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ABSTRACT

Transmission lines suffer from unexpected failuhas to various random causes which can lead tabikty. The
functions of protective systems are to detect,sihadaults, locate and sent trip signal to circliteaker for
isolation. The main objective of this task is tadst the available techniques and algorithms to tgwvénproved
relaying algorithm based on adaptive neuro-fuzfgrence system (ANFIS) which could have 100% acgyusad
operate with minimum delay. The training , testamgl validation data samples to be used by the ANiFd8els
were generated using sequence current componedttiranvoltages under normal and fault conditiotsarious
locations on a 400kv,50Hz, 100km transmission IBieulations were performed using EMTDC/PSCAD, on a
sample three-phase power system. The lines cumené first processed using FFT algorithm and thae t
sequence components were derived from the samarfierdal frequency. Various fault scenarios are aiered
in this work. The ANFIS’s were trained and testsihg the various sets of data in which six inpuésemused in
different combinations. The inputs to ANFIS’s amesrline voltages and ratio of sequence currents used.
Different membership functions were used with diffe number of epochs and ‘gbell’ membership fuumcivas
found to be the best in performance for both tragnand testing. Data was extended and the ANFIStestsd
with ‘gbell’ membership function. The result ob&inshow 100% accuracy with lesser number of eptitis
needed with ANN.

Keyword: Transmission lines, Faults, Circuit Breaker, AdaptiNeuro-Fuzzy Inference System (ANFIS),
Membership Function.

INTRODUCTION

Adaptive neural fuzzy inference system (ANFIS) &séd on fuzzy logic modelling and uses artificiaural
network as the learning algorithm. The system each, change the data environment or respond toethete
stimulus for adapting to the change of data envitent [7]. ANFIS produces constant and linear talgetising
respective zero and first-order polynomial equatiand is also known as a Sugeno-type of fuzzy émigg system
(FIS). Fault occurs in the transmission line iseotpd to avoided, utility problems and equipmemage from
effect of the arc and so on. These failures anagisd the reliability operation of the power systhe different
researchers to overcome in this problem have stegyesany various schemes and algorithms. Thersereral
techniques to detect fault in the transmission esystthey are: time domain, frequency domain, anseled
transform and hybrid intelligent technique. Linaktpresented a detection of fault in power systgmubing
Adaptive Probabilistic Neural Network architectui®e-3].This paper describes how to develop an impdov
relaying technique that can detect and classifytype of error by using a Hybrid Intelligent Techues. It is also
introduced the name of Adaptive Neuro Fuzzy InfeeeBystem (ANFIS). The main objective of this wisko
study the available techniques and algorithms faretbp improved relaying algorithm based on ada&ptiguro-
fuzzy inference system (ANFIS) which could hav@%0accuracy and operate with minimum delay.

Data Generation for Training and Testing
This project involves a 400kV transmission line @fhihas been used to develop and implement the gedpo
strategy using ANFIS. The training patterns to bsasbed by the Adaptive Neuro Fuzzy Inference Systeodel
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were generated using sequence current componethtnancurrents under normal and fault conditiohsaious
locations along a transmission line. The model showFig. 1:

Selection of Best Combination
The inputs are selected based on the best perfearagtween the three set of inputs combination NFIS, the

best among them was selected. The three combinatbn inputs include W, V,,V,. and I, 1,,1.),
( Vabs Voer Vea and L/1, ,1,/1y, Ip/lioaa) @and &, Vy, V. and L, /1y, 1,/ 1y, I,/ 1saq)-Where  this combination
found to be best combinationi.e. W,,, Vi, Voq and L/L, ,1,/1,, 1,/li0qq)-

Training and Testing
The data is classified as training data and tesiaitg in ANFIS’s learning process. Testing dataukhde in the

range of training data for the purpose of testimecpdures. The number of training epoch also givgsod result in
predicting the target. Accurate targets consideir@mum prediction error from the result of ANFI&ining. The
error can be reduced by adjusting the variable neeshiip function (MF) and epoch parameters. Withdasing in
number of MF and epoch, the error will reduce agditmly. Sometimes, no reducing in error can becasatieven
though the epoch was increased up to 5000 and abitwe is due to the way the data is assembledinDuhe
training process, MF parameters are varied so g&etd the ANFIS’s output as target values. Theimimm error
percentage is a small difference between targepaediction values and it is used to measure theess level of a

training process.
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Fig. 1 Training process with different numbers of pochs using Gaussian membership function

Gaussian Membership Function
The Gaussian membership functions was used by ltiédathe six inputs ap, Voo, Vea and 1, /15, 15 /15, 1 /T1gag) in

both testing and training. The optimum number obakys for both training and testing of gauss menttiers
function is 20.

