

ISSN Print : 2249 – 3328 ISSN Online: 2319 – 5215

Some square graceful graphs

T. Tharmaraj¹, P. B. Sarasija²

¹Department of Mathematics, Udaya School of Engineering Vellamodi, Tamil Nadu, INDIA. trajtr@gmail.com

²Department of Mathematics, Noorul Islam University Kumaracoil, Tamil Nadu, INDIA. sijavk@gmail.com.

Abstract

A (p,q) graph G(V,E) is said to be a square graceful graph if there exists an injection $f:V(G)\to\{0,1,2,3,...,\ q^2\}$ such that the induced mapping $f_p:E(G)\to\{1,4,9,...,\ q^2\}$ by $f_p(uv)=|f(u)-f(v)|$ is a bijection. The function f is called a square graceful labeling of G. In this paper, we prove the graph obtained by the subdivision of the edges of stars of bistar $B_{m,n}$, the graph obtained by the subdivision of the edges of bistar $B_{m,n}$, the graph obtained by the subdivision of the edges of the path P_n in a comb $P_n\Theta K_1$, $< C_3*K_{1,n}>$, $< S_n:m>$ and $< C_3$, $K_{1,n}>$ are square graceful graph.

Keywords: Square graceful graph, square graceful labeling.

AMS Subject Classification (2010): 05C69.

1 Introduction

All graphs in this paper are finite, simple and undirected graphs. Let (p,q) be a graph with p = |V(G)| vertices and q = |E(G)| edges. A detailed survey of graph labeling can be found in [1]. Terms not defined here are used in the sense of Harary in [2]. There are different types of graceful labelings in the graph labeling. The concept of square graceful labeling was first introduced in [5] and some results on square graceful labeling of graphs are discussed in [5]. In this paper, we investigate some more graphs for square graceful labeling. We use the following definitions in the subsequent sections.

Definition 1.1. [5] A (p,q) graph G(V,E) is said to be a square graceful graph if there exists an injection $f:V(G) \to \{0,1,2,..., q^2\}$ such that the induced mapping $f_p:E(G) \to \{1,4,9,..., q^2\}$ defined by $f_p(uv) = |f(u) - f(v)|$ is a bijection. The function f is called a square graceful labeling of G.

Definition 1.2. [6] The corona $G_1\Theta G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 (which has p points) and p copies of G_2 and then joining the ith point of G_1 to every point in the ith copy of G_2 .

Definition 1.3. [1] A complete biparitite graph $K_{1,n}$ is called a star and it has n+1 vertices and n edges.

Definition 1.4. [1] The bistar graph $B_{m,n}$ is the graph obtained from a copy of star $K_{1,m}$ and a copy of star $K_{1,n}$ by joining the vertices of maximum degree by an edge.

Definition 1.5. [3] A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions.

Definition 1.6.[1] The graph $\langle S_n : m \rangle$ is the graph obtained by taking m disjoint copies of star S_n and joining a new vertex to the centres of the m copies of star S_n .

Definition 1.7. [4] The graph $\langle C_m * K_{1,n} \rangle$ is the graph obtained from C_m and $K_{1,n}$ by identifying any one of the vertices of C_m with a pendent vertex of $K_{1,n}$ (that is a non-central vertex of $K_{1,n}$).

Definition 1.8. [4] The graph $\langle C_m, K_{1,n} \rangle$ is the graph obtained from C_m and $K_{1,n}$ by identifying any one of the vertices of C_m with the central vertex of $K_{1,n}$.

2 Main Results

Theorem 2.1. The graph obtained by the subdivision of the edges of stars of the bistar $B_{m,n}$ is a square graceful graph.

Proof: Let $B_{m,n}$ be a bistar with m+n+2 vertices and m+n+1 edges . the vertex and edge sets are given by $V(B_{m,n})=\{u_i,v_j:1\leq i\leq m+1;1\leq j\leq n+1\}$ and

$$E(B_{m,n}) = \{u_i u_{m+1}, v_i v_{n+1}, u_{m+1} v_{n+1} : 1 \le i \le m; 1 \le j \le n\}.$$

Let G be the graph obtained by the subdivision of the edges of stars of $B_{m,n}$. Let w_i divide u_iu_{m+1} for $1 \le i \le m$ and z_i divide v_iv_{n+1} for $1 \le j \le n$. Then the vertex and the edge set of G are given by

$$V(G) = \{ u_i, v_j : 1 \le i \le m+1, 1 \le j \le n+1 \} \cup \{ w_i, z_j : 1 \le i \le m, 1 \le j \le n \} \text{ and } E(G) = \{ w_i u_{m+1}, u_i w_i : 1 \le i \le m \} \cup \{ z_j v_{n+1}, v_j z_j : 1 \le i \le m \} \cup \{ u_{m+1} v_{n+1} \}$$

Case (i): m < n.

