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Abstract

In this paper we have shown that the the splitting graph of the complete bi-partite graph
K., » is graceful and the tensor product of the complete bi-partite graph K, ,, and a path
graph P (k > 1) is also graceful.
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1 Introduction

In 1967, Rosa[3] introduced the concept of labeling the edges and Golomb[2] gave the name
graceful for such labelings. Gallian[l] has given a dynamic survey of graph labeling. Many
graceful graphs are constructed from standard graphs by using various operations. Sekar[4]
proved that the splitting graph of a path P, and the splitting graph of even cycle C), are odd
graceful graphs. Vaidya et al.[6] proved that the splitting graph of K , as well as the tensor
product of K , and P, admits odd graceful labeling. Sudha et al.[5] proved that the splitting
graph of K1, , admits graceful labeling and the tensor product of K , and P> admit odd-even
graceful labeling.

In this paper we show that the splitting graph of the complete bi-partite graph K,, , and
the Tensor product of the complete bi-partite graph K, , and the path P} for any integer
values of m,n,k > 1 are graceful. Also we establish that the odd-even graceful labeling of the

tensor product of K , and Py which is the generalization of the result in [5].
2 Basic definitions

Definition 2.1. A graph G = (V(G), E(G)) with p vertices and ¢ edges is said to admit graceful
labeling if f: V(G) — {0,1,2,...,q} such that distinct vertices receive distinct numbers and

{l f(u) = f(v) | Juv e E(G)} = {1,2,3,..., 4}

Definition 2.2. A graph G = (V(G), E(G)) with p vertices and ¢ edges is said to admit odd-
even graceful labeling if f : V(G) — {0,1,2,...,2q} is injective and the induced function,
f* 1 E(G) — {2,4,6,...,2q} defined as f*(uv) =| f(u) — f(v) | is bijective.
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It should be noted that the vertices take both odd and even labelings whereas the edges take

only even labelings. That is the reason we call it as odd-even gracefulness.

Definition 2.3. For any graph G, the splitting graph is obtained by adding to each vertex v,

a new vertex v’ so that v’ is adjacent to each and every vertex that is adjacent to v in G.

Definition 2.4. The tensor product of two graphs Gi1 and Go denoted by G1 ® G2 has the
vertex set V(G ®@ G2) = V(G1) x V(G2) and the edge set E(G1 ® Ga) = {(u1, v1)(u2, v2)/uius
€ E(Gy) and vivg € E(G2)}.

3 The splitting graph of the complete bi-partite graph K,, , is graceful

Theorem 3.1. The splitting graph of the complete bi-partite graph K, , is graceful.

Proof: Let uy, us,...,u, and vy, vo,...,v, be the vertices of the complete bi-partite graph
K n.

Let G be the splitting graph of K, ,. Let ull, ulz, ...,u, and Ull, UIQ, ce ,v;l be the newly

m

added vertices in K, , to form G. G has 2(m + n) vertices and 3mn edges.
Define f : V(G) — {0,1,2,...,3mn} as follows:

/

flu;) =1i—1, 1<i<m
f(vi) = @Bn+1—1i)m, 1<i<n
flu;)) =mn+ (i —1), 1<i<m
fv) = (2n+1—i)m, 1<i<n

The above defined function f is a graceful labeling for the splitting graph of the complete
bi-partite graph Ky, .

Hence, the splitting graph of the complete bi-partite graph K,, , is graceful. |

INlustration 3.2. The splitting graph of the complete bi-partite graph K57 consists of 24
vertices and 105 edges. A graceful labeling of K57 is given in Figure 1.
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Figure 1. Splitting graph of Kj 7

4 Gracefulness of the tensor product of the complete bi-partite graph K, ,
with the path P, and P;

Theorem 4.1. The tensor product of the complete bi-partite graph K, , for m, n > 1 and
the path P> admits graceful labeling.

Proof: Let uy, ug,...,um4n be the vertices of the complete bi-partite graph K, , and let
v1, v2 be the vertices of the path graph P». The tensor product of the complete bi-partite
graph K, , and the path P is denoted by K,, , ® Ps.

Let G = Ky, p, ® P>. Then G consists of 2(m + n) vertices and 2mn edges. We divide the

vertices of K, , ® P> into two disjoint sets
1%} :{(ui, ’Ul) /i: 1,2,...,m+n}

VQZ{(UJ', Ug)/j:1,2,...,m+n}
Define f: V(G) — {0,1,2,...,2mn} by
(1 — 1)n, 1<i<m
f(ui7 Ul):
mn+1)+2—-i, m+1<i<m+n
(j—1n+1, 1<j<m

f(ujv UQ) =
g+m—-—j3+1, m+1<j<m+n
The function f defined above is a graceful labeling for the tensor product of complete bi-

partite graph K,, , and the path P,. Hence, K, , ® P, is a graceful graph. |

INlustration 4.2. Consider the complete bi-partite graph K3 4 and the path P». The resultant
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graph K3 4 ® P consists of 14 vertices and 24 edges. A graceful labeling of K3 4 ® P» is given

in Figure 2.

» OO ® B ® O O

Figure 2. Tensor product of K3 4 and P,

Theorem 4.3. The tensor product of the complete bi-partite graph K, , for m, n > 1 and
the path P3 admits graceful labeling.

Proof: Let uy, ua,...,umnmtn be the vertices of the complete bi-partite graph K, , and let
v1, vy and vs be the vertices of the path graph Ps;. The tensor product of the complete bi-
partite graph K, , and the path P3 is denoted by K,, , ® Ps.

