E) be a planar graph. Let V = V1 ∪ V2 be such that V1 ∩ V2 =
{x, y}. Let e = xy ∈ E(G) and E(G) =< V1 > ∪ < V2 > be such that < V1 > ∩ < V2 >= {e}
where e is the unique edge common to < V1 > and < V2 >. Let G1 =< V1 > and G2 =< V2 >.
Then τ(G) = τ(G1)τ(G2)− τ(G1 − e)τ(G2 − e).

Proof: Number of spanning trees of G= number of spanning trees of G not containing e

number of spanning trees of G containing e. Clearly number of spanning tree of G1 = τ(G1) =
τ(G1 − e) + τ(G1.e) and number of spanning tree of G2 = τ(G2) = τ(G2 − e) + τ(G2.e).

τ(G1)τ(G2) = [τ(G1 − e) + τ(G1.e)][τ(G2 − e) + τ(G2.e)]
= τ(G1 − e)τ(G2 − e) + τ(G1.e)τ(G2 − e) + τ(G1 − e)τ(G2.e) + τ(G1.e)τ(G2.e).

Thus,
τ(G1)τ(G2)− τ(G1 − e)τ(G2 − e) = τ(G1.e)τ(G2 − e) + τ(G1 − e)τ(G2.e) + τ(G1.e)τ(G2.e)

· · · · · · (I)
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Figure 2
Consider a spanning tree T1 of G1 containing e and a spanning tree T2 of G2 containing e.

From the two spanning trees T1, T2 we can construct a spanning ofG containing e by merging the
two spanning trees at e. Conversely consider a spanning tree of G containing e. By considering
the induced sub-graph of T restricted to the vertices of G1 and G2 we get two spanning trees
of G1 and G2 each of them containing e. Thus there is a bijective relation between the set of
spanning trees of G containing e and the spanning trees of G1 and G2 each of them containing
the edge e.

Note that the number of spanning trees of G1 containing e is the same as the number of
spanning trees of G1.e and the number of spanning trees of G2 containing e is the same as the
number of spanning trees of G2.e and the number of spanning trees of G containing e is the
same as the number of spanning trees of G.e and hence we have,
τ(G.e) = τ(G1.e)× τ(G2.e) · · · · · · (II)

Now consider a spanning tree T1 of G1 not containing e and a spanning tree T2 of G2

containing e. We construct a new graph G′ by merging the two spanning trees. Note that in
T1 there is a unique path joining x and y and in T2 the unique path joining x and y is the edge
e. Thus G′ contains a unique cycle containing e and is a spanning sub-graph of G and hence
G′ − e is a spanning tree of G not containing e. Similarly by considering a spanning tree of G2

not containing e and a spanning tree of G1 containing e we can construct a spanning tree of G
not containing e.

Conversely consider a spanning tree T of G not containing e. By considering the induced
sub-graph of T containing the vertices of V1 and V2 we get two sub-graphs of G1 and G2 say
G′1 and G′2. First we prove that either there is a unique path in G′1 between x and y or there is
a unique path in G′2 between x and y but not in both. Clearly if there is a unique path both in
G′1 and in G′2 then T1 = G′1 ∪G′2 contains a cycle as there are two distinct paths in T between
the vertices x and y and it is not possible as T is a spanning tree of G and it does not contain
a cycle.

Suppose there is no path in G′1 between x and y then there must be a path between x and y
in G′2 otherwise there is no path between x and y in T . If G′1 does not contain a path between



78 Nithya Sai Narayana

x and y then we add the edge e to G′1 to get a spanning tree of G1 and in that case G′2 is a
spanning tree of G2. If G′2 does not contain a path between x and y, we add e to G′2 to get a
spanning tree of G2 and in that case G′1 is a spanning tree of G1.

Note that there are exactly two possibilities for a spanning tree of G not containing e. The
induced sub-graph containing the vertices of V1 either contains a path between x and y or does
not contain a path between x and y. In the first case we construct a spanning tree of G1 not
containing e and a spanning tree of G2 containing e. In the second case we get a spanning tree
of G1 containing e and a spanning tree of G2 not containing e. Thus we have,
τ(G− e) = τ(G1.e)τ(G2 − e) + τ(G1 − e)τ(G2.e). · · · · · · (III)
Using Theorem 1.2 we get,

τ(G) = τ(G− e) + τ(G.e)

= τ(G1.e)τ(G2 − e) + τ(G1 − e)τ(G2.e) + τ(G1.e)τ(G2.e) (from II and III)

= τ(G1)τ(G2)− τ(G1 − e)τ(G2 − e) (from I).

