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Abstract

In this paper, a necessary and sufficient condition for the cartesian product and composition of
two edge regular fuzzy graphs to be an edge regular fuzzy graph is determined.
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1 Introduction

Fuzzy graph theory was introduced by Azriel Rosenfeld in 1975 [11]. Mordeson and Peng
introduced the concept of operations on fuzzy graphs [2]. The degrees of vertices in fuzzy graphs
obtained from two given fuzzy graphs using these operations were discussed by Nagoor Gani and
Radha [5]. Radha and Kumaravel introduced the concept of degree of an edge and total degree of an
edge in fuzzy graphs [8]. We study the cartesian product and composition of two fuzzy graphs. In
general, cartesian product and composition of two edge regular fuzzy graphs G, and G, need not be
edge regular. In this paper, we find necessary and sufficient condition for cartesian product and
composition of two fuzzy graphs to be edge regular fuzzy graph. First we present some basic
concepts.

A fuzzy subset of a set V is a mapping o from V to [0, 1]. A fuzzy graph G is a pair of functions

G: (o, 1) where o is a fuzzy subset of a non-empty set V and u is a symmetric fuzzy relation on

o, (i.e) u(xy)<o(x)Ao(y)forallx,y €V . The underlying crisp graph of G: (o, ) is denoted
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by G :(V,E)where E cV xV . Throughout this paper, G, : (o, 4,) and G, : (c,, 1,) denote two
fuzzy graphs with underlying crisp graphs G; : (V;, E;) and G, : (V,, E,) with|V;| = p;,i =1,2.. Also
dg-(U;) denotes the degree of u; in G, and dg- (U;) denotes the degree of u;in G, , where G, is
the complement of G, . Let G: (o, ) be a fuzzy graph onG™: (V,E). The degree of a vertex u is
de (u)=z,u(uv). The minimum degree of Gis 6(G) :/\{dG (v),V VeV} and the maximum

u=v

degree of G is A(G)=v{ds(v),VVveV}. The total degree of a vertex ueVis defined by

td (u) =Z,u(uv)+a(u). If each vertex in G has same degree k, then G is said to be a regular

u=v
fuzzy graph or k — regular fuzzy graph. If each vertex in G has same total degree k , then G is said to

be a totally regular fuzzy graph or k — totally regular fuzzy graph. The order and size of a fuzzy

graph G are defined by O(G) =Y _o(u) and S(G) = D_ u(uv). Let G™:(V,E)be a graph and let

ueVv uvekE
e=uv be an edge inG’. Then the degree of an edge e=uveEis defined by

d. (uv) =d_. (u)+d_. (v)—2.If each and every pair of distinct vertices is joined by an edge, then
G":(V,E) is said to be complete graph. Let G: (o, 1) be a fuzzy graphon G™ : (V,E). The degree
of an edge uv is dg(uv) =dg(u)+ds (V) —2u(uv). This is equivalent to dg(uv)= Z,u(uw) +

uwekE
W=V

Z,u(wv) . The total degree of an edge uv € E is defined by td; (uv) =d; (u)+dg (V) — u(uv).

wveE
wW=U

This is equivalent to tdg (Uv)= > p(uwW)+ > (W) +u(uv)= dg(uv) +z(uv). The minimum

uwek wveE
WV w=U

edge degree and maximum edge degree of G are O:(G)= /\{dG (uv),Yuve E} and
AL (G) = v{dG (uv),Y uv e E}. If each edge in G has same degree k, then G is said to be an edge

regular fuzzy graph or k — edge regular fuzzy graph. If each edge in G has same total degree k , then
G s said to be a totally edge regular fuzzy graph or k — totally edge regular fuzzy graph. A fuzzy
Graph G is said to be strong, if w(xy) =oc(X) Ao (y)for all xy € E. A fuzzy Graph G is said to be

complete, if u(xy) =c(X) Ao(y)forallx,yeV .
Definition 1.1.[3] Let G™ =G, xG, = (V,E)be the cartesian product of two graphs G, andG,,
where V =V, xV, and E={(u,,u,)(v,,v,):u, =v,,u,v, eE, (or) uyv, €E;,u, =v,}. Then the

