

ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

Total edge Fibonacci irregular labeling of some star graphs

S. Karthikevan¹, S. Navanaeethakrishnan², R. Sridevi³

1,3 Department of Mathematics
Sri S.R.N.M.College, Sattur - 626 203
Tamil Nadu, India.
karthikeyan11pm30@gmail.com
r.sridevi_2010@yahoo.com

Department of Mathematics V.O.C.College, Tuticorin - 628 008 Tamil Nadu, India. snk.voc@gmail.com

Abstract

A total edge Fibonacci irregular labeling $f:V(G)\cup E(G)\to \{1,2,\ldots,K\}$ of a graph G=(V,E) is a labeling of vertices and edges of G in such a way that for any different edges xy and $x^{'}y^{'}$ their weights f(x)+f(xy)+f(y) and $f(x^{'})+f(x^{'}y^{'})+f(y^{'})$ are distinct Fibonacci numbers. The total edge Fibonacci irregularity strength, tefs(G) is defined as the minimum K for which G has a total edge Fibonacci irregular labeling. If a graph has a total edge Fibonacci irregular labeling, then it is called a total edge Fibonacci irregular graph. In this paper, we prove $K_{1,n}$, bistar $\langle (B_{n,n}) \rangle$, subdivision of bistar $\langle (B_{n,n};W) \rangle$ and $\langle (B_{2,n};W_i) \rangle$ $(1 \le i \le n)$ are total edge Fibonacci irregular graphs.

Keywords: Total vertex irregular labeling, edge irregular total K-labeling, total edge Fibonacci irregular labeling.

AMS Subject Classification(2010): 05C78.

1 Introduction

By a graph, we mean a finite, undirected graph without loops and multiple edges. For terms not defined here, we refer to Harary [2]. A total vertex irregular labeling on a graph G with v vertices and e edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The weight of a vertex v in G is defined as the sum of the label of v and the labels of all the edges incident with v, that is $wt(v) = \lambda(v) + \sum_{uv \in E} \lambda(uv)$. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum value of the largest label over all such irregular assignments. For a graph G = (V, E), define a labeling $f : V(G) \cup E(G) \rightarrow \{1, 2, \dots, K\}$ to be an edge irregular total K-labeling of the graph G if for every two different edges tvs(G), is defined as the minimum tvs(f) which tvs(f) has an edge irregular total tvs(f) to a total vertex irregular labeling and total edge irregular labeling are introduced by Baca et al [1]

Definition 1.1. The Fibonacci numbers can be defined by the linear recurrence relation

$$F_n = \begin{cases} 0 & \text{if } n = 0, \\ 1 & \text{if } n = 1, \\ F_{n-1} + F_{n-2} & \text{if } n > 1. \end{cases}$$

This generates the infinite sequence of integers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

2 Main Results

S. Amutha and K M.Kathiresan introduced the notion of total edge Fibonacci irregular labeling and also they proved that graphs like P_n , C_n and book with (3 and 4 sides) are total edge Fibonacci irregular graphs.

Definition 2.1. A total edge Fibonacci irregular labeling $f: V(G) \cup E(G) \to \{1, 2, ..., K\}$ of a graph G = (V, E) is a labeling of vertices and edges of G in such a way that for any different edges xy and x'y' their weights f(x) + f(xy) + f(y) and f(x') + f(x'y') + f(y') are distinct Fibonacci numbers.

The total edge Fibonacci irregularity strength, tefs(G) is defined as the minimum K for which G has total edge Fibonacci irregular labeling.

Note that if f is a total edge Fibonacci irregular labeling of G=(V,E) with |V(G)|=p and |E(G)|=q then $F_4(=3)\leq wt(xy)\leq F_{q+3}$ which implies that tefs $\geq \lceil \frac{F_{q+3}}{3} \rceil$.

Example 2.2. For the cycle C_4 , n=4, tefs $=\lceil \frac{F_{n+3}}{3} \rceil$. Therefore, tefs $=\lceil \frac{F_7}{3} \rceil$ =5.

Figure 1

Theorem 2.3. The star graph $K_{1,n}$ has a total edge Fibonacci irregular labeling and tefs $(K_{1,n}) \le |\frac{F_{n+3}}{2}|$, for any n.

Proof: Let $V = \{v, v_1, v_2, \dots, v_n\}$ be the vertex set and $E = \{e_i = vv_i : i = 1, 2, \dots, n\}$ be the edge set of $K_{1,n}$. Then |V| = n + 1 and |E| = n.

