Available online
European Journal of Advancesin Engineering and Technology, 2016, 3(4): 60-65

[yt
¥ » 2,

Research Article ISSN: 2394 - 658X
Loy A

Secure Blind Storage with Multiple User Access Provision

P Golda Jeyasheeli, Nadar Jasmine Sunderraj and N Umakanth

Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Svakasi, India
jasponruby@gmail.com

ABSTRACT

In cloud computing, the client has to secure their private data from the server. To solve the concern, a storage
scheme is used called as a Blind Server. Blind Server will act as a secured cloud storage service such that it does
not know how the files are organized neither the size of each file nor the data in the file. The server will be free
from computation overhead and will only act as a storage server. Two level securities have been given to the data
stored in the cloud by the client. In the first level, data has been encrypted and stored in the cloud. In the second
level, the file is split into multiple fixed size block and stored in pseudo-random location in the hard disk so that
the server will not be able to learn about which the blocks that make up a file are. This model of storage systemis
simulated on CloudSim. In the prior work, there is no information maintained about the blocks that contains the
various splits of a single file and also there is no multiple user access provision. In the proposed scheme, the
information about the blocks that hold the data of a file in the hard disk is stored in an array which is maintained
by the client. By this mechanism, we have reduced the time taken for accessing a file by downloading and
decrypting only the blocks that constitute the file along with multiple user access provision for the data stored in
the cloud storage.

Key words. Cloud computing, security, Blind Server, Multipleséi Access Provision

INTRODUCTION

Now-a-days people have become habitual in outsogrtieir data from their personal devices to tloidIservers
because of the shortage of storage space in thesopal devices like mobiles, personal computeqstops and
tablets. Therefore an additional responsibilityagded on the client side to secure their sensiata from the
servers which might turn to be an ingenuine oneadluieve this, a higher level security is giverthe data in the
cloud. The first level security implies encryptitige data and then storing in the cloud. The setewel security is
to store the data in arbitrary locations in theveerThe Blind Storage scheme proposed by Naveed g is

found to be a secured storage scheme which progeesrity to the data stored in the server agdiosest but
curious servers. But the time required to accefite @n the client side is influenced by a sequeatdownload
and decrypt operations where decryption is founddoa computationally intensive task. Therefore main

contribution is to reduce the time required to asce file by the client. This is achieved by redgdihe number of
download and decryption operations to be performagdhe client. This model is simulated on the Clsum

framework. CloudSim provides the essential entiteesimulate a storage server which helped us istracting

the blind server model.

Multi-Authority Attribute-Based Encryption (ABE) syem is proposed in [5].The different security &ades in a
Public cloud is discussed in [8]. There are manysaar storing data in the cloud in a secured wajctvis dealt in
[10]-[13]. An identity based hierarchical model foloud computing and a corresponding encryptioreseh is
introduced in [4]. A high performance, distribut&dRAM-based cloud data store is proposed in [7].yfainic
searchable symmetric encryption scheme has beedlirtted in [6]. The integrity of the data storedtia server has
to be verified by the client, for which a securnityediator has been discussed in [9]. The procesploading data to
the server has motivated researchers to desigmezsbdata storage on the server. Naveed et al & Hasigned
such a scheme where the file is split into multipted size blocks and the file that has been amtiit multiple files
occupies multiple blocks in the storage array. $imailar Blind Storage scheme is also used in [1jt Bere is no
data collaboration service proposed for the blittdagie scheme in the existing work. A data collabon scheme
for a group of users has been proposed in [3] whitble the file to be shared among a group okudBuring the

60

Jeyashedli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65

process of upload, a longer sequence of pseudanamdimbers are generated using a seed from whscibset is
generated which consists of only free blocks amdsifzae of the subset is equal to the size of tleeiri terms of
number of blocks required to store the file. The if finally stored in those blocks.

During the download operation, the pseudo-randajnesece is again generated using the seed and muammbf k
blocks have to be downloaded and decrypted in etransaction. Then the decrypted blocks will beahed for
file id, when the first block containing the fild is found the size of the file is retrieved frohistblock and the
remaining blocks have to be downloaded and deatypiteil all the blocks of the file has been fourithis process
involves an overhead of downloading and decrypbitagks that does not constitutes of the file toaseessed.
Decryption is a computation intensive operationtbe client and if avoiding the download and dedoyptof

unwanted blocks is achieved then the time requoextcess a file on the client side can be sigaifiy improved.