Thus the theorem is proved.

Theorem 1.6. [2] Let G = (V,E) be a planar graph. Let V (G) = V1 ∪ V2 be such that
V1 ∩ V2 = {x, y}. Let x and y be two vertices of G such that every path in G from ui ∈ V1 to
uj ∈ V2 passes either through x or y and u and v are part of the same face of G. Let < V1 >= G1

and < V2 >= G2, then τ(G) = τ(G1)τ(G2 . xy) + τ(G2)τ(G1 . xy) where G1 . xy,G2 . xy are
obtained by merging the two vertices x, y into a single vertex so that the vertices adjacent to
x, y would be adjacent to the new vertex.

Proof: Note that x, y may or may not be adjacent. Suppose x, y are adjacent vertices, then
the edge e = xy is included in exactly one of G1 or G2.

Figure 3
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Consider a spanning tree T of G. We consider the sub-graph of T restricted to the vertices
of V1 and V2. Let the sub-graph of T generated by V1 be denoted by T ′1 and the sub-graph of
T generated by V2 be denoted by T ′2. Note that there cannot be a path between x and y both
in G′1 and G′2 as otherwise the union of two paths will give a cycle in T which is not possible.
There are two possibilities. If there is a path in T ′1 between x and y then there cannot be a
path between x and y in T ′2 and further if there is no path between x and y in T ′1 then there
must be a path between x and y in T ′2 as T is connected.

Consider the first case(Type I) where T ′1 does not have a path between x and y. Note that
T ′2 has a path between x and y. We prove that T ′2 is a spanning tree of G2 and T ′1.xy is a
spanning tree of G1.xy.

Suppose T ′2 is not a spanning tree of G2. Let u, v be two vertices of G2 which are not
connected in G2. Clearly in T , there exists a path consisting of vertices of G2 between u and
x or between u and y through which u is connected to a vertex of G1. Similarly in T there
exists a path consisting of vertices of G2 between v and x or between v and y through which v
is connected to a vertex of G1. As per the assumption in T ′2 there exists a path between x and
y consisting of vertices of G2 which implies that there exists a path between u and v consisting
of vertices of G2. It is a contradiction to our assumption and hence T ′2 is a spanning tree of G1.

Now we prove that T ′1.xy is a spanning tree of G1.xy. Let u, v be any two vertices in G1.
In T there exists a path from u and x or u and y, consisting of vertices of G1 through which
the vertex u is connected to a vertex of G2 and similarly in T such path exists from v and x or
v and y. In other words vertices of G1 in T ′1 are either connected to x or connected to y and
hence in T ′1.xy every pair of vertices of G2.xy are connected and is a spanning tree of G1.xy.

Using similar argument it is clear that for the case(Type II) where T ′1 have a path between
x and y and there is no path between x and y in T ′2, it can be proved that T ′1 is a spanning tree
of G1 and in that case T ′2.xy is a spanning tree of G2.xy.

Thus every spanning tree T of G gives rise to either a spanning tree of G1 and a spanning
tree of G2.xy or a spanning tree of G2 and a spanning tree of G1.xy. Conversely with every
spanning tree of G1 and a spanning tree of G2.xy we get a spanning tree of G in which a path
exists between x and y in G1 and with every spanning tree of G2 and a spanning tree of G1.xy

we get a spanning tree of G in which a path exists between x and y in G2.
Note that a spanning tree of G is either of Type I or of Type II and hence we get τ(G) =

τ(G1)τ(G2 . xy) + τ(G2)τ(G1 . xy).

2 Results on spanning trees of generalized book graph

Definition 2.1. Let Xn,p denote a graph with n number of p-cycles with a common edge
e = xy. We call this graph as generalized book graph as the graph becomes a book graph for
p = 4
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In this section we derive the recurrence relations satisfied by generalized book graphs and
few more graphs obtained from the generalized books graphs.