Define an injection $f: V(G) \to \{0,1,2,3,...,(2m+2n+1)^2\}$ by

$$f(u_{m+1}) = 1$$
; $f(v_{m+1}) = 0$;

For
$$1 \le i \le m$$
, $f(w_i) = (2m + n + 2 - i)^2 + 1$; $f(u_i) = (3m + 2n + 4 - 2i)(m) + 1$.

For
$$1 \le j \le n$$
, $f(z_j) = (2m + 2n + 2 - j)^2$; $f(v_j) = (2m + 3n + 4 - 2j)(2m + n)$.

Then, f induces a bijection $f_p: E(G) \to \{1, 4, 9, \dots, (2m+2n+1)^2\}$.

In this case the edge labels of G are as follows:

$$\begin{split} &f_p(u_{m+1}v_{n+1})=1\,;\\ &f_p(w_iu_{m+1})=&(2m+n+2-i)^2 \text{ and } f_p(u_iw_i)=&(m+n+2-i)^2 \text{ for } 1\leq i\leq m\\ &f_p(z_iv_{n+1})=&(2m+2n+2-j)^2 \text{ and } f_p(v_iz_i)=&(n+2-j)^2 \text{ for } 1\leq j\leq n\,. \end{split}$$

Case(ii): m = n.

Define an injection $f: V(G) \to \{0,1,2,3,...,(4n+1)^2\}$ by

$$f(u_{n+1}) = 0$$
; $f(v_{n+1}) = 1$;

For
$$1 \le i \le n$$
, $f(w_i) = (4n+2-i)^2$; $f(u_i) = (5n+4-2i)(3n)$.

For
$$1 \le j \le n$$
, $f(z_j) = (3n+2-j)^2 + 1$; $f(v_j) = (5n+4-2j)(n) + 1$.

Then, f induces a bijection $f_p: E(G) \rightarrow \{1,4,9,\dots,(4n+1)^2\}$.

In this case the edge labels of G are as follows:

$$f_{n}(u_{n+1}v_{n+1})=1$$
;

$$f_p(w_i u_{n+1}) = (4n+2-i)^2$$
 and $f_p(u_i w_i) = (n+2-i)^2$ for $1 \le i \le n$.

$$f_n(z_i v_{n+1}) = (3n+2-j)^2$$
 and $f_n(v_i z_i) = (2n+2-j)^2$ for $1 \le j \le n$.

Case(iii): m > n.

Define an injection $f: V(G) \to \{0,1,2,3,...,(2m+2n+1)^2\}$ by

$$f(u_{m+1}) = 0$$
; $f(v_{m+1}) = 1$;

For
$$1 \le i \le m$$
, $f(w_i) = (2m+2n+2-i)^2$; $f(u_i) = (3m+2n+4-2i)(m+2n)$.

For
$$1 \le j \le n$$
, $f(z_j) = (m+2n+2-j)^2 + 1$; $f(v_j) = (2m+3n+4-2j)(n) + 1$.

Then, f induces a bijection $f_p: E(G) \rightarrow \{1,4,9,\ldots,(2m+2n+1)^2\}$.

In this case the edge labels are as follows:

$$f_p(u_{m+1}v_{n+1})=1$$
;

$$f_p(w_i u_{m+1}) = (2m+2n+2-i)^2$$
 and $f_p(u_i w_i) = (m+2-i)^2$ for $1 \le i \le m$.

$$f_p(z_j v_{n+1}) = (m+2n+2-j)^2$$
 and $f_p(v_j z_j) = (m+n+2-j)^2$ for $1 \le j \le n$.

Hence, the graph obtained by the subdivision of the edges of stars of the bistar $B_{m,n}$ is a square graceful graph.

Example 2.2. A square graceful labeling of the graph obtained by the subdivision of the edges of stars of bistar $B_{7.5}$ is shown in Figure 1.

