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ABSTRACT

This article presents a static analysis of the ottbpic and isotropic thin plates in pure bendingder uniform
and concentrated load, by finite elements methad. §pace modeling the isoparametric quadrilateridneent
with 4 nodes Q4, and 3 degrees of freedom per irodsed. The formulation of the element is fourated linear
theory of the orthotropic plates, like, the kinemmatassumptions of Mindlin-Reissner which hold @caunt the
effect of transverse shearing. The linear stiffnestrix is evaluated numerically by using the téghe of
selective numerical integration. The load vectogevsluated in an exact way by Gauss type diagrams.

Key words: Finite Element Formulation, Orthotropic Thin Plat@uadrilateral Element, Numerical Integration,
Selective Integration

INTRODUCTION

The researchers are led to use numerical method$eab with the increasing complexity of the struatu
mechanics problems. The finite element methotiésmost powerful and general analysis method atsires. It
allows a detailed analysis of the behavior of camrp$tructures, which are difficult to calculate the usual
procedures of the strength of materials, suchagpland shells. The plates (thin, thick, isotrppithotropic) are
structures which are frequently used in variousd§ie aeronautics, civil engineering, nuclear tharmpower
stations, structures oriented in their plans, saslplates are more difficult to calculate numehgahey are often
subjected to statistical and dynamic stresses objective of this work primarily concerns thetstanalysis of
the orthotropic and isotropic plates under unif@ma concentrate load using finite element.

THE PLATESTHEORY

A plate is an elastic solid in which the dimensamtording to the thickness, is small compared th bthers, and
which has a symmetry plane in the middle of thekhess, often called average area [1], [9],[10].

Displacements Field Description
In Hencky theory, we give a displacements modebtbam three independent variables: transversdadmsment
and two rotations as follows [9], [5]:

u=zpB(xYy) v=zp,(xY) wW=w(X, Y) 1)

Deformation Field Description
The strain tensor is:

{é‘} = {{é‘f }T, {é‘C}T}T = {Z{ )(}T,{y}T}T { ,\/} - Curvature vector (2)

Contribution de bending effect: Contribution bear effect:
98, ow
€ OX yxz X + oX (3)
ol s, {et=11= =
{Ef}_ ‘gyy - Z{X} =z ay yyz ﬁy + %_W
9B, , 98, y
Vi ay 0x
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EQUATIONSMOTION FORMULATION

The overall formulation of the problem is to loak the whole structure the matrix expression stemiergy and the
work of applied forces, according to the movemaftall nodes of the structure. This requires theeawly of the
elementary characteristics (stiffness matrix, vieetjuivalent forces) for all elements [14].

The total potential energy of the structure cambtined by summation of the component total pakahergy as
shown in equation (4)

ve Y ves ¥ - @ @
éléments élément:

{¢"Is the row displacement vector at nodes of thectira

T _ T T T

@ = {o..q"..ar} )
With: {q} : sub- displacement vector at node i .
We can define for each element a matrix relatignghiorder to establish a correspondence betweemrldment
node’s displacement&q}e and the structure nodes’s o{tq}, as following:

{df* = [B]{d} ®)

(n,x1) = (nxN).(Nx1)
With : [B]e : Matrix location element .

n.: Number of degree of freedom of element. Nim¥er of degree of freedom of structure.
Each relationship represented by the equation 46)identify or locate degree of freedom of eacimelat in all
degree of freedom of the structure.

Using the equations (4) and (6), we can write:

ve 3 G BT A - B 2

éléments 2
Knowing that : V=%{q}T[K]{q}—{q}T{F} ®)
With K] = s [BF Kege ©)
élément
F= s BFFe (10
élément

[K] : Stifness matrix of the structure[F} : Equivalent force vector of the structure.

In the case of concentrate load applied in nodtheftructures (represented as {P} vector), theasgion of{F}

becomes:
{F} = {pt+ S [6]" {FF (11)

éléments
These expressions allow us to obtain by directieajibn of the principle of virtual work, the egbilium equations
system of nodes. Indeed, we have:

U = oW
{50} [K]{d} ={od}" {F} (12)

pou :[K]{q} ={F} (13)

FINITE ELEMENT PLATE WITH TRANSVERSE SHEAR

The formulation of finite elements of plate in bamgdand shear is based on the theory of ReissnadiMi Indeed,
their conformity requires only continuity’@e w, 3 et ,By [2], [8], [9].