cartesian  product of two fuzzy graphs G, and G, is a fuzzy graph
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G =G, xG, =G, xG, : (0, x0,, 14 x 11,) defined by (o, x0,)(U,,U,)=0,(U,) Ao,(U,),
V(u,,u,) eV and
o, (u) A, (,v,), ifu, =v,uv, eE
(,leﬂz)((uliuz)(vl’vz)):{ o B Lo 2.
UV no,(Uy), ifuy, eELu, =V,
Definition 1.2.[4] Let G" =G, oG, = (V, E) be the composition of two graphs G, andG,, where
V =V, xV,and E ={(u,,u,)(v,,v,) :u, =v;,u,v, €E, oruyv, e E;,u, =v, oruyv, € E,
u,v, ¢ E,}. Then the composition of two fuzzy graphs G, and G, is a fuzzy graph
G=G,0G, =G, -G, :(0,00,,u  u,) defined by
(0100,)(U;,U,) =0, (U;) Ao, (U,), V(U u,) €V and
oy (U) A 1, (U,V,), if u =v,u,v, €k,
(1t 0 1,)((Ug, UL ) (V14 V5) = S 1 (U V) Aoy (U), if uv, eE,u,=v,
i (UV,) Ao, (Uy) Aoy (Vy), IF Uy, € EjLu,y, 2 B,

2 Edge regular properties of cartesian product of two fuzzy graphs

Remark 2.1. If G, : (o,,44) and G, : (o,, 1,) be two edge regular fuzzy graphs, then G, xG, need

not be an edge regular fuzzy graph.

Example 2.2.  Consider the following two fuzzy graphs G, : (o, 24) and G, : (o,, 4,).

u (0.7 nu(0.4) (. uX(0.4) (wy. upX0.4)

(. wa)(0.3)
G, %G,

Figure 1

Here both G, and G, are edge regular fuzzy graphs of edge degree 0.4 and 0.3. In G, xG,,
de..q, (U, U,)(U,,V,)) =1.1and dg . ((U;,U,)(V;,U,)) = 1.0. Hence G, xG, is not an edge regular
fuzzy graph.

Remark 2.3. If G, x G, is an edge regular fuzzy graph, then G, : (o,,24) (or) G, : (o,, &,) need not
be an edge regular fuzzy graph.
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Example 2.4. Consider the following two fuzzy graphs G, : (o,,24) and G, : (o, 1,) .

v3(0.5) v:(0.8) (3, v2X0.5) (wy, u2X0.5)
0.6

(v, waX0.5)
G, xG,

Figure 2
Here, G, xG, is a 3 — edge regular fuzzy graph. ButG, is not an edge regular fuzzy graph.
Theorem 2.5. [8] Let G, : (o,,44) and G, :(o,, 1) be two fuzzy graphs. If o, > y,ando, > 14,
then for any (u,,u,)(v,,v,) e E,
(1) When u, =v,,u,Vv, € E,, dGlez ((ug,u,)(uy,v,)) = 2dG1 (u)+ dGZ (u,v,),
(2) When u,v, € E;,u, =Vv,, dGlez ((ug,uy)(v,,u,)) :dGl (ulvl)+2dGz (u,).
Theorem 2.6. Let G, :(o,,44) and G, : (o,,1,) be two regular fuzzy graphs of same degree on
G, :(V,,E)) and G, :(V,,E,)witho, > 1, ando, > z4. Then G,and G, are edge regular fuzzy
graphs of same degree if and only if G, xG, is an edge regular fuzzy graph.
Proof: Let dg (u,) =dg (U,)=m Vu, €V,, u, €V,, where m is a constant.
Assume that G, and G, are k —edge regular fuzzy graphs, where k is a constant.
Then dg (UV;) =dg (U,v,) =k Vuv, €E, v, €E,.
By Theorem 2.5, for any (u,,u,)(v,,Vv,) € E,when u, =v;,u,v, € E,,

dGlez ((uy,u,)(uy,v,)) = Zde1 (ul) + dc;2 (uzvz)

=2m+k (2.1)
Similarly, whenu, =v,,u,v, € E,
dGlez ((uy,uy)(vy,uy)) =2m+k (2.2)

From (2.1) and (2.2), G, xG, is an edge regular fuzzy graph.

