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ABSTRACT

It has been realized that using renewable resources will be better for the world in the future. The advantage of the
hydro turbine is using renewable energy to provide electricity because the water is released back into the source
from which the water came. This small scale hydroelectric system can provide cheap electricity without producing
greenhouse gases and polluting the atmosphere. The proposed system can generate electricity at a constant rate as
long as there is a source of water flowing downward. Also if there is no demand for electricity, the generator can
be turned off to conserve electricity for later needs. This paper proposes design and modelling of a small scale
micro-hydro power electrical system capable of supplying a house near flowing water with sustainable power. A
small scale hydropower turbine system and a larger system using a DC power supply generator are built. Real
small hydro-generator associated with electric generator is used with a simple load, rectifier, and dc-dc converter.
Larger system will use programmable power supply attached with rectifier to act as the larger hydro-turbine
systemis used. DC to DC converter is used to regulate the voltage level. Instead of using a battery to store energy,
supercapacitors and static capacitors are used to store the energy. Smart dc load equipment is used to act as the
compatible dc loads for smart homes. Artificial Neural Network (ANN) is used with feed forward back-propagation
technique to implement Charging and discharging ANN models for load range up to 150 W. These models are
checked and verified by comparing actual and predicted ANN values, with good error values and excellent
regression factors (0.997: 1) to imply accuracy. Finally, the Smulink models are generated and deduced to use
them without training the neural units each time. The discharging ANN models are introduced with Time and
Resistance ranges as inputs and Voltage, Current and Power ranges as outputs for both the static capacitor and
supercapacitor associated with our system. Also, charging Models are proposed using the same technique with
Time and Voltage as inputs and Energy and Current as outputs.
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INTRODUCTION

Energy is the ability to do work and it is one bétmost essential elements of our lives. In regeats, problems
linked to the energy crisis have sparked many @isioms and questions. According to the World Ené&guncil,
about 80 percent of the world’s energy comes frossil fuels and about 66 percent of the world'steleity is
generated from those fossil fuels [1]. Fossil feeh be classified into three main groups, coaland natural gas.
Coal is formed from the combination of carbon, logkn, oxygen, nitrogen and sulfur. The use of da#és back
to 3 thousand years ago, it was used by the Chileesamelting of copper. Today coal a major key denerating
electricity. The next form of fossil fuel is oills® known as petroleum can be found beneath thé @afolds of
rocks. The last fossil fuel type is natural gastudal gas is a combination of hydrocarbons andoisnd in
reservoir underground. Natural gas is used mainlyindustrial and electrical production. Out of ttieee
classification of fossil fuel natural gas is theeahest burning fossil fuel, but yet it is still hdul to the
environment. Not only is burning fossil fuel forexgy is harmful for the environment, but also estirgg it can
harm a wide range of species from bacteria to asimislany people believe the fossil fuel age wil dver in a
few decades and the world will run out of energly [& today’s society the search for alternativergy sources
are at an all-time high. Renewable energy provioiely about 1.5 percent of the world’s energy anduatb
percent of the world’s electricity. The advantadeising renewable energy sources rather than bgroissil fuel
for energy is that there is no environmental patut Hydro-electric power is a form of renewablesryy source.
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It is very efficient and inexpensive compared thestenergy sources. Today’s hydro turbines can exras muct
as 90 percent of available energy into ericity, while the best fossil fuels plants are 08Iy percent efficient3].
Hydropower provides more than 97 percent of altteleity generated by renewable sources worldwideking it
the leading source of renewable enei3]. In 1831, the first eldric generator was invented by Michael Farad
The world’s first hydropower plant began operatindg.882 in Appleton, Wisconsin, and it generatathpacity ol
about 12.5 kW of power [4]A few years later, the number of hydroelectric poplants in he U.S. had reach 200.
In 1936, the Hoover Dam Hydroelectric Power Plargswopened, and generated a capacity of about
megawatts of power. This made it the largest hyldatgc power plant then. The largest hydroelegiaever plan
today is the Thre Gorges Dam in China; it generates a capacity 05D megawatts of pow. Although
hydroelectric power doesnollute the Earth’ atmosphere, the concern dealing withréygyower is mainly focuse
on flooding. This concern is sparked by cities withaige hydropower plant near it. This would cause lok
power, loss of drinking water, destruction to iafign systems, and many people coulc [5].