Theorem 2.2. Let Xn,p denote a graph with n number of p-cycles with a common edge e = xy

and let Yn,p = Xn,p − e then Xn,p and Yn,p satisfy the following recurrence relations
(i) τ(Xn,p) = 2(p− 1)τ(Xn−1,p)− (p− 1)2τ(Xn−2,p)
(ii) τ(Yn,p) = (3p− 4)τ(Yn−1,p)− (3p2 − 8p+ 5)τ(Yn−2,p) + (p3 − 4p2 + 5p− 2)τ(Yn−3,p)

Proof: Note that in Yn,p there exists p distinct paths between x and y of length p−1. Choosing
any one such path and by removing each of p−1 edges between x and y and applying successively
Theorem 1.2 we get τ(Yn,p) = (p− 2)τ(Yn−1,p) + τ(Xn−1,p)
⇒ τ(Yn−1,p) = (p− 2)τ(Yn−2,p) + τ(Xn−2,p) · · · · · · (∗)
Further, τ(Xn,p) = τ(G1)τ(G2) − τ(G1 − e)τ(G2 − e) using Theorem 1.5, where G1 is any

p-cycle in Xn,p containing e and G2 is obtained from Xn,p by removing the edges of G1 other
than the common edge e.
Thus, τ(Xn,p) = pτ(Xn−1,p)− τ(Yn−1,p)
⇒ τ(Yn−1,p) = pτ(Xn−1,p)− τ(Xn,p) and

τ(Yn−2,p) = pτ(Xn−2,p)− τ(Xn−1,p). · · · · · · (∗∗)
Substituting in (*)
pτ(Xn−1,p)− τ(Xn,p) = (p− 2)[pτ(Xn−2,p)− τ(Xn−1,p)] + τ(Xn−2,p)
⇒ τ(Xn,p) = pτ(Xn−1,p) + (p− 2)τ(Xn−1,p)− τ(Xn−2−,p)− p(p− 2)τ(Xn−2,p),
Thus, τ(Xn,p) = 2(p− 1)τ(Xn−1,p)− (p− 1)2τ(Xn−2,p) which proves (i).
From (*), τ(Xn−1,p) = τ(Yn,p)− (p− 2)τ(Yn−1,p), τ(Xn−2,p) = τ(Yn−1,p)− (p− 2)τ(Yn−2,p) and
τ(Xn−3,p) = τ(Yn−2,p)− (p− 2)τ(Yn−3,p).
Hence, τ(Yn,p)− (p− 2)τ(Yn−1,p) = 2(p− 1)[τ(Yn−1,p)− (p− 2)τ(Yn−2,p)]− (p− 1)2[τ(Yn−2,p)−
(p− 2)τ(Yn−3,p)].
Simplifying we get,

τ(Yn,p) =[2(p− 1) + (p− 2)]τ(Yn−1,p)− [2(p− 1)(p− 2) + (p− 1)2]τ(Yn−2,p)

+ (p− 1)2(p− 2)τ(Yn−3,p)

=(3p− 4)τ(Yn−1,p)− (3p2 − 8p+ 5)τ(Yn−2,p) + (p3 − 4p2 + 5p− 2)τ(Yn−3,p).

Hence (ii) is proved.

The following well known result(which is actually a simple application of fundamental re-
currence relation) is presented here. It is observed that it can also be arrived at by solving the
recurrence relation mentioned above.

Corollary 2.3. (i) τ(Xn,p) = (p− 1)n + n(p− 1)n−1 and (ii) τ(Yn,p) = n(p− 1)n−1.
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Proof: From Theorem 2.2 (i), the characteristic equation of τ(Xn,p) is x2−2(p−1)x+(p−1)2 =
0 and the solution to the recurrence relation is τ(Xn,p) = c1(p−1)n+c2n(p−1)n with τ(X1,p) = p

and τ(X2,p) = p2 − 1 and is given by τ(Xn,p) = (p− 1)n + n(p− 1)n−1.
From Theorem 2.2 (ii), the characteristic equation of τ(Yn,p) is x3 − (3p − 4)x2 + (3p2 −

8p + 5)x − (p3 − 4p2 + 5p − 2) = 0 which implies (x − (p − 2))(x − (p − 1))2 = 0 and the
solution to the recurrence relation is τ(Yn,p) = c1(p − 2)n + c2(p − 1)n + c3n(p − 1)n with
τ(Y1,p) = 1, τ(Y2,p) = 2(p− 1) and τ(Y3,p) = 3(p− 1)2 is given by τ(Yn,p) = n(p− 1)n−1.

Theorem 2.4. Suppose Gm,p:n,q is a graph with m number of p−cycles and n number of
q−cycles with a common edge e = xy, then
τ(Gm,p:n,q) = (p− 1)m−1(q − 1)n−1[(p− 1 +m)(q − 1 + n)−mn].