Conversely, let u,v,,w; X, € E; be any two edges of G,. Fix ueV,.

Then (u;,u)(vy,u) and (W, u)(x,u) € E, dg o ((Uy,u)(vy,u)) =dg o (W, u)(X,U)).
dGl (uv,)+ 2dGz (w)= dGl (w,x,) + 2dGz (1))
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dg, (UVvy) +2m=dg (W;x;)+2m
dg (UVv,)=dg (W X)), V UV, wx €.

Therefore, G, is an edge regular fuzzy graph. Similarly, G, is an edge regular fuzzy graph.
Suppose that G, is k, — edge regular fuzzy graph and G, is k, — edge regular fuzzy graph with
k, =k, .
Then, dg.q, ((Uy,U,)(Uy,V,))=2dg (U,) +dg (UyV,)

=2m+Kk, (2.3)
Therefore, deleZ ((ug,u,)(vy,u,)) = dGl (uv) + 2d<32 (u,)

=k, +2m (2.4)

From (2.3) and (2.4), dg g, ((Uy,U,)(U;,V,)) # dg g, ((Uy,U,)(Vy,U,)), since Kk, =k,. This is a
contradiction to our assumption that G, xG, is an edge regular fuzzy graph. Hence, G,andG, are
edge regular fuzzy graphs of same degree. [
Theorem 2.7. [8] Let G, : (o,,24) and G, : (o,, ,) be two fuzzy graphs.
1. If o, <u, and o, is a constant function with o, (u)=c, for all ueV,, then for any
(u,uy)(v,,v,) € E,

(i) When u, =Vv;,U,V, € E,, dg o ((Uy,U,)(Uy,V,)) =2dg, (u1)+c1(dG; (u2)+dG; (v,)—-2).

(i) When uv, € E;,u, =V,, dg o (U, U,)(v,,U,)) =dg (u1v1)+2c1dez (u,).

2. If o,<y and o, is a constant function with o,(u)=c, for all ueV,, then for any
(u;,uy)(v,,v,) € E,

(i) When u, =v;,u,v, € Ez,dGlez ((ug,u,)(ug,vy)) = 2c2dG; (u1)+dGz (u,v,).

(i) When u,v, e E;,u, =V,,dg ¢, ((U;,U,)(Vy,U,)) = cz(dG; (U1)+dG; (v;)—2)+2dg (U,).
Theorem 2.8. [9] Let G: (o, ) be a fuzzy graph on k — regular crisp graph G™ : (V,E). Then u is
constant if and only if G is both regular and edge regular.

Theorem 2.9. Let G, :(oy,44) and G, :(o,,u,) be two fuzzy graphs on regular graphs
G :(V,E) and G; :(V,,E,) with o, <, and g, be a constant function with z4(e) =c, for all
eeE . Then, G, xG, is an edge regular fuzzy graph.

Proof: Given G, : (oy,44) and G, : (o,,u,) are two fuzzy graphs on regular graphs G; : (V,, E,)
and G, :(V,,E,) with o, < 1, and z4(e) =c, for all e € E; respectively.

Then G, : (o, 14) is both regular and edge regular. (Using Theorem 2.8)
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Then dg (uv;) =k,dg (u))=m ,dG;(uz) =n, Vu,v, €V, andu, eV,, where k, m and nare
constants. We prove the theorem in two cases using Theorem 2.7. Let (u,,u,)(v,,V,) € E.
Case 1: When u, =v,,u,v, € E,,
de,.c, (U3, U,)(Uy,V,)) =2dg (up) +c¢,(d . (U;) +d - (v,) - 2).

=2m+c,(n+n-2).