EXPERIMENTAL SYSTEM DESIGN & IMPLEMENTATION

The proposedydro turbine system’s turbine will captuthe kinetic energy from the water and convert ioi
mechanical energy. The generator connected touthéne will then convert the mechanical energy iekectrical
energy, which then creates electricity. A full wawmédge rectifier will convert the @rnating current into a dire
current. A DC to DC converter will be used to redalthe voltage level. Instead of using a batterstére energy
a supercapacitor will be used to store the enefgyfor the system using the DC power supply, the fa@er
supply will supply 12 volts to the C-DC converter, which will step up the voltage tovi#ts. The 16 volts wil
go to the static capacitor and supercapacitor. Jtagic capacitor will supply voltage to a DC loahd the
supercapacitor will supply vi@lge to a power inverter so that we can supplyageltto an AC load. .
supercapacitor and static capacitor will be usexhbse they store energy in an electric field, aand distribute
energy more quickly than batteries which use chahreactions totore energy. This means some of the en
can be lost when using batteries. Supercapacismstalerate shocks, vibrations, and temperaturagds bette
than batteries can. Supercapacitors can also banged hundreds of thousands of times befory wear out.

The Fig. Bhows the initial block diagram for the hydro tumbisystem. The block diagram helped us deter:
how each component in the systems would work tagethhe system contains the hydro generator-wave
bridge rectifier, DC-DC coverter, static capacitor, supercapacitor, andaae which is a DC smart lo:

- : VAC-HVDC -24VDC

12V DC 12V DC

Fig. 1 Proposed block diagram for hydro turbine sytem

DC Power 24V DC
-

Supply Converter

Power Inverter

12V DV l 12V DC

Fig. 2 Proposed block diagram for the DC power supply sten

DE et hEEEEE— Static Capacitor

There were two problems with this block diagramthvthe first being the output of 24 volts DC frohetDC-DC
converter was too much for the capacitors. Botthefcapacitors had a maximum voltage of 16 volte $econt
problem was trying to spit the kage between the two capacitors. The capacitodstiva different farads valu
and one of the capacitors was drawing all of theeru while the other didn't really draw any curteAlso with
the capacitors in series, they were acting lik@artscirctit for DC current. Because of these problems, wadids
to lower the output voltage of the I-DC converter to 16 volts, and just use the suppacitor to store the energ
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As for the system using the DC power supply,Fig. below shows the block diagram for the system. Wasete

DC power supply to perform a hydro generator’s d@iypce the DC power supply will output a DC voblathere
was no need for us to use a rectifier in the de

The problems with this design ate same problems we had with the hydro turbineesysThe D(-DC converter
was outputting 24 volts, so we decided to lowerdhgput voltage to 16 volts. Instead of having thpacitors ir
series, we decided to put them in parallel to slhee16 vols and supply their respective loeThe two real

experimental systems smaltale one and lar-scale one are shown in Fig. These systems are used to get
training data for the neural networks mod

wr

Fig. 3 The Experimental Systems

A set of 3 D Figs samples apgesente as inputs and outputs samples to cover the mos@apte situations ¢
various circumstances. These surface faces retatiolh be considered as the learning or trainingad@r the

general neural network simulat. Samples for the inputs and outputs for supercapraeihd static capacit
discharging models are shown: $4-

These Figurepresent each output as a function of the two infResistance Loads and Time).e next part of
the work presents a simple befficient modeling trials ANN toolbox in MATLAB. Té result shows a goc
matching with the real data. Theseural network uns areimplemented, using the back propagation (BP) lear
algorithm due to its benefits to have the ability pgredict valuesin — between learning values, also mi
interpolation between learning curves data. Thathé main reason of using ANN. This is done witlitasale
number of network layers and neurons at minimurareand precise mann

Static Capacitor Samples (NoteThese Figures aren’t for the whole load range but only sample):
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Fig. 4 3 D Relation for Resistance, Voltage and Tien
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Fig. 6 3 D Relation for Resistance, Power and Time
Supercapacitor Samples (Note: These Figures arerfor the whole load range but only samples):
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ARTIFICIAL NEURAK NETWORKS (ANN) MODELS & RESULTS

Artificial Neural Networks are networks us[6-10] to estimate functions depending on many numbenjpfts.
These networkgan simulate a problem to any accuracy. The -propagation method is the mosopular
artificial neural network used for engineering, amkd for this project. Thnetwork consis of interconnected
processors called neurons. The neurons are cowhteceach other by weighted links where signalspsss. Eac
neuron receives mutie inputs from each other to produce outputs. ANIKS carried out in two steps; the fi
step is to train the network without data, and $beond step is to test the network with the cadieéatata. Thi
collected data should be in the form of a dat, and the input data will be used to produce otstpid there is ¢
difference between the training process and thentgprocess, the weights are changed so that rive will
decrease. When the network is done with the inpttems, if there is aerror bigger than the maximum desigr
tolerance, the ANN will run through the inputs refeslly until the errors are within an acceptablertmce The
Artificial Neural Network has two layers, an ingayer which is a hidden layer, and an output l¢ The hidden
layer has the logigmoid function inside of it, and the output layas the puri-line function inside of it. The inpt
layer sends the collected data to the hidden layere the processing and computation takes pldoe.hidder
layer thensend the output of the network to the output layidre number inputs and outputs is based off
collected data, and how one wants the network toTdere is no theoretical reason to use networikis more
than two hidden layers, because these net\ can represent functions with any kind of st [6-10].

