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Abstract

The Wiener index of a connected graph is defined as the sum of distances between all pairs of
vertices in the graph. Yang presented a sufficient condition in terms of the Wiener index for a graph
to be traceable. Motivated by Yang’s result, we present sufficient conditions based on the Wiener

index for a graph to be Hamiltonian or Hamilton-connected in this note.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology
not defined here follow those in [2]. For a graph G = (V, E), we use n and e to denote its order |V|
and size |E

, respectively. For two vertices u and v in a graph G, we use dg(u, v) to denote the distance
between them. A cycle C'in a graph G is called a Hamiltonian cycle of G if C' contains all the vertices
of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called
a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a
Hamiltonian path. A graph G is called Hamilton-connected if for each pair of vertices in G there is a
Hamiltonian path between them. If G and H are two vertex-disjoint graphs, we use GV H to denote
the join of G and H. We use C(n, r) to denote the number of r - combinations of a set with n elements.
For a connected graph G, its Wiener index [8], denoted by W (G), is defined as

WG =Y da(uw).

{u, v}CV(G)

~

If we use ﬁg(u) to denote 3, da(u, v), then W(G) = 3 > Dg(v). It can be easily verified
veV(G)
that D (v) > d(v) +2(n — 1 — d(v)).
For a nontrivial connected graph G, its Harary index [5, 7] is defined as > L

{uvicv(e) ™)

In [4], Hua and Wang presented a sufficient condition for a graph to be traceable by using Harary
index. Li [6] presented sufficient conditions in terms of the Harary index for a graph to be Hamiltonian

or Hamilton-connected using some proof ideas in [4].
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In [9], Yang presented the following sufficient condition for a graph to be traceable by using Wiener

index.

Theorem 1.1. [9]. Let G be a connected graph of order n > 4. If W(G) < Wr%ﬁ’ then G is
traceable, unless G = K V (K,,—3 U2K;) or K2 V (3K1 U K3) or K4 V 6K].

In this paper, we combine the ideas in [9] and [6] to present the following sufficient conditions in

terms of the Wiener index for a graph to be Hamiltonian or Hamilton-connected.

Theorem 1.2. Let GG be a connected graph of order n > 3. If W (G) < %, then GG is Hamiltonian,
unless G = K7 V (K1 U K,_2)or Ko V (K§U Kj).

Theorem 1.3. Let G be a connected graph of order n > 4. If W(G) < %, then G is Hamilton-
connected, unless G = Ko V (K7 U K,,_3) or K3V (3K1).

Theorem 1.4. Let G = (X,Y; E), where X = {z1,z9,....,2,}, Y = {y1,¥2,...,yn} and n > 2 be a
connected bipartite graph. If W (G) < 3n? — 2n + 2, then G is Hamiltonian, unless G = P, a path

having four vertices and three edges.

Theorem 1.5. Let G be a 2-connected graph of order n > 12. If W(G) < %, then G is
Hamiltonian, unless G = Ko V ((2K1) U Kp—4).

Theorem 1.6. Let G be a 3-connected graph of order n > 18. If W(G) < W, then G is
Hamiltonian, unless G = K3 V ((3K1) U Kp_¢).

Theorem 1.7. Let G be a k-connected graph of order n. If W (G) < "(nfl)ﬂkg)(mk*l)*l, then G is

Hamiltonian.

2 Preliminary Results

Lemma 2.1. Let G be a graph of order n > 3 with degree sequence d; < do < -+ < dy. If
dy <k < § = dy,_ >n —k, then G is Hamiltonian.
Lemma 2.2. Let GG be a graph of order n > 3 with degree sequence diy < dp < --- < dp. If

2<k<35, d1 <k=d, >n—k+1,then G is Hamilton-connected.

Lemma 2.3. Let G = (X, Y; F) be a bipartite graph such that X = {x1,x2,....,xn}, Y = {y1,¥2, -, Un}>
n > 2,and dg(r1) < dg(z2) < -+ < dg(zn), da(y1) < da(y2) < - < dg(yn) W dg(zr) <k <
n = dg(Yn—r) > n — k + 1, then G is Hamiltonian.