Rule Viewer and Surface Viewer
Fig. 3 shows how the rules are arranged using IENHor the six inputs and based on this conditithres ten

outputs is produced.
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Fig. 2 Gaussian membership functions

Comparison of Membership Functions
Table -1 Comparison of Different MembershipFunction with their Performance for Training and Testing

S/no MBF EPOCHS Training Error Testing Error
1 Gaussmf 10
14 0.021942 0.2144
20 0.021942 0.2144
2 Trimf 0.2 0 3.1014
10 0 3.1014
20 0 3.1014
3 Tripmf 10 NaN 3.1014
15 NaN 3.1014
20 NaN 3.1014
4 Gbellmf 10 0.017927 0.23384
15 0.007128 0.10751
20 0.007128 0.10751
5 Gaussmf2 10 0.011809 0.39615
15 0.011809 0.39615
20 0.011809 0.39615
6 Sigmf 10 0.057081 0.67929
15 0.057081 0.67929
20 0.057081 0.67929
7 Dsigmf Nil Nil
8 Psigmf Nil Nil
9 pimfZ 10 NaN NaN
20 NaN NaN
30 NaN NaN
10 Zimf NaN NaN
Findings: gbellmf is the best membership funct
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ANFIS with ‘gbell’ Membership Functions

In hybrid learning algorithm, MF parameters areuatfd to identify the best prediction value. Theapeeters
determine the size of MF curve as shown in FigHe Turve of ‘gbell’ shape has been selected inlgkrning
process due to its high performance as shown indh@arisons Takb -1.

Number of Epochs

With increasing in number of MF and epoch, the ewitl reduce accordingly. Sometimes, no reducingiiror car
be noticed even though the epoch was ined up to 5000 and above. This is due to the wayl#te is assemble
Therefore effective input data assembly will reggdbd prediction. The numbers of epochs are upglatiarting
from 10 epochs to 20 epochs and the optimized nuwflepochs was four to be 15.

Rule

In this part, an ANFIS model has been developet Wit fuzzy ‘IFFTHEN’ rules for the task of determining the 1
faults and ndault condition. Since, the number of block funasorepresents the rules for every input data,
difficult to describe the operational process of the mddelto lack of space. However, a structure ANFISehds
shown in Fig.5 for that purpose. There are fivgissaof ANFIS operational process that includesifiezdion, ‘IF-
THEN’ rules, normalization, dezzification and neuron additior

Training and Testing
In the training the six inputs were used Vyp, Vi, Vea and 1, /15, 1,/15, 15 /Ti0aq together with the 90 degree fa

inception angle and 50km fault location. While festing the same inputs re used with 45 degree inception an
The figures 6 & 7 showthe training and testing results starting from p6dhs to 20epochs of the gbell
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Testing and Training of ANFIS with gbellmf with Expanded Data Se

In this part the number of samples data increasedbdth training and testing, in the training samy six inputs
were used i.eVyp, Ve, Vea and 1, /15, 1, /15, I, /Tisaqtogether with the 0 and 90 degree faults inceptingles an
50km fault location. Wite for testing the same set of inputs were usdd 4b and 135 degree inception angles.
figures below show the training and testing resstiésting from 10 epochs to 20epochs of the gbe
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Rule

In this part, an ANFIS model has been developeh 12 fuzzy ‘IFTHEN'’ rules for the task of determining the 1
faults and ndault condition. Since, the number of block funosorepresents the rules for every input data,
difficult to describe the operational process @& thodel due to lack of ace. However, a rule viewer is shown
Fig.8 for that purpose. There are five stages ofFFNoperational process that includes fuzzificatitih-THEN’
rules, normalization, defuzzification and neurodiddn.

Training Results

About 1640 samples of daset ware trained with six inputs iV, Vi, Vea and 1, /1, 1, /15, 1, /Tigaq@nd ten faults
and nofault condition used as output with different fauteption angles and epochs. The scof the results are
show in the Fig. 9.
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Fig. 9 Train result of gbellmf with 5 epochs and tain result of gbellmf with 10 epoch
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CONCLUSION

This work has studied the usage of adaptive nturoy inference systems (ANFIS) as an alternamnethod for
the detection and classification of faults. The hmés employed make use of rms values of the phaltages, line
voltages, ratio of sequence currents phase cureamidoad current. The 100km transmission line k#QG0Hz)
was model in PSCAD. The data generated was usetats for training and testing of ANFIS in MATLABRII
kinds of faults namely single line-ground, linedjrdouble line-ground and three phase faults, haes simulated
on PSCAD in this work. Investigation has been madia the use of adaptive neuro-fuzzy inference esyst
(ANFIS) as an accurate method for detection anctkassification of transmission line. ANFIS techimgginvolves
more computation, but provides 100% accuracy ofal&tn and classification. Different set of datadheen used
for training and testing with different number gfoehs and membership functions. ‘gbell’ memberdhipction
found to be the best membership function in perforoe for both training and testing with least erbmen 100%
accuracy and lesser number of epochs than ANN.

The algorithms developed can be further trained tested with larger data, to be generated througGAD for
more inception angles, multiples location of faaltel multiple value of source, load and fault ingezk. Relaying
algorithms using other artificial intelligence tedfues, like genetic algorithms, can be developed.
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