=2(m+c,(n-1) (2.5)
Case 2: When u, =v,,u,v, e E,,

e, (U, U,)(V,,Uy)) =dg (UV,) + 2c1dG; (u,).

=k+2c,n.

=2m—2c, +2c,n . (By definition of edge degree k =2m—2c,)

=2(m+c,(n-1) (2.6)
From (2.5) and (2.6), G, xG, is an edge regular fuzzy graph. u
Corollary 2.10. Let G, : (o, 24) and G, : (o,, ,) be two fuzzy graphs with o, < 4, and o, be a
constant function with o, (u)=c, for all ueV,. Let G :(V,,E;) and G, :(V,,E,) be regular
underlying crisp graphs. If G, is strong, then G, xG, is an edge regular fuzzy graph.
Proof: Given G, : (oy,44) is strong with o, (u) =c, for allueV,. Then g (e)=c, forall ecE.
Therefore the result follows from Theorem 2.9.
Theorem 2.11. Let G, :(o,,14) and G, :(o,,u,) be two fuzzy graphs on regular graphs
G/ :(V,E) and G, :(V,,E,) with o, <4 and g, be a constant function with 1, (e) =c, for all
eeE,. Then G, xG, is an edge regular fuzzy graph.
Proof: The proof is similar to the proof of Theorem 2.9. [
Corollary 2.12. Let G, : (oy,14) and G, : (o,, 14,) be two fuzzy graphs with o, <z, and let o,
be a constant function with o,(u) =c, for allueV,. Let G; :(V,,E,) and G, :(V,,E,) be regular
underlying crisp graphs. If G, is strong, then G, x G, is an edge regular fuzzy graph.

Proof: The proof is similar to the proof of Theorem 2.10. [

3 Edge regular properties of composition of two fuzzy graphs
Remark 3.1. If G, : (o,,14) and G, : (o,, ,) be two edge regular fuzzy graphs, then G, oG, need

not be an edge regular fuzzy graph.

Example 3.2.  Consider the two fuzzy graphs G, : (o,,24) and G, : (o,,1,) .
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(u1. B2)(0.4) (v1, u2)(0.4)

(w1, u2)(0.4)
. )

0.3

® 04 04
(8. w2X(0.9) (v, w)0.3) (Wi, w)(0.5)
G =G,

Figure 3

Here both G, and G,are edge regular fuzzy graphs of edge degree 0.4 and 0.3. InG, °G,,
dg,.q, (U, U,)(v;,W,)) =1.8and dg . ((v4,V,)(W;,V,)) = 1.6. Hence G, oG, is not an edge regular
fuzzy graph.

Remark 3.3. If G, oG, is an edge regular fuzzy graph, then G, : (oy,z4) (or) G, : (o,,x,) need

not be edge regular fuzzy graph.

Example 3.4. Consider the two fuzzy graphs G, : (o,,24) and G, : (o,, 4,) -

11(0.3)

G

Figure 4

Here G, oG, is 1.8 — edge regular fuzzy graph, but G, is not an edge regular fuzzy graph.

Theorem 3.5. [8] Let G, : (o,,14) and G, : (o, 1,) be two fuzzy graphs. If o, > y,ando, > 14,