Lemma 2.4. [3] Let G be a 2-connected graph of order n > 12. If ¢(G) > C'(n — 2,2) + 4, then G is
Hamiltonian or G = K5 V ((2K1) U Kp—4).

Lemma 2.5. [3] Let G be a 3-connected graph of order n > 18. If ¢(G) > C(n — 3,2) + 9, then G is
Hamiltonian or G = K3 V ((3K1) U Kp,—¢).



Wiener Index and Some Hamiltonian Properties of Graphs 13

Lemma 2.6. [3] Let G be a k-connected graph of order n. If e(G) > C'(n,2)—(k+1)(n—k—1)/2+1,

then G is Hamiltonian.

Note that Lemma 2.1 is Corollary 3 on Page 209 in [1], Lemma 2.2 is Theorem 12 on Page 218 in
[1], Lemma 2.3 is Corollary 5 on Page 210 in [1], and Lemmas 2.4, 2.5, and 2.6 can be found in [3].

3 Main Results
Proof of Theorem 1.2. Let GG be a graph satisfying the conditions in Theorem 1.2. Suppose that G

is not Hamiltonian. Then, from Lemma 2.1, there exists an integer k < % such that d;; < k and

dn—r <n —k—1. Obviously, k > 1.

Therefore,
WE) = 3 Y Do)z Y (da) +2n—1-do(v))
veV(G) veV(G)
= LY @m-D-de) =nn-) -1 Y de
veV (G) veV(Q)

v

n(n—l)—%(k2+(n—2k)(n—k—l)+k(n—1))
n?4+n—4 (k—1)(k—2)

= k—1)(n—2k—1).

n B -1 )
FromW(G)§%,kz1andn>2k:,wehavethatW(G):%,kzlor(k:2and
n=2k+1),dy=---=dp=k,dyy1=---=dp-r=n—k—landd,_ 41 =---=dp,=n—1
Iszl,thenah:1,d2:d3:---:dn_1:n—2anddn:n—l.ThusG:Kl\/(KluKn_g),

which is not Hamiltonian.

If Kk = 2and n = 2k + 1, then we have n = 5. Therefore di = 2, dy = 2, d3 = 2, d4 = 4 and
ds = 4. Hence G = Ky V (K§ U K1), which is not Hamiltonian.
This completes the proof of Theorem 1.2. |

Proof of Theorem 1.3. Let G be a graph satisfying the conditions in Theorem 1.3. Suppose that G is
not Hamilton-connected. Then, from Lemma 2.2, there exists an integer k£ with 2 < k < % such that
dip—1 <kandd,_ <n—k.

Therefore,
WE) = 5 Y Do) 2y Y (dal) +2n—1 - da(v))
veV(G) veV(Q)
= 5 Y QoD —de) =nn-1) -5 Y dof)
veV(G) veV(Q)

n(n—1)—%(k(k—1)+(n—2k+1)(n—k)—|—k(n—1))

v
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n2+n—-6 (k—2)(k—23)

= k—2 — 2k).

28 BRI (kg —2)
FromW(G)gW,kzlandnz2k,wehavethatW(G):W,szor(kJ:Band
nsz‘),dl:---:dk_l:k,dk:~--:dn_k:n—kanddn_k+1:---:dn:n—l.
Ifk =2, thendy = 2,dy =d3 = - =dp—9 =n—2and d,—1 = d, = n — 1. Thus

G = K V (K1 U K,,_3), which is not Hamilton-connected.