Define $f: V \cup E \to \{1, 2, \dots, \lfloor \frac{F_{n+3}}{2} \rfloor \}$ by f(v) = 1, $f(v_i) = \lfloor \frac{F_{i+3}}{2} \rfloor$; $i = 1, 2, \dots, n$ and $f(e_i) = F_{i+3} - \lfloor \frac{F_{i+3}}{2} \rfloor - 1$; $i = 1, 2, \dots, n$.

By this labeling, $wt(e_i)=f(v)+f(e_i)+f(v_i)$; $i=1,2,\ldots,n$. $=1+(F_{i+3}-\lfloor\frac{F_{i+3}}{2}\rfloor-1)+\lfloor\frac{F_{i+3}}{2}\rfloor$

Thus, the weights of e_1, e_2, \ldots, e_n are $F_4, F_5, \ldots, F_{n+3}$ respectively. Also, tefs $(K_{1,n}) \leq \lfloor \frac{F_{i+3}}{2} \rfloor$, for any n.

Example 2.4. The graph $(K_{1,8})$ is total edge Fibonacci irregular labeling and tefs $(K_{1,8}) \leq \lfloor \frac{F_{11}}{2} \rfloor = 44$.

Figure 2: Total edge Fibonacci irregular labeling of $(K_{1,8})$.

Theorem 2.5. The bistar graph $B_{n,n}$ for $n \ge 2$ has a total edge Fibonacci irregular labeling and tefs $(B_{n,n}) \le \lfloor \frac{F_{2n+4}}{2} \rfloor - 1$.

Proof: Let $V=\{u,v,u_1,u_2,\ldots,u_n,v_1,v_2,\ldots,v_n\}$ be the vertex set and $E=\{e=uv,x_i=uu_i,y_i=vv_i\;;\;i=1,2,\ldots,n\}$ be the edge set. Then |V|=2n+2 and |E|=2n+1.

Define $f: V \cup E \to \{1, 2, \dots, \lfloor \frac{F_{2n+4}}{2} \rfloor - 1\}$ by f(u) = 1, f(v) = 3, $f(u_1) = 1$, $f(v_1) = 4$, $f(u_i) = \lfloor \frac{F_{2i+4}}{2} \rfloor - 1$; $i = 2, 3, \dots, n$, $f(v_i) = \lfloor \frac{F_{2i+4}}{2} \rfloor - 1$; $i = 2, 3, \dots, n$ and f(e) = 1, $f(x_1) = 1$, $f(x_i) = F_{2i+3} - \lfloor \frac{F_{2i+4}}{2} \rfloor$; $i = 2, 3, \dots, n$, $f(y_1) = 1$, $f(y_i) = F_{2i+4} - \lfloor \frac{F_{2i+4}}{2} \rfloor - 2$; $i = 2, 3, \dots, n$.

By this labeling,
$$wt(e) = f(u) + f(e) + f(v)$$

 $= 1 + 1 + 3 = 5 = F_5$
 $wt(x_1) = f(u) + f(x_1) + f(u_1)$
 $= 1 + 1 + 1 = 3 = F_4$
 $wt(y_1) = f(v) + f(y_1) + f(v_1)$
 $= 3 + 1 + 4 = 8 = F_6$
 $wt(x_i) = f(u) + f(x_i) + f(u_i) \; ; \; i = 2, 3, \dots, n$.
 $= 1 + (F_{2i+3} - \lfloor \frac{F_{2i+4}}{2} \rfloor) + (\lfloor \frac{F_{2i+4}}{2} \rfloor - 1)$
 $= F_{2i+3}$

Thus, the weights of x_2, x_3, \ldots, x_n are $F_7, F_9, \ldots, F_{2n+3}$.

$$wt(y_i) = f(v) + f(y_i) + f(v_i) ; i = 2, 3, ..., n.$$

= $3 + (F_{2i+4} - \lfloor \frac{F_{2i+4}}{2} \rfloor - 2) + (\lfloor \frac{F_{2i+4}}{2} \rfloor - 1)$
= F_{2i+4}

That is, weights of y_2, y_3, \ldots, y_n are $F_8, F_{10}, \ldots, F_{2n+4}$.

Thus, the weights of edges $e, x_1, y_1, x_2, y_2, \dots, x_n, y_n$ are $F_4, F_5, F_6, \dots, F_{2n+3}, F_{2n+4}$ respectively and tefs $(B_{n,n}) \leq \lfloor \frac{F_{2n+4}}{2} \rfloor - 1$.