then for any (u,,u,)(v,,v,) € E,
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(1) When u, =V,,U,V, € E,, dg g3 ((U, Uy)(Uy,V,)) =2p,dg (Uy) +dg, (U,V,),
(2) When uyv, € E;,u, =V,, dg e ((Uy,u,)(v,U,)) =dg (uy,) +2dg (uy) +(p, —D(dg (W)
+dg (W),
(3) When uy, € Ej,u,v, ¢ By, dg e ((Uy,U,)(Ve,V,)) =dg (Uv,) +(p, =1)(dg () +dg ()
+dGz (u,).
Theorem 3.6. Let G, : (o,,24) and G, : (o,, 1,) be two regular fuzzy graphs of same degree with
o, > ando, > 4. Then G,and G, are edge regular fuzzy graphs of same degree if and only if
G, oG, is an edge regular fuzzy graph.
Proof: Let dg (W) =dg (u,) =m,Vu, €V, and u, €V, where m is a constant. Assume that G, and
G, are k — edge regular fuzzy graphs, where k is a constant.
Then dg (uVv;) =dg (U,v,) =k Vuy, €E and u,v, €E,.
From Theorem 3.5, when u, =v,,u,v, € E,,
Ao e, (U1, U;)(Uy, V,)) =2,dg, (Uy) +dg, (UyV,)
=2p,m+Kk (3.1)
From Theorem 3.5, when u, =v,,u,v, € E,,
O, ge,1 ((Uss Uy )(Vy, Uy)) = dg (Upvy) +2dg, (U,) +(p, =1)(dg, (uy) +dg (V1))
=k+2m+(p, -H(m+m)
=k +2p,m (3.2)
From Theorem 3.5, when u,v, e E; and u,v, ¢ E,,
Uo7 (U Up ) (v, V) = dg (Upvy) + (P, =1)(dg, (Uy) +dg (V1)) +dg, (Up) +dg, (V)
=k +(p, —D(M+m)+m+m
=k +2p,m (3.3)
From (3.1), (3.2) and (3.3), G, oG, is an edge regular fuzzy graph.

Conversely, assume that G, o G, is an edge regular fuzzy graph.

We have to prove that G, andG, are edge regular fuzzy graphs of same degree. Let u,v,,w,X, € E;
be any two edges of G, . Fix u €V,. Then (u;,u)(v,,u) and (w,u)(x,u) e E, dg o ((uy,u)(vy,u))
=dg.o, (W, U)(x,,1)).

dg, (Uv;)+2dg, (U)+(p, —~1)(dg, (u;) +dg, (W) =dg (Wx,) +2dg, (U) + (P, —1)(dg, (W) +dg (X))
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dg, (UVvy) +2m+(p, —1)(m+m)=dg (W,X,) +2m+(p, —L)(m+m)
dGl (U1V1)=del (wx) V uv, wx €k .
Therefore, G, is an edge regular fuzzy graph. Similarly, G, is an edge regular fuzzy graph.
Now, to prove that G, and G, are edge regular fuzzy graphs of same degree.
Suppose that G, is k, — edge regular fuzzy graph and G, is k, — edge regular fuzzy graph with
k, =k, .
d.q, (U, U, (UL, V,)) = 2P, (Uy) +dg, (U,V,)
=2p,m+KkK, (3.4)
Therefore, dg g, ((U;,U,)(v,,U,))= dGl (uv,) + 2dGz (u,)+(p, —1)(dGl (u)+ dGl (v,))
=k, +2m+(p, —)(m+m)
=k, +2mp, (3.5)
From (3.4) and (3.5), dg.q, ((U;,U,)(Uy,V,)) # dg g, ((Uy,U,)(vy,U,)), since ky =Kk, .
This is a contradiction to our assumption that G, oG, is an edge regular fuzzy graph. Therefore, G,
and G, are edge regular fuzzy graphs of same degree. [

Theorem 3.7 [8] Let G, : (o, 24) and G, : (o,, ,) be two fuzzy graphs.

1. If o, <u, and o, is a constant function with o, (u)=c, for all ueV,, then for any
(ug,u,)(v,v,) € E,
(@) When u, =v,,u,v, € E,, dg 6 1((Uy,u,)(U;,V,)) =2p,dg (u1)+c1(dG; (u2)+dG; (v,)—-2),
(b) When uVv, € Ej,u, =v,, dg g, (U, Uy)(V1,U,)) =dg (Uv) +(p, —1)(dg, (Uy) +dg (V)
264 (u,),
(c) When uv, € E;,u,v, ¢ E,, g o ((Uy,U,)(V1,V,)) =dg (UV) +(p, =1)(dg, (Uy) +dg (V)
+cl(dG; (u,) +dG; (v,)).
2. If o,<u and o, is a constant function with o,(u)=c, for all ueV,, then for any
(u,u,)(v,,v,) € E,
(@) When u, =Vv,,u,v, € E,, dg 6,5((Uy,U,)(U;,V,)) =2¢, psz; (u,) +dg, (U,v,),
(b) Whenu,v, € Ej,u, =V,, dg6,5((Uy,U,)(V4,U,)) =C, (p, (dG; (u) +def (V) —2) +2dg (u,),
(c) Whenu,v, € E;,u,V, ¢ E,, dg e ;((Uy,U,)(v1,V,)) =C, (P, (de (u) +def (V) —2) +dg (u,)