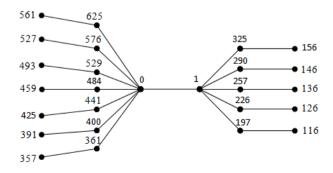


Figure 1: Square graceful labeling of the graph obtained by the subdivision of the edges of the stars of $B_{7.5}$.

Theorem 2.3. The graph obtained by the subdivision of the edges of the bistar $B_{m,n}$ is a square graceful graph.

Proof: Let $B_{m,n}$ be a bistar with m+n+2 vertices and m+n+1 edges. The vertex and edge sets are given by, $V(B_{m,n}) = \{ u_i, v_i : 1 \le i \le m+1, 1 \le j \le n+1 \}$ and

$$E(B_{m,n}) = \{u_i u_{m+1}, v_i v_{n+1}, u_{m+1} v_{n+1} : 1 \le i \le m, 1 \le j \le n\}.$$

Let G be the graph obtained by the subdivision of the edges of the bistar $B_{m,n}$. Let w_i divide u_iu_{m+1} for $1 \le i \le m$ and z_j divide v_jv_{n+1} for $1 \le j \le n$. Let v divide $u_{m+1}v_{n+1}$. Then the vertex and the edge set of G are given by

$$V(G) = \{ u_i, v_j : 1 \le i \le m+1, 1 \le j \le n+1 \} \cup \{ w_i, z_j : 1 \le i \le m, 1 \le j \le n \} \cup \{v\} \text{ and } E(G) = \{ w_i u_{m+1}, u_i w_i : 1 \le i \le m \} \cup \{ z_i v_{n+1}, v_i z_j : 1 \le i \le m \} \cup \{ v u_{m+1}, v v_{m+1} \}$$

Case (i): m < n.

Define an injection $f: V(G) \to \{0,1,2,3,...,(2m+2n+2)^2\}$ by

$$f(u_{m+1})=5$$
; $f(v_{m+1})=0$; $f(v)=1$;

For
$$1 \le i \le m$$
, $f(w_i) = (2m+n+3-i)^2 + 5$; $f(u_i) = (3m+2n+6-2i)(m) + 5$.

For
$$1 \le j \le n$$
, $f(z_i) = (2m+2n+3-i)^2$; $f(v_i) = (2m+3n+6-2i)(2m+n)$.

Then, f induces a bijection $f_n: E(G) \rightarrow \{1,4,9,...,(2m+2n+2)^2\}$.

In this case the induced edge labels of G are as follows:

$$f_{n}(vu_{m+1}) = 4$$
; $f_{n}(vv_{n+1}) = 1$;

$$f_p(w_i u_{m+1}) = (2m+n+3-i)^2$$
 and $f_p(u_i w_i) = (m+n+3-i)^2$ for $1 \le i \le m$.

$$f_p(z_i v_{n+1}) = (2m+2n+3-j)^2$$
 and $f_p(v_i z_j) = (n+3-j)^2$ for $1 \le j \le n$.

Case (ii): m = n.

Define an injection $f:V(G) \rightarrow \{0,1,2,3,...,(4n+2)^2\}$ by

$$f(u_{n+1}) = 5$$
; $f(v_{n+1}) = 0$; $f(v) = 1$.

For
$$1 \le i \le n$$
, $f(w_i) = (3n+3-i)^2 + 5$; $f(u_i) = (5n+6-2i)(n) + 5$.

For
$$1 \le j \le n$$
, $f(z_i) = (4n+3-j)^2$; $f(v_i) = (5n+6-2j)(3n)$.

Then, f induces a bijection $f_p: E(G) \rightarrow \{1,4,9,...,(4n+2)^2\}$.

In this case the edge labels of G are as follows:

$$f_p(vu_{n+1}) = 4 \; ; \; f_p(vv_{n+1}) = 1 \; ; \; f_p(w_iu_{n+1}) = (3n+3-i)^2 \quad \text{and} \; f_p(u_iw_i) = (2n+3-i)^2 \quad \text{for} \; 1 \le i \le n \; .$$

$$f_p(z_iv_{n+1}) = (4n+3-j)^2 \quad \text{and} \quad f_p(v_iz_j) = (n+3-j)^2 \quad \text{for} \; 1 \le j \le n \; .$$

Case (iii): m > n.