Example 2.6. The graph $(B_{5,5})$ is total edge Fibonacci irregular labeling and tefs $(B_{5,5}) \leq \lfloor \frac{F_{14}}{2} \rfloor - 1 = 187$.

Figure 3: Total edge Fibonacci irregular labeling of $(B_{5,5})$.

Theorem 2.7. The Bistar graph $(B_{n,n}; W)$ for $n \ge 2$ has a total edge Fibonacci irregular labeling and tefs $(B_{n,n}; W) \le \lfloor \frac{F_{2n+5}}{2} \rfloor - 1$.

Proof: Let $V = \{u, v, w, u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$ be the vertex set and $E = \{x = uw, y = wv, x_i = uu_i, y_i = vv_i ; i = 1, 2, \dots, n\}$ be the edge set. Then |V| = 2n + 3 and |E| = 2n + 2.

Define $f: V \cup E \to \{1, 2, \dots, \lfloor \frac{F_{2n+5}}{2} \rfloor - 1\}$ by f(u) = 1, f(w) = 2, f(v) = 3, $f(u_1) = 1$, $f(v_1) = 5$, $f(u_i) = \lfloor \frac{F_{2i+5}}{2} \rfloor - 1$; $i = 2, 3, \dots, n$, $f(v_i) = \lfloor \frac{F_{2i+5}}{2} \rfloor - 1$; $i = 2, 3, \dots, n$ and f(x) = 2, $f(x_1) = 1$, $f(x_i) = F_{2i+4} - \lfloor \frac{F_{2i+5}}{2} \rfloor$; $i = 2, 3, \dots, n$, f(y) = 1, $f(y_1) = 5$, $f(y_i) = F_{2i+5} - \lfloor \frac{F_{2i+5}}{2} \rfloor - 2$; $i = 2, 3, \dots, n$.

By this labeling,
$$wt(x) = f(u) + f(x) + f(w)$$

 $= 1 + 2 + 2 = 5 = F_5$
 $wt(y) = f(w) + f(y) + f(v)$
 $= 2 + 3 + 3 = 8 = F_6$
 $wt(x_1) = f(u) + f(x_1) + f(u_1)$
 $= 1 + 1 + 1 = 3 = F_4$
 $wt(y_1) = f(v) + f(y_1) + f(v_1)$
 $= 3 + 5 + 5 = 13 = F_7$
 $wt(x_i) = f(u) + f(x_i) + f(u_i) \; ; \; i = 2, 3, \dots, n$.
 $= 1 + (F_{2i+4} - \lfloor \frac{F_{2i+5}}{2} \rfloor) + (\lfloor \frac{F_{2i+5}}{2} \rfloor - 1)$
 $= F_{2i+4}$

That is, weights of x_2, x_3, \ldots, x_n are $F_8, F_{10}, \ldots, F_{2n+4}$.

$$wt(y_i) = f(v) + f(y_i) + f(v_i) ; i = 2, 3, ..., n.$$

= $3 + (F_{2i+5} - \lfloor \frac{F_{2i+5}}{2} \rfloor - 2) + \lfloor \frac{F_{2i+5}}{2} \rfloor - 1)$
= F_{2i+5}

That is, weights of $y_2, y_3, ..., y_n$ are $F_9, F_{11}, ..., F_{2n+5}$.

Thus, the weights of edges $x,y,x_1,y_1,x_2,y_2,\ldots,x_n,y_n$ are $F_4,F_5,F_6,\ldots,F_{2n+4},F_{2n+5}$ respectively and tefs $\leq \lfloor \frac{F_{2n+5}}{2} \rfloor - 1$.

Example 2.8. The graph $(B_{6,6}; W)$ is total edge Fibonacci irregular labeling and tefs $(B_{6,6}; W) \le \lfloor \frac{F_{17}}{2} \rfloor - 1 = 797$.

Figure 4: Total edge Fibonacci irregular labeling of $(B_{6.6}; W)$.

Definition 2.9. [3] Let u, v be the center vertices of $B_{2,n}$. Let u_1, u_2 be the vertices joined with u and v_1, v_2, \ldots, v_n be the vertices joined with v. Let w_1, w_2, \ldots, w_n be the vertices of the subdivision of edges vv_i $(1 \le i \le n)$ respectively and is denoted by $(B_{2,n}; W_i), 1 \le i \le n$.