Proof: Let Am,p denote m number of p cycles with common edge e and Bn,q denote n number
of q-cycles with the common edge e. Let Cm,p = Am,p − e and Dn,q = Bn,q − e. Then by
Corollary 2.3, we have τ(Am,p) = (p − 1)m + m(p − 1)m−1, τ(Bn,q) = (q − 1)n + n(q − 1)n−1,
τ(Cm,p) = m(p− 1)m−1 and τ(Dn,q) = n(q − 1)n−1.
Using Theorem 1.5,

τ(Gm,p:n,q) = τ(Am,p)τ(Bn,q)− τ(Cm,p)τ(Dn,q)
=(p− 1)m +m(p− 1)m−1(q − 1)n + n(q − 1)n−1 −m(p− 1)m−1n(q − 1)n−1

=(p− 1)m−1(q − 1)n−1[(p− 1 +m)(q − 1 + n)−mn].

Theorem 2.5. Let E1 = Xm,p with a common base as e and F1 = Ym,p = Xm,p − e. Let En

and Fn be defined by joining n copies of E1 and F1 successively at an edge other than the base
as given below. Then, τ(En), τ(Fn) satisfy the following recurrence relations.

Figure 4: .Graph En and Fn.

(i) τ(En) = ατ(En−1)− α′2τ(En−2) where α = (p− 1)m +m(p− 1)m−1 and α′ = (p− 1)m−1 +
m(p− 1)m−2.
(ii) τ(Fn) = βτ(Fn−1)− β′2τ(Fn−2) where β = m(p− 1)m−1 and β′ = (m− 1)(p− 1)m−2.

Proof: From Corollary 2.3, τ(E1) = (p − 1)n + n(p − 1)n−1 = α(say) and τ(F1) = n(p −
1)n−1 = β(say) and by Theorem 1.5, τ(E2) = τ(E1)τ(E1)− τ(E1 − e)τ(E1 − e) = τ(Xm,p)2 −
τ(Xm−1,p)2 = α2 − β2.
Using Theorem 1.5 we get,
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τ(En) = τ(E1)τ(En−1)− τ(En−2).τ(Xm−1,p)τ(Xm−1,p) = ατ(En−1)− (α′)2τ(En−2).
(ii) Using similar argument we get,
τ(F1) = τ(Ym,p) = m(p − 1)m−1 = β(say) and τ(F2) = Y 2

m,p − Y 2
m−1,p = β2 − β′2 where

β′ = (m− 1)(p− 1)m−2.
Using Theorem 1.5, we have τ(Fn) = τ(Fn−1)τ(Ym,p) − τ(Fn−2)τ(Ym−1,p)2 = βτ(Fn−1) −

(β′)2τ(Fn−2).

Theorem 2.6. Let H1 = Gm,p:t,q consisting of m number of p-cycles and t number of q-cycles
with a common base e. Let Hn denote a graph containing n- copies of H1 merged successively
at edges other than the base as below. Then, τ(Hn) satisfies the recurrence relation given by
τ(Hn) = λτ(Gn−1)− µ2τ(Gn−2) where
λ = (p− 1)m−1(q − 1)t−1[(p− 1 +m)(q − 1 + t)−mt] and
µ = (p− 1)m−2(q − 1)t−2[(p− 2 +m)(q − 2 + t)− (m− 1)(t− 1)] where m ≥ 2 and t ≥ 2.

Proof: Similar to the proof of Theorem 2.5 using Theorems 2.4 and 1.5. For m = 1, t > 1 and
m > 1, t = 1 and m = 1, t = 1 similar results can be arrived.

Remark 2.7. The characteristic equation of τ(En) is given by x2−((p−1)m +m(p−1)m−1)x+
((p−1)m−1 +(m−1)(p−1)m−2)2 = 0. Suppose θ1, θ2 are the roots of the characteristic equation
then the general solution of τ(En) is given by τ(En) = c1θ

n
1 + c2θ

n
2 where c1, c2 are obtained by

the solving the simultaneous equations c1θ1 + c2θ2 = τ(E1) and c1θ
2
1 + c2θ

2
2 = τ(E2). Similarly

τ(Fn), τ(Hn) can be obtained.

Example 2.8. We find the number of spanning trees of the following graph.

Figure 5: Graph En., Fn with m = 3, p = 4.