Define an injection $f: V(G) \to \{0,1,2,3,...,(2m+2n+2)^2\}$ by

$$f(u_{m+1}) = 0$$
; $f(v_{n+1}) = 5$; $f(v) = 1$.

For
$$1 \le i \le m$$
, $f(w_i) = (2m + 2n + 3 - i)^2$; $f(u_i) = (3m + 2n + 6 - 2i)(m + 2n)$;
For $1 \le j \le n$, $f(z_j) = (m + 2n + 3 - j)^2 + 5$; $f(v_j) = (2m + 3n + 6 - 2j)(n) + 5$.
Then, f induces a bijection $f_p : E(G) \to \{1,4,9,...,(2m + 2n + 2)^2\}$.
In this case the edge labels of G are as follows: $f_p(v|u_{m+1}) = 1$; $f_p(vv_{n+1}) = 4$; $f_p(w_iu_{m+1}) = (2m + 2n + 3 - i)^2$ and $f_p(u_iw_i) = (m + 3 - i)^2$ for $1 \le i \le m$.
 $f_p(z_iv_{n+1}) = (m + 2n + 3 - j)^2$ and $f_p(v_iz_j) = (m + n + 3 - j)^2$ for $1 \le j \le n$.

Example 2.4. A square graceful labeling of the graph obtained by the subdivision of the edges of bistar $B_{3,7}$ and $B_{9,4}$ are shown in Figure 2 and Figure 3 respectively.

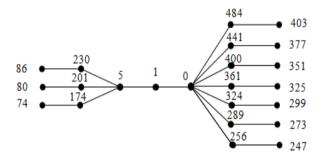


Figure 2: Square graceful labeling of the graph obtained by the subdivision of the edges of $B_{3,7}$.

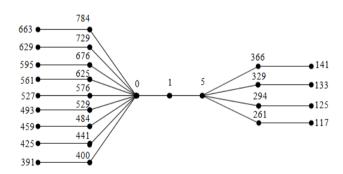


Figure 3: Square graceful labeling of the graph obtained by the subdivision of the edges of $B_{9.4}$.

Theorem 2.5. The graph obtained by the subdivision of the edges of the path P_n in comb $P_n\Theta K_1$ is a square graceful graph.

Proof: Let G be the graph obtained by the subdivision of the edges of the path P_n in comb $P_n\Theta K_1$.

Let
$$V(G) = \{u_i, v_j, w_k : 1 \le i \le n, 1 \le j \le n, 1 \le k \le n-1 \}$$
 and

$$E(G) = \{u_i w_k, w_k u_{i+1} : 1 \le i \le n-1, 1 \le k \le n-1\} \cup \{u_i v_i : 1 \le i \le n, 1 \le j \le n\}$$

Define an injection $f:V(G) \rightarrow \{0,1,2,3,\dots,(3n-2)^2\}$ by

$$f(u_1) = (3n-2)^2$$
;

$$f(u_{\frac{i+2}{2}}) = \frac{i(i-1)(2i-1)}{6}$$
 for $i = 2, 4, 6, ..., 2n-2$.

$$f(w_{\frac{k+1}{2}}) = \frac{k(k-1)(2k-1)}{6} \quad \text{for} \quad k = 1,3,5,...,2n-3.$$

$$f(v_{\frac{j+2}{2}}) = \frac{j(j-1)(2j-1)}{6} + \left(\frac{4n-2+j}{2}\right)^2 \quad \text{for} \quad j = 2,4,6,...,2n-4.$$

$$f(v_1) = (n-1)(5n-3) \; ; \; f(v_n) = \frac{(n-1)(8n^2-10n+3)}{3} \; .$$

Then, f induces a bijection $f_p: E(G) \rightarrow \{1,4,9,\ldots,(3n-2)^2\}$.

The edge labels are as follows: $f_p(u_1 w_1) = (3n-2)^2$; $f_p(u_n v_n) = (2n-2)^2$;

$$f_p(w_k u_{i+1}) = (2i-1)^2 \text{ for } 1 \le i \le n-1, \ 1 \le k \le n-1;$$

$$f_p(u_i w_k) = 4i^2$$
 for $2 \le i \le n-1, 2 \le k \le n-1$;

$$f_n(u_i v_j) = (2n-2+i)^2$$
 for $1 \le i \le n-1, 1 \le j \le n-1$.