Let G = Ky, n ® P3. Then G consists of 3(m + n) vertices and 4mn edges. We divide the
vertices of K, , ® P3 into three disjoint sets for each vertex in P53 as Vi, V2 and V3 and they
are given as

%1 :{(ui, ’Ul) /i: 1,2,...,m—|—n}
VQ = {(Uj, UQ) /j: 1,2,...,m+n}
Vs ={(ug, v3) / k=1,2,...,m+n}
Define f: V(G) — {0,1,2,...,4mn} by
m+ni+ 1, 1<i:<m
f(uiv vl) =
g—m(Ei—-m-—1), m+1<i<m+n
f(ujv UQ) =
7, m+1l1<j<m+n
n(m+k)+ (m+1), I1<k<m
f(uka v3) =

g—mn—mk—m-1), m+1<k<m+n
The function f defined above provides graceful labeling for the tensor product of the complete

bi-partite graph K, , and the path P3 that is, K, , ® P3 is a graceful graph. [ |
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INustration 4.4. Consider the complete bi-partite graph K> 3 and the path Ps;. The resultant
graph K» 3 ® P3 consists of 15 vertices and 24 edges. A graceful labeling of Ky 3 ® P3 is shown

in Figure 3.

@ @& @ d@© O

Figure 3. Tensor product of Ky 3 and Ps

5 Generalization of the tensor product of K, , with P
Theorem 5.1. The tensor product of the complete bi-partite graph K, , for m, n > 1 and
the path P, where k > 3 admits graceful labeling.

Proof: Let uq, ua,...,Untn be the vertices of the complete bi-partite graph K, , and let
v1, v2,...,U; be the vertices of the path graph Py. The tensor product of the complete bi-
partite graph K,, , and the path P is denoted by K, , ® Pj.

Let G = Ky, , @ P;. Then G consists of k(m +n) vertices and 2(k — 1)mn edges. We divide
the vertices of K,, , ® P} into k disjoint sets

Vi=A{(ui, vj) /1=1,2,...,m+nand j=1,2,...,k}
We prove the theoren in two cases.

Case 1: k is even.

Define f: V(G) — {0,1,2,...,2(k — 1)mn} as follows:
For odd j,

q+m—(% mn—(%)mn—(g—l)mn—n(i—l), 1<i<m,

q+m7<% mn —m(i —m), m+1<i<m-+n.

f(ui’ Uj) =
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For even j,
f(ui,vj):(%)mn—i—(i—l); 1<i<m+n.
Then f is a graceful labeling for G and hence G is graceful.

Case 2: k is odd.
Define f: V(G) — {0,1,2,...,2(k — 1)mn} as follows:

For odd j,
q+m—(%)mn—(%)mn—(%—l)mn—n(i—l), 1<i<m,
f(ui’ UJ): i—1
q+m—<%)mn—m(i—m), m+1<i<m+n.
For even j,

P vg) = (552)mn+ (= 1) 1<i<mtn.

Then f is a graceful labeling for G.
From both the cases, we have the tensor product of the complete bi-partite graph K, , and

the path P is graceful. |

Ilustration 5.2. A graceful labeling of the tensor product K4 4 ® P, is shown in Figure 4.

® © B »  ®»

Figure 4. Tensor product of Ky 4 and P,

IMustration 5.3. A graceful labeling of the tensor product K4 5 ® Ps is shown in Figure 5.
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Figure 5. Tensor product of K, 5 and P

6 Odd-even graceful labeling of the tensor product of K; , with F;

Theorem 6.1. The tensor product of the complete bi-partite graph K , and the path P

where n, k > 1 admits odd-even graceful labeling.

Proof: Let ui, wug,...,up41 be the vertices of the complete bi-partite graph Ki , and let
v1, Va,...,Ur be the vertices of the path graph P;. The tensor product of the complete bi-
partite graph K , and the path P is denoted by K , ® P.

Let G = K1, ® Pi. Then G consists of k(n + 1) vertices and 2n(k — 1) edges. We divide
the vertices of G = K1, , ® P, into k disjoint sets

Vi={(u, vj) /i=1,2,...,n+1land j=1,2,... k}
We prove the theorem in two cases.

Case 1: k is odd.
Define f : V(G) — {0,2,4,...,2q} where ¢ = 2n(k — 1) as follows:

)  k+1

fur,v2j-1) =2n(j — 1) + 1, l<j<——
) . k-1

f(ur,v95) = 2n(5 — 1), 1<j<——

For2<i<n+1,1<j5<k,
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[, vj

~—

{2q—n(j—1)+2—2(i—1), for odd j

2n(k—1)+3—n(j—2)—2(i—1), foreven j
Then f is a graceful labeling for G. Case 2: k is even.
Define f: V(G) — {0,2,4,...,2q} where ¢ = 2n(k — 1) as follows:

. .k

flur,vgj—1) =2n(j —1)+1,1<j < 3

. .k

flur,ve5) =2n(j—1),1<j< 3

For2<i<n+41,1<j<k,
2g—n(j—1)+2-2(i—1), for odd j,
fui, v;) =

2n(k—1)+3—-n(j —2)—2(i—1), foreven].

Then f is a graceful labeling for G. From both the cases, tensor product of the complete bi-
partite graph K , and the path P, where n, k > 1 admits an odd-even graceful labeling. &

IMlustration 6.2. Consider the complete bi-partite graph K7 4 and the path P;. The resultant
graph K1, 4® Py consists of 35 vertices and 48 edges. An odd-even graceful labeling of K1, 4 ® P;

is shown in Figure 6.
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Figure 6. Tensor product of k; 4 and Pr

INlustration 6.2 Consider the complete bi-partite graph K 5 and the path Fs. The resultant
graph K1 5 ® P consists of 36 vertices and 50 edges. An odd-even graceful labeling of K 5& Fps

is shown in Figure 7.
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Figure 7. Tensor product of K5 an
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