1* Model for Static Capacitor Charging

Mewural Metwork

Fig. 10 Static capacitor ANN model (5 neurons at hiddetayer and 2 neurons at output layer

(3 O

Input  Process Input 1 Layer 1 a1}

B—{]

=1 Frocess Cutput 1 Output
Fig. 11 Static capacitor ANN two layer construction
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Fig. 12 Static capacitor ANN hidden layer with lo--sigmoid function
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Fig. 13 Static capacitor ANN output layer with pure-line function
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Best Training Performance is 2.8594e-07 at epoch 5864 4000 Outputs vs. Targets, R=1
Train Q Dala Points
Bes: i)
=
S, 3000
e
if— 2500
i 2000
3
5 1500
>
£ 1000
=2
=
© s00
. x . . " © %0 500 1000 1500 2000 2500 3000 3500 4000
1000 2000 3000 4000 5000 Targets T
5864 Epochs Fig. 17 Static capacitor Output VS Target (Energy¥or the

ANN Model Accuracy (Regression =1



Sagguset al Euro. J. Adv. Engg. Tech., 2016, 3(8):1-12

2" Model for Static Capacitor Discharging; Load Resisances range (5:30 ohm

MNeural Network

Algorithms
Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error  (mse)

Calculations: MATLAB
Fig. 18 Static capacitor discharging ANN model (4 neurosmat hidden layer, 3 neurons at output laye
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Fig. 19 Static capacitor ANN two layer construction
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Fig. 20 Static cipacitor ANN hidden layer with log-sigmoid function
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Fig. 21 Static capacitor ANN output layer with pure-line function
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Fig. 22 Static capacitor ANN first layer weights for thefour neurons
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Fig. 24 Static capacitor training performance for ANN model| Model Accuracy (Regression = 0.9973

3 Model for Supercapacitor Charging

Meural Network

Fig. 26 Supercapcito ANN model (4 neurons at hidden layer and 2 neuronat output layer)
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Fig. 27 Supercapcitor ANN two layer construction
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Fig. 28 Supercapcitor ANN hidden layer with lo¢-sigmoid function
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Fig. 29 Supercapacitor ANN output layer with pure-line function
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4™ Model for Supercapacitor Discharging; Load Resistanes range = (5:30 ohm

Meural Metwork

Algorithms

Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error  (mse)

Calculations: MATLAB

Fig. 34 Supercapacitor ANN model (3 neurons at hidden ieer, 3 neurons at output layer
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Fig. 35 Supercapacitor ANN two layer construction
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Fig. 37 Supercapacitor ANN output layer with ptre-line function
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Fig. 40 Supercapacitor training performance for ANNmode| Model Accuracy (Regression = 0.997
CONCLUSION

The proposed hydro generator system used a smditb tyrbine and generator, a -wave bridge rectifier to
convert the alternating current supplied by therbygenerator and converted it into a direct currénDC-DC
converter was used to step up 1DC to 16 V, and a supercapacitor was used to st@esnergy. The store
energy was then supplied to the load, which waCasBart load. The proposed DC power supply systeed @
DC power supply, a DOC converter to step up 12V DC to 16 V, and a € capacitor and supercapacitor v
used to store the energy. The stored energy wasstingplied to the AC load. We used Artificial Nduxeetworks
to show the charging and discharging charactesistfdhe static capacitor and supercapacitor. Qverabelieve
our system will be user friendly and efficient egbuo generate electricity and satisfy the custonmesds nov
that we have fixed the problems with the rectifiexd power inverterArtificial Neural Network (ANN) is usel
with feed forward baclpropagation technique to implement Charging andhdisging ANN models for load rant
up to 150 W. These models are checked and veifjedomparing actual and predicted ANN values, wgitlod
error values and excellent regression factors {0.99 0 imply accuracy. Finally, the Simulink models .
generated and deduced to use them without trathi@geural units each time. The discharging ANN et®dre
introduced with Time and Resistance ranges as $nguod Voltage, Current and Power rangesutputs for both
the static capacitor and the supercapacitor agsacigith our system. Also, charging Models are psmal using
the same technique with Time and Voltage as inpots Energy and Current as outp These Fig.s present each
output as a furton of the two inputs (Resistance Loads and Tifi@g next part of the work presents a simple
efficient modeling trials ANN toolbox in MATLAB. Té result shows a good matching with the real det@se
neural network units are implemented, using back propagation (BP) learning algorithm due tobigmefits tc
have the ability to predict values — between learning values, also make interpolatidwéen learning curve
data. That is the main reason of using ANN. Thiddse with suitable numbeff network layers and neurons
minimum error and precise mant
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