Example 2.6. A square graceful labeling of the graph obtained by the subdivision of the edges of the path P_5 in comb $P_5\Theta K_1$ is shown in Figure 4.

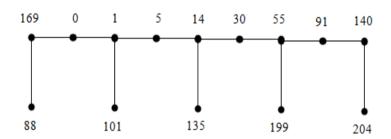


Figure 4

Theorem 2.7: The graph $< C_3 * K_{1,n} >$ is a square graceful graph for $n \ge 3$.

Proof: Let the vertex sets of C_3 and $K_{l,n}$ be given by $V(C_3) = \{u_i : 1 \le i \le 3\}$ and $V(K_{1,n}) = \{v_j : 1 \le j \le n+1\}$ where v_{n+1} is the centre of the star. Identify u_1 of C_3 with v_n of $K_{l,n}$ to get $C_3 * K_{1,n} > 0$.

Then the vertex and edge sets of $\langle C_3 * K_{1,n} \rangle$ are given by,

$$V(C_3 * K_{1,n}) = \{ u_i : 2 \le i \le 3 ; v_j : 1 \le j \le n+1 \}$$

$$u_1 = v_n$$
. Let $E(C_3 * K_{1,n}) = \{u_1 u_2, u_2 u_3, u_3 u_1\} \cup \{v_j v_{n+1} : 1 \le j \le n\}$

Define an injection $f:V(C_3*K_{1,n}) \to \{0,1,2,3,...,(n+3)^2\}$ by

$$f(u_1 = v_n) = 0$$
; $f(u_2) = 16$; $f(u_3) = 25$; $f(v_{n+1}) = (n+3)^2$

$$f(v_{n-2}) = (n+1)(n+5)$$
; $f(v_{n-1}) = n^2 + 6n + 8$;

$$f(v_j) = (2n+6-j)j$$
 for $1 \le j \le n-3$.

Then, f induces a bijection $f_p: E(C_3 * K_{1,n}) \to \{1,4,9,...,(n+3)^2\}$.

The induced edge labels of $\langle C_3 * K_{1,n} \rangle$ are as follows:

$$f_p(u_1 u_2) = 16 \; ; \; f_p(u_2 u_3) = 9 \; ; \; f_p(u_1 u_3) = 25 \; ; f_p(v_{n-1} v_{n+1}) = 1 \; ;$$

$$f_p(u_1 v_{n+1}) = (n+3)^2 \; ; \; f_p(v_j v_{n+1}) = (n+3-j)^2 \quad \text{for } 1 \le j \le n-3 \; ; \; f_p(v_{n-2} v_{n+1}) = 4 \; .$$

Hence, the graph $< C_3 * K_{1,n} >$ is a square graceful graph for $n \ge 3$.

Example 2.8. A square graceful labeling of $\langle C_3 * K_{1.8} \rangle$ is shown in Figure 5.

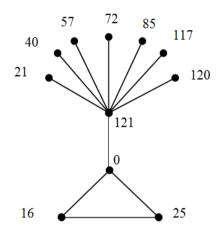


Figure 5: Square graceful labeling of $\langle C_3 * K_{1.8} \rangle$.

Theorem 2.9. The graph $\langle S_n : m \rangle$ is a square graceful graph.

Proof: Let $v_{0_j}, v_{1_j}, v_{2_j}, \dots v_{n_j}$ be the vertices of the j^{th} copy of the star S_n in $S_n : m > 0$ where $S_n : m > 0$ where $S_n : m > 0$ is the centre of the star where $S_n : m > 0$ where $S_n : m > 0$ is the

$$V(\langle S_n : m \rangle) = \{v, v_{i_i} : 0 \le i \le n, 1 \le j \le m\}.$$

Let
$$E(\langle S_n : m \rangle) = \begin{cases} v v_{0_j} : 1 \le j \le m \\ v_{0_j} v_{i_j} : 1 \le i \le n, 1 \le j \le m \end{cases}$$

Define an injection $f: V(<S_n: m>) \to \{0,1,2,3,...,(mn+m)^2\}$ by

$$f(v) = 1$$
; $f(v_{0_i}) = 0$; $f(v_{0_i}) = j^2 + 1$ if $2 \le j \le m$;

$$f(v_i) = (mn+m+1-i)^2$$
 if $1 \le i \le n$;

$$f(v_i) = [mn+m+n+1-nj-i]^2 + j^2 + 1$$
 if $1 \le i \le n$ and $2 \le j \le m$.