We consider a quadrilateral type element in whiehapply the isoparametric formulation [2], [6], [L19]. The
approximations oW, 3 et 3, are:
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w=N"(&,mW

B=NEMB,  B,=N"(E.1)B, (14)

The interpolation functions used are usually relateinterpolation of the isoparametric quadrilater In the case

of the linear quadrilateral, we have:

N"=[N, N, N,

&iouni : taking the values (+1) or (-1) according to toasidered node

and shear:

{x} = {5_f} =

fe.t = 1} =

N with N(Em)=1@rEE ) arnn) (15)
ﬁxl ﬁyl
~ ﬂXZ a5 ﬁﬂ
p B,= 5 (16)
x3 y3
ﬂx4 ﬁy4
By substitution (14), in the relations of defornoais (3), we obtain the interpolation deformatiortnimaof bending
aNT |
oX . w
o o 2N_|.p
oy ~
o ONT onNT | LAy
ay ox |
T
aaN NT 0 w
X ~
ON ' Ax
0 NT ;i
oy y

(17)

=te)=15 fa}

We can write :

Stiffness matrix
The expression of the deformation energ

=18 ){d

(18)

y makesigedbe calculation of stiffness matrix [2], [T], we have:

U=U_+U,
U=1{x'[o Jirtaxay+ 3 [(4 [0 Jtaxay = 3o [kl 9
s® s
[ E EVe 4
1-v,v, 1-v, Vi, 0
with : [D ] — h® EVi, E, 0 [Dc] = h k{GlOB G } (20)
to12\1v,y, 1-v,y, =
0 0 G,

lDfJ : Bending stiffness matrixts,, E, : Young moduli in the directions (X), (y) respeetly.V;

(%)

12?7

G

ratios, [Dc] : Shear stiffness matri
shearing.

13?7

21 V,, i Poisson's

G23 : moduli of rigidity, K : Coefficient of correction of transverse

After substitution of the expressions of the defations in the deformation energy, we obtain:

k] = [Kf] + [k] = £[Bf]T[Df] [Ef] dxdy + i[ﬂy]T[Dc] [ﬂy] dxdy

+1 +1

= 7]

[:Ef]T [Df] [:Ef] det[J] d¢ dn

(21)

+1 +1

RS 8] o] [8] detls] de an

(22)
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[J] . is the Jacobienne matrix of the geometricaldfamation, The stifness matr[>K] is evaluated numerically
by selective numerical integratior{KfJ . is integrated with (2 )) points of Gauss, [KC] . is obtained by

reduced integration .
The integration of Gauss at two points is as foilgw
+1

[Tre mowa =2 £ wwicg.n) 23)

-1 i=1

Equivalent Loads Vector
The potential energy of external forces [10], [#4] expressed using surface forces and volumeliasving

w= [ v + [ e {ras={de £} @)
Ve s®
We have : {u}® = [N]e{q}® (25)
w = <q>ej NI (v} av + <q>ej N {15} ds= cqo{F)® (26)
with Fe= [IN oy« [ INFT {ts) as @

For the distributed uniform IoadZ along z, the equivalent vector load has the usrah f
T
{F}¢ = I [N f,ds (28)
Se

RESULTSAND DISCUSSION

Static Response of Simply Supported I sotropic Thin Plate

We consider an isotropic square thin plate simplgp®rted, subjected to a uniform load, the geomefryhe
structure and the properties of material are remtes on the Fig.1 for this problem. The Fig. Zespnts the static
evolution response of normal displacement for diffé mesh and then compared to analytical respginse by [3,
14].

P L
w, = 0.00406->— Where: p = Eh’ v=03
D 12(1-V°)

D : Flexion coefficient stiffnessl/ : Poisson ratio We : Normal displacement
Data: a=1.2m; E=218 10 N/n*; h=0.01m.V =0.3; R =750 N/mi

Static Response of Embedded | sotropic Thin Plate

We consider an isotropic thin square plate embeddeur sides, subjected to a uniform load, thengetry of the
structure and the properties of material are regotesl on the Fig. 3 for this problem. The Fig. gresents the static
evolution response of normal displacement for défifé mesh and then compared to analytical respginsa by [3,
14].

4
w, = 0.00126%

S e

Fig.1 Simply Supported Thin Plate under a Uniform L oad Fig.3 Embedded Thin Plate Under a Uniform L oad
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Analyticad solubon
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Fig. 2 Static Evolution Response of Normal Displacement for Different Mesh of Simply Supported Plate

Analytical sclution
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Fig. 4 Static Evolution Response of Normal Displacement for Different Mesh of Embedded Plate

Static Response of Simply Supported Orthotropic Thin Plate under Uniform Load

We consider anorthotropic square thin plate singpigported [12], subjected to a uniform load, thengetry of the
structure and the properties of material are remtesl on the Fig. 5The plates was divided into 100 elements, each
side having 10 elements of equal length, and hawepared our numerical results of the deflectiomglthe two
half-axes of symmetry of the plate with the exadtgon, (Fig. 6). In order to study the convergenave represent

in Fig. 7 a normal displacement evolution in thatee of the plate vs different mesh cases(2x2 , éx4, 8x8,
and10x10), our numerical results are compared tivétanalytical solution given by [13].