+dG2 (v,).
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Theorem3.8. Let G, :(oy,44) and G, :(o,,u,) be two fuzzy graphs on a regular graphs
G/ :(V;,E) and G, :(V,,E,) with o, <, and z, be a constant function with 4 (e) =c, for all
e e E,. Then G, oG, is an edge regular fuzzy graph.

Proof: Given G, :(oy,44) and G, : (o,,,) are two fuzzy graphs on regular graphs G; : (V,, E,)
and G, :(V,,E,) with o, <, and g, (e)=c, for all e E, respectively. Then G, : (c,, 1) is
both regular and edge regular. (Using Theorem 2.8.) Then dg (u,v;) =k, dg (u;)=m ,dG; (u,)=n,
Yu,v, €V, and u, €V,, where k,m and n are constants.
We prove the theorem in three cases using Theorem 3.7. Let (u,,u,)(v,,Vv,) €E.
Case 1: When u, =v,,u,v, € E,.
Ao e,y ((Uy, U;) (U, V,)) =2,d (Ug) + €, (d: (Uy) +d i (v,) = 2).
=2p,m+c,(n+n-2).
=2[p,m+c,(n—-1)] (3.6)
Case 2: When u, =V,,u,v, € E,.
Ao o, ((Uy, U;)(Vy, U)) =dg (Upvy) + (P, =1)(dg (Uy) +dg (V1)) +2¢,d - (U,).
=k +(p, —)(M+m)+2c,n.
=2m—2c, +2p,m—-2m+2c,n. (Since, k =2m—2c,)
=2[p,m+c,(n—-1)] (3.7)
Case 3: When u,v, e E;,u,v, ¢ E,.
Ao e, (U, Up ) (v, V,)) =g, (Uyv) + (P, =1)(dg, (Uy) +dg (V1)) +C,(d: (uy) +d . (v2)).
=k +(p, —D(Mm+m)+c,(n+n).
=2m—2c, +2p,m—-2m+2c,n. ( Since, k =2m-2c,)
=2[p,m+c,(n—-1)] (3.8)
From (3.6), (3.7) and (3.8), G, oG, is an edge regular fuzzy graph. n
Corollary 3.9. Let G, : (o,,24) and G, : (o,, 1,) be two fuzzy graphs with o; < 4, and o, be a
constant function with o,(u)=c, for all ueV,. Let G :(V,,E) and G, :(V,,E,) be regular

underlying crisp graphs. If G, is strong, then G, oG, is an edge regular fuzzy graph.

Proof: Given that G, :(oy,z) is strong with o, (u) =c, for allueV,. Then g (e)=c, for all

e € E, . Therefore, the result follows from Theorem 3.8. n
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Theorem 3.10. Let G, :(o,,44) and G, :(o,,u,) be two fuzzy graphs on a regular graphs
G :(V,E) and G, : (V,,E,) with o, <z and let x, be a constant function with 1, (e)=c, for
all ee E,. Then G, oG, is an edge regular fuzzy graph.

Proof: The proof is similar to the proof of Theorem 3.8. |
Corollary 3.11. Let G, : (o,,24) and G, : (o,, 1, ) be two fuzzy graphs with o, <, and o, bea
constant function with o,(u)=c, for allueV,. Let G :(V,,E) and G, :(V,,E,) be regular
underlying crisp graphs. If G, is strong, then G, o G, is an edge regular fuzzy graph.

Proof: The proof is similar to the proof of Theorem 3.9. |
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