SYSTEM DESIGN

A hard disk consists of many blocks. The file toshared on the cloud is split into multiple filekaofixed size such
that the size depends on the size of the blocgeheral the block size varies from 256 bytes to Byit2s. But the
size of the block can also be fixed to a highegeaby which the number of downloads will be miniedz The file
is split into multiple files of equal size (size gplit depends on the size of the block in a hasi)dhen these
splitted files are stored in random block locatiomshe hard disk. The random locations are geadrhy setting a
seed value.

Initially, for every file to be uploaded we will gerate a File id and a key. These keys will be bglthe client and
will be useful for the download operation to befpaned on the files stored in the server. The ohe Wwolds the
key is seen as an authenticated client to dowrlbadiata from the server. The key generation aietplace only
once for each file and has to be stored in thencfier further access to the file. The server dustshave to perform
any computation. It is free from computation ovedhand will have the work of acting only as a sjeraerver. All
the computation is done on the client side. Heheeserver will not be able to learn about whichtheeblocks that
contains the various split of a single file astlif computation is done on the client side.

Blind Server

The model consists of a client and a server. Theesavill only be used for storage purposes. Ad tomputation
will be done by the client only. Fig 1 represeris bverall design of a Blind Server system. Theag®e is
constructed such that it consists of a number ofks. Each block is of a fixed size. The file todtered by the
client on the server is split into many parts egulit file will be equal to the block size. EacHisfile will be stored
in the server in an unsystematic order so thas#meer will not have the knowledge about size effite and about
where the files are stored on the server. The otstaf the file are encrypted therefore the semwidirnot know
about the file’s contents. The server is givenrthme blind because even though it stores theifimnot have an
access to the data in the files and it will neitkeow about which are the blocks that have to begewto access a
single file as the files splits are stored in diteary order.

Split file into
multiple files
P Upload
R SERVER
d Blind Server
Decrypt and <
merge the split
files Download

Fig. 1 Blind Server System

A storage array has to be constructed such thadrtiag consists of folocks. The size of the storage array should
be fixed based on number of blocks needed forikbg b be uploaded. In the prior work [2], theestf the array is
set to be 4 times as many blocks as total dat&kslmcbe stored.

Client Side Computation

All the computation required to upload the filestbh@ server and downloading the files from the eehas to be
performed on the client. The below given steps ssimmary of the Blind Server algorithm. The aldoritwill be
discussed in detail in the next section. For edetlitie client wants to store in the server, tHeWing steps have to
be performed:

61

Jeyashedli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65

=

Divide the file into equal parts according to tHedk size. For eg: If the block size is 512 bytesrt the file has

to be divided accordingly such that each file Spl12 bytes.

Generate a file id for the file.

Generate a key for the file.

The file id and the key generated is to be storethe client side.

Set the seed. The seed value is the product dil¢hid and key.

Using the seed generate an arbitrary sequencec&frhombers.

Check which are the blocks that are empty amongégeience of blocks generated and take the firbtdeks

from the sequence generated. whekdsFkhe size of the file in terms of blocks i.e thenber of blocks required

to store the complete file.

8. Perform Encryption on the data to be stored in dlorid. The file to be stored on the cloud will cint
encrypted data.

9. If Fsblocks are found to be empty among the sequenuergied then upload the files in those blocks.

Nogakwd

Encryption and Decryption of data is done usingABEsS algorithm. Encryption is done before uploading file on
the cloud server and Decryption is done aftereweing the file from the server.

Let S be the storage array in the server that stsef B, blocks of block size Beach. Each block will store each
split file. The split file will be containing engoyed content which will make the server unableriovk the contents
of the file. The server will reinforce only two ap#ions storing the data, and allowing the clientetrieve the data.
There will be no computation to be performed bysberer and the server will be free from computatwerhead.

BLIND SERVER Algorithm

The client can store a set of files on this bliedver. The server will be blind to see the contdrthe files and the
size of the individual files. The Storage array i @onsist of B, blocks of b bits each. For each file to be stored o
the server, do the following:

Storing the Filesin the server
1. Split the file into equal size blocks.
2. For every file among the set of files to be stooedthe server generate file id and key which wéldne time
generation keys.
3. Set the seed for generating arbitrary locationlotks in the storage array S.
a = File id * key (1)
4. Depending on the number of blocks in the storageye8 generate a lengthy sequence using the seed.
5. From the lengthy sequence take a subsetydfi6zk numbers.