4 4
w=0939x10° P& = k& x10° B
D22 D22
3
With :© Dy = __Bh _V,E

12(1 - vigvpy) 217 E
Data: a =2 m ; E= 2.068x 10" N/n?; E, =

EJ/15; V;, = 0.3; Py(x,y) = 800 N/m.

— — — 2. — .
G,=G,,=G,= 6055<10°N/n? ; h=0.01 m;
Fig. 5 Simply Supported Orthotropic Thin Plate under Uniform Load P
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Analytical solution
— 00— Finite siement solution w'a
—N— Finila e'ament solution ywa
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Fig. 6 Simply Supported Orthotropic Thin Plate Deflection along the Two Half-Axes of Symmetry
—— Anatytical solution
—0—FEie slement soluton
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Fig. 7 Convergence of Finite Element Solution Depending on Mesh for a Simply Supported Orthotropic Plate
Analytical solution
—4# — Finitz element solution x'a
—m— Finite element solution yia
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Fig. 9 Simply Supported Orthotropic Thin Plate Deflection along the Two Half-Axes of Symmetry under Concentrated L oad

Using the previous example (Fig. 7), but in thisezahe plate is under a concentrated logapplied in the middle.
Our numerical results of the deflection along th® thalf-axes of symmetry are compared with the yditall
solution given by [13] (Fig. 8).
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It
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w = 0.3084x10°° x1072

Fig. 8 Simply Supported Orthotropic Thin Plate Under Concentrated Load Pq

Static Response of Embedded Orthotropic Thin Plate under Uniform L oad

Fig. 10 and Fig. 11 represent an embedded orthotrtbyn plate under uniform load amtbrmal displacement
evolution in the center of the plate vs differergsin casesespectivelyOur numerical results are compared with the
analytical solution given by [13].

Data — .,_f P

a=2m;

E, = 2.068x 10" N/n;
E, = El/15,

V,,=03;

G,=G,,=G,= 6055<10°N/n? ; h=0.01 m;
Po(X,y) = 800 N/m.

L Pa’
w = 0.18645¢10° -2~
Dzz
Fig. 10 Embedded Orthotropic Plate under Uniform L oad
Analytical solution
0,25 = —— Finile ehemant solution
0.20 - /'-” = :
= o154 /
= E /
=
B 10+ /
3
i
b 0.05 -
L%
2 4 B B 10

Number of element per side

Fig. 11 Convergence of Finite Element Solution Depending on Mesh for Embedded Orthotropic Plate under Uniform L oad

Static Response of Embedded Orthotropic Thin Plate under Concentrated L oad

Using the previous example but in the case, theeptaunder a concentrated load F applied in theédkai Our
numerical results represented by the normal disphent evolution in the center of the plate vs déffie mesh cases
are given in Fig. 13.

2
w= 1.17180x 107 F2 Z Z
D22
Data-a=2m; By
E, = 2.068x 10 N/n?: +

E; = E/15; v, = 03;

G, =G,,= G, = 605510 N/’ ;
h=0.01m; / ’

Po(x,y) =800 N/m. Fig. 12 Embedded Orthotropic Plate under Concentrated L oad
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Exact solution

— @ — Findle slement soluton
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Center defleon WFK 102 {m)

- T - - T ¥ — -
B ] 10

Number of element per side
Fig. 13 Convergence of Finite Element Solution Depending on Mesh for Embedded Orthotropic Plate under Concentrated L oad

Through the different results, presented in thila;, we can make the following remarks:

» The modelisation resultsf an isotropic and orthotropic plate, whatever thige of the support, show a clear
convergence with those of the analytical one.

» The convergence of a simply supported and embetégbic and orthotropic plate are reached respelgtifor
8x8 elements mesh (see Figs 2 and 6) and 6x6 etemmsh (Fig. 4 and Fig. 11).

CONCLUSION

This work aimed the evaluation of the quadrilateri@ment Q4 with 12 d.d.l. The various analysethefstatic
behavior of isotropic and orthotrpic plate alloweito highlight thelirectinfluence ofboundary conditions on the
response of the plate and to conclude that theracgwf solutions increases with mesh refinement.
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