Theorem 2.10. The graph $G=(B_{2,n};W_i)$, $1 \le i \le n$, where $n \ge 2$ is a total edge Fibonacci irregular labeling and tefs $=\lceil \frac{F_{2n+6}}{3} \rceil$

Proof: Let $V = \{u, v, u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n, w_1, w_2, \dots, w_n\}$ be the vertex set and $E = \{e = uv, x = uu_1, y = uu_2, x_i = vw_i, y_i = w_iv_i ; i = 1, 2, \dots, n\}$ be the edge set. Then |V| = 2n + 4 and |E| = 2n + 3.

Define $f: V \cup E \to \{1, 2, \dots, \lceil \frac{F_{2n+6}}{3} \rceil \}$ by f(u) = 1, $f(u_1) = 1$, $f(u_2) = 3$, f(v) = 3, $f(v_1) = 8$, $f(w_1) = 5$, $f(v_i) = \lceil \frac{F_{2i+6}}{3} \rceil$; $i = 2, 3, \dots, n$, $f(w_i) = F_{2i+6} - 2\lceil \frac{F_{2i+6}}{3} \rceil$; $i = 2, 3, \dots, n$ and f(e) = 1, f(x) = 1, f(y) = 4, $f(x_1) = 5$, $f(x_i) = F_{2i+5} + 2\lceil \frac{F_{2i+6}}{3} \rceil - F_{2i+6} - 3$; $i = 2, 3, \dots, n$, $f(y_1) = 8$, $f(y_i) = \lceil \frac{F_{2i+6}}{3} \rceil$; $i = 2, 3, \dots, n$.

By this labeling,
$$wt(e) = f(u) + f(e) + f(v)$$

 $= 1 + 1 + 3 = 5 = F_5$
 $wt(x) = f(u) + f(x) + f(u_1)$
 $= 1 + 1 + 1 = 3 = F_4$
 $wt(y) = f(u) + f(y) + f(u_2)$
 $= 1 + 4 + 3 = 8 = F_6$
 $wt(x_1) = f(v) + f(x_1) + f(w_1)$

$$= 3 + 5 + 5 = 13 = F_7$$

$$wt(y_1) = f(w_1) + f(y_1) + f(v_1)$$

$$= 5 + 8 + 8 = 21 = F_8$$

$$wt(x_i) = f(v) + f(x_i) + f(w_i) ; i = 2, 3, ..., n.$$

$$= 3 + (F_{2i+5} + 2\lceil \frac{F_{2i+6}}{3} \rceil - F_{2i+6} - 3) + (F_{2i+6} - 2\lceil \frac{F_{2i+6}}{3} \rceil)$$

$$= F_{2i+5}$$

Therefore, the weights of x_2, x_3, \ldots, x_n are $F_9, F_{11}, \ldots, F_{2n+5}$.

$$wt(y_i) = f(w_i) + f(y_i) + f(v_i) ; i = 2, 3, ..., n$$

= $(F_{2i+6} - 2\lceil \frac{F_{2i+6}}{3} \rceil) + \lceil \frac{F_{2i+6}}{3} \rceil + \lceil \frac{F_{2i+6}}{3} \rceil$
= F_{2i+6}

That is, weights of $y_2, y_3, ..., y_n$ are $F_8, F_{10}, F_{12}, ..., F_{2n+6}$.

Thus, the weights of edges $e, x, y, x_1, y_1, x_2, y_2, \dots, x_n, y_n$ are $F_4, F_5, F_6, F_7, \dots, F_{2n+5}, F_{2n+6}$ respectively and tefs $(B_{2,6}; W_6) = \lceil \frac{F_{2n+6}}{3} \rceil$.

Example 2.11. The graph $(B_{2,6}; W_6)$ is total edge Fibonacci irregular labeling and tefs $(B_{2,6}; W_6) = \lceil \frac{F_{18}}{3} \rceil = 862$.

Figure 5: Total edge Fibonacci irregular labeling of $(B_{2,6}; W_6)$.

References

- [1] M. Baca, M. Stanislav Jendrol, Miller and Joseph Ryan, *On irregular total labeling*, Discrete Math., 307(2007), 137-138.
- [2] F. Harary, Graph Theory, Addition-Wesley, Reading, Mass, 1972.
- [3] R.Sridevi, S.Navaneethakrishnan and K. Nagarajan, *Almost Super Fibonacci Graceful Labeling*, Scientia Magna, Vol.6, No.3.(2010), 99-125.