Then, f induces a bijection $f_p: E(\langle S_n:m \rangle) \rightarrow \{1,4,9,...,(mn+m)^2\}$.

The induced edge labels of $\langle S_n : m \rangle$ are as follows:

$$f_{p}(vv_{0}) = j^{2}$$
 if $1 \le j \le m$;

$$f_{_{p}}(v_{_{0_{_{i}}}}v_{_{i_{_{i}}}}) = [mn + m + n + 1 - nj - i]^{2} \ if \ 1 \leq i \leq n \ , 1 \leq j \leq m.$$

Hence the graph $\langle S_n : m \rangle$ is a square graceful graph.

Example 2.10: A square graceful labeling of $[S_5:4]$ is shown in Figure 6.

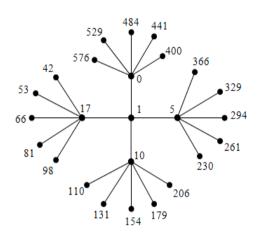


Figure 6: Square graceful labeling of $[S_5:4]$.

Theorem 2.11: The graph $\langle C_3, K_{1,n} \rangle$ is a square graceful graph.

Proof: Let $V(\langle C_3, K_{1,n} \rangle) = \{ u_i ; 1 \le i \le 3 ; v_j : 1 \le j \le n+1 \}.$

Take
$$u_1 = v_{n+1}$$
. Let $E(\langle C_3, K_{1,n} \rangle) = \begin{cases} u_1 u_2 \ ; \ u_1 u_3 \ ; u_2 u_3 \ ; \\ u_1 v_j \ : 1 \le j \le n \end{cases}$

Define an injection $f: V(< C_3, K_{1,n} >) \rightarrow \{0,1,2,3,...,(n+3)^2\}$ by

$$f(u_1) = 0$$
; $f(u_2) = 16$; $f(u_3) = 25$; $f(v_{n-1}) = 4$; $f(v_n) = 1$;
 $f(v_j) = (n+3-j)^2$ if $1 \le j \le n-2$.

Then, f induces a bijetion $f_p: E(< C_3, K_{1,n}>) \to \{1,4,9,...,(n+3)^2\}$.

The edge labels of $< C_3$, $K_{1,n} >$ are as follows:

$$f_p(u_1u_2) = 16$$
; $f_p(u_1u_3) = 25$; $f_p(u_2u_3) = 9$; $f_p(u_1v_{n-1}) = 4$;
 $f_p(u_1v_n) = 1$; $f_p(u_1v_j) = (n+4-j)^2$ if $1 \le j \le n-2$.

Example 2.12: A square graceful labeling of $\langle C_3, K_{1,8} \rangle$ and $\langle C_3, K_{1,5} \rangle$ are shown in Figure 7(a) and Figure 7(b) respectively.

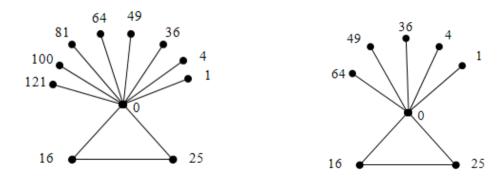


Figure 7: Square graceful labeling of $\langle C_3, K_{1,8} \rangle$ and $\langle C_3, K_{1,5} \rangle$.

References

- [1] J. A. Gallian, *A dynamic survey of graph labeling*, The Electronic journal of combinatory, (2002), # DS6, 1-144.
- [2] Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
- [3] K. Murugan and A. Subramanian, *Labeling of Subdivided Graphs*, American Jr. of Mathematics and Sciences, Vol.1, No.1(2012), 143-149.
- [4] A. Nagarajan, R. Vasuki and S. Arokiaraj, *Super Mean Number of a Graph*, Kragujevac Journal of Mathematics, Vol. 36, No.1(2012), 93-107.
- [5] T.Tharma Raj and P.B.Sarasija, *Square graceful graphs*, International Journal of Mathematics and Soft Computing, Vol. 4, No.1 (2014), 129-137.
- [6] T. Tharma Raj and P. B. Sarasija, *Analytic Mean Graphs*, Int. Journal. of Math. Analysis, Vol.8, No. 12(2014), 595-609.