If kK = 3 and n = 2k, then we have that n = 6. Therefore dy = 3,dy = 3,d3 =3,dy =5,ds = 5
and dg = 5. Hence G = K3 V (3K1), which is not Hamilton-connected.
This completes the proof of Theorem 1.3. |

Proof of Theorem 1.4. Let GG be a graph satisfying the conditions in Theorem 1.4. Suppose that G
is not Hamiltonian. Then, from Lemma 2.3, there exists an integer k& < n such that dg(zy) < k and
de(yn—) < n — k. Next we find an upper bound for D¢ (z1). Let Ng(21) := {21, 22, ..., 25 } be the
neighbors of 1, where s = dg(z1). Then dg(x1,2;) = 1 for each z; € Ng(x1), dg(z1,2;) > 2 for
each x; with 2 < ¢ < n, and dg(x1,y;) > 3 foreachy; € Y — Ng(z1). Thus

~

Dg(z1) 2 da(z1) +2(n — 1) + 3(n — dg(21)) = 5n — 2 — 2dg(21).

Similarly, we have that for each ¢ with 2 < i < nand each j with1 < j7 < n,

~

Dg(x;) > da(x;) +2(n—1) +3(n —dg(x1)) = 5n — 2 — 2dg(x;),

~

De(y;) > da(y;) +2(n — 1) +3(n — da(y;)) = 5n — 2 — 2da(y;).

Therefore,
W(G) = ;UEV(@ Dg(v) > % (10n2 —dn —2 g(dg(xi) + dG(?Ji)))
= % (10n® —dn —2(k* + (n — k)n + (n — k)* + kn))
= % (10n® — 4n — 2((k + (n — k))? — 2k(n — k) + n?))
= % (10n* — 4n — 2(2n* — 2k(n — k))) = 3n® — 2n + 2k(n — k)

> 32 —2n+2x1%x1=23n>—2n+2.

From W(G) <3n? —2n+2,1 <k <n,wehavethatk = 1,n — k = 1, dg(z1) = 1, dg(x2) = 2,
de(y1) = 1 and dg(y2) = 2. Thus G = P, which is not Hamiltonian.
This completes the proof of Theorem 1.4. |
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Proof of Theorem 1.5. Let G be a graph satisfying the conditions in Theorem 1.5. Note that if G =

KoV ((2K1) U Kp—4), then W(G) = W. Suppose that G is not Hamiltonian and G is not

Ky V ((2K1) U K;,—4). Then, from Lemma 2.4, we have that e(G) < C(n — 2,2) + 3. Therefore,

1 ~ 1
W(G) = 5 Y De(v)=5 > (da(v)+2(n—1-dg(v)))
veV(G) VeV (G)
1 1
= 5 Y @D -de) =nm-1) -3 3 dg(v)
vEV(G) veV(G)
2 —
— n(n—1)—e(G) > n(n—1)—C(n—2,2)—3 = W
which is a contradiction.
This completes the proof of Theorem 1.5. |

Proof of Theorem 1.6. Let (G be a graph satisfying the conditions in Theorem 1.6. Note that if G =
K3V ((3K1) U Ky—¢), then W(G) = W. Suppose that G is not Hamiltonian and G is not
K3V ((3K1) U K,,—g). Then, from Lemma 2.5, we have that e(G) < C(n — 3,2) + 8. Therefore,

1 ~ 1
WE) = 5 3 Dal)zg Y (dal) +2n—1-dg(v))
veV(G) veV(G)
1 1
= 5 Y QoD -del) =nm-1) -5 3 da(v)
veV(G) veV(G)
2 _
— n(n—1)—e(G) 2n(n—1)—0(n—3,2)—8:w,
which is a contradiction.
This completes the proof of Theorem 1.6. |

Proof of Theorem 1.7. Let GG be a graph satisfying the conditions in Theorem 1.7. Suppose that G
is not Hamiltonian. Then, from Lemma 2.6, we have that e(G) < C(n,2) — (k+1)(n — k —1)/2.

Therefore,

1

W@ = 3 Y Do)zg Y (da) +2n—1-do(v))
veV(G) VeV (G)
veV(G) veV(G)

= nn—1)—¢e(G)>nn-1)-—Cn,2)+(k+1)(n—k—1)/2
= nn =)+ kE+1Hn-k-1) which is a contradiction
5 , .

This completes the proof of Theorem 1.7. |
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