We find τ(En) with m = 3, p = 4. Applying Theorem 2.5 we get the recurrence relation
satisfied by the graph is τ(En) = 54τ(En−1) − 324τ(En−2) and the characteristic equation
becomes x2 − 54x + 324 = 0 whose roots are θ1 = 27 + 9

√
5, θ2 = 27 − 9

√
5 with τ(E0) = 1,

τ(E1) = 54. Solving we get τ(En) =
(

3+
√

5
2
√

5

)
(27 + 9

√
5)n +

(
−3+

√
5

2
√

5

)
(27− 9

√
5)n.

Example 2.9. We find the number of spanning trees of the following graphs.
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Figure 6: Graphs H1 , H2 and Hn.

We find τ(Hn) with m = 1, p = 3, q = 4, t = 1. Applying similar methods we get the
recurrence relation satisfied by the graph is τ(Hn) = 11τ(Hn−1) − 9τ(Hn−2) and the charac-
teristic equation becomes x2 − 11x + 9 = 0 whose roots are α = 11+

√
85

2 , β = 11−
√

85
2 with

τ(H1) = 11, τ(H2) = 112. Solving we get τ(Hn) =
(

11+
√

85
2
√

85

)
(11+

√
85

2 )n +
(
−11+

√
85

2
√

85

)
(11−

√
85

2 )n.

3 Number of spanning trees of some special family of book graphs

Theorem 3.1. Let J1 = Xm,p with common base and Q1 = Ym,p with common base. Let Jn

and Qn be obtained by joining n copies of J1 and Q1 at a base vertex in circular form as below.
Then
(i) τ(Jn) = nαn−1(p− 1)m where α = (p− 1)m +m(p− 1)m−1.
(ii) τ(Qn) = nβn−1(p− 1)m where β = m(p− 1)m−1.

Proof: (i) Clearly, by Theorem 2.3 τ(J1) = (p−1)m +m(p−1)m−1 = α(say). Consider J2 and

Figure 7: Graphs Jn and Qn

we divide this graph into two parts with each of the two parts are J1 with the common pair of
vertices. We use Theorem 1.6 to get τ(J2) = τ(J1)τ(Cp−1)n+τ(J1)τ(Cp−1)n = 2τ(J1)(p−1)m =
2α(p− 1)m.
Considering Jn, we apply Theorem 1.6 taking G1 = J1, G2= the graph obtained by taking
deleting J1 from G which is the graph obtained by taking n− 1 copies of J1 and joining them
in succession at a common base vertex e = xy we get

τ(Jn) = τ(J1)τ(G2.xy) + τ(G2)τ(J1.xy)

= τ(J1)τ(Jn−1) + τ(J1)n−1(p− 1)m
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= ατ(Jn−1) + αn−1(p− 1)m

= α[ατ(Jn−2) + αn−2(p− 1)m] + αn−1(p− 1)m

= α2τ(Jn−2) + 2αn−1(p− 1)m

= α3τ(Jn−3) + 3αn−1(p− 1)m

...

= αn−2τ(J2) + (n− 2)αn−1(p− 1)m

= αn−22α(p− 1)m + (n− 2)αn−1(p− 1)m

= αn−1(p− 1)m(2 + n− 2) = nαn−1(p− 1)m.

(ii) Clearly, by Theorem 2.3 τ(Q1) = m(p − 1)m−1 = β(say). Using Theorem 1.6 to get
τ(Q2) = 2τ(Q1)(p− 1)m = 2β(p− 1)m, we have

τ(Qn) = τ(Q1)τ(Qn−1) + τ(Q1)n−1(p− 1)m

= β(Qn−1) + βn−1(p− 1)m

= β[βτ(Qn−2) + βn−2(p− 1)m] + βn−1(p− 1)m

= β2τ(Qn−2) + 2βn−1(p− 1)m

= β3τ(Qn−3) + 3βn−1(p− 1)m

...
= βn−2τ(Q2) + (n− 2)βn−1(p− 1)m

= βn−22β(p− 1)m + (n− 2)βn−1(p− 1)m

= nβn−1(p− 1)m.

Example 3.2. We find the number of spanning trees of the following graph.

Figure 8

Here m = 3, p = 4 and α = 54 and β = 27. Hence τ(Jn) = n54n−1 × 33 = n
2 54n and

τ(Qn) = n27n−1 × 33 = n27n.
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