Q UB,)
The size of Qis given by,
Max(ﬁ*F81/]) (3)

Where,B is the incremental parameter which is set to leatgr than oned , is the minimum number of blocks
transmitted in every upload and download operation.
6. From the arbitrary sequence generated by the gee@, will take the n unique numbers and the size ef n
Size of(Q).
7. The set @ should be chosen such that it satisfies two caohiti
i. A'minimum of F4 blocks in the storage array S pointed out by #té¥should be free.

ii. Minimum one block in the storage array S pointetimyuset Q should be free* U QO.
Size of Q1=A (4)
The generation of set;@ill be useful for downloading the files from therser.
8. If the above two conditions is not satisfied thejuat your paramete@f so that the condition is satisfied.
9. Choose a set£n such a way that the block numbers pointed ou@pgre all free and that the size of QF .

10.Encrypt the data in the files.
11.Store ther _ file splits onto ther blocks in the storage array.

Data-Sharing Among a Group of Users

The data stored in the blind storage can be shamegng a group of users. This is achieved by onmdoy
encryption paradigms. The root user encrypts déta mwultiple recipients public keys and storesntioi the cloud
server. So only those intended recipients can ge¢he data using their own secret key. The roet osly takes
public keys of the recipients as input to encrixat data.

62

Jeyashedli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65

The private key is given to the intended recipidrdsn the root user. The private key is generatgdhe root user
and provided to all the intended recipients. That ser picks a master key for itself. The masesr ik a random
seed picked by itself. A public key is considersdtze e-mail id. The root user generates privajef@ethe other
users with whom it wants to share the file withpgmlly they are known as the intended recipieritg. private key
is generated for the intended recipients by thé weer as follows:

Per1 = Puer M, H

userl ruser ruser pbkuser1 (5)
Where, Rser1is the private key generated for userls.Hs the private key of the root user, M, is the master key of
the root user and gdkuser1is the hashed value of the public key of userithtnsame way the root user generates
private keys for all the n users with whom the nes¢r wants to share the file with. The Cipherigset as follows:

C =[mMH jyerssMH e , A O H (M), F O H(A)] (6)
C is the Ciphertext, m is a secret value set a$hfA, F) where F is the data in the filel is picked in a random

way whereA ({01} ".

Downloading Files from the Server
The client who wants to access the file from theveseshould hold the file id and the key generdtadeach file.
The client refers to the root user and the intenéegbients with whom the root user wants to shiecfile stored in
the cloud storage. Any user without the file id &eg will not be able to access the file from tkeever and will be
treated as an unauthorized one. Compute the saeglthe file id and key.

a = File id * key (7
Now evaluate whether the seed is a valid one (iauate whether such a document has been upload#tti
server). For each file stored in the server anyaigamaintained which consists of the seed valug the block
locations in the hard disk in which that particuite was uploaded. When the user wants to accdiés the initial
step is to generate the seed. The root user isrtbavho uploads the file to the blind storage dtligi Therefore at
the time of private key generation to the n uskesrbot user should also send the seed value to tisers so that
the file can be downloaded from these n users labem they want an access to it. Then the seedaisiated and
found whether it is a valid one. If such a seedi®ab not maintained in the array, then the seeziis to be an
invalid one i.e such a file using that seed wasupdvaded in the server. This may happen when anthorized
user tries to access the file or when an authotised gives wrong file id or key generated for filat

If the seed value is found to be a valid one thenarray maintained for that file will hold the dealue along with
the pseudo-random locations for that file. The bltmzations in the hard-disk in which various splif that file is
stored can be retrieved from the array and therfillh€an be downloaded from the server. The doaaéal files
will then be decrypted and merged to form the oadfile. To decrypt the data the root user hagsb calculate the
A . Then comput€p O H (A), the resultant will yield the file data F, wherp<CF [0 H (A) andis the input for
the decryption process. The intended recipientb@fiile will perform the decryption as follows:rkily, computes

the H e - Then computesd followed by the computation o€p O H (1) = F .After accessing the file the
file contents have to be encrypted and then upllbadile to the server.

RESULTSAND DISCUSSIONS

The model of the blind server was implemented usigudSim. CloudSim is used as a foundation for
implementing the Blind Server scheme. NetBean28DE is used.

File Split

The first file named ‘Cohen’ is of size 8,880Kb.€Tfile has been split into 10 multiple files. Nifiees each of
977Kb and one file of 91Kb. The single file neeegis blocks in the hard disk to store the 10 multggkts. The type
of documents that has been used are text docunfdmshard disk was created such that it consis&ldflocks.
The blocks have been numbered from 0 to 50. Eamtkhik of 1Mb each. A set of five files were upledd The
files taken were of size (10Mb, 3Mb, 7Mb, 2Mb, 3Mifjown in Table I. Each uploading and downloadihjles

required only one round of communication whereagrinr scheme [2] two round of communication wole
needed for large files.

To make efficient use of the blocks in the harddibe value ofs was set to (3, 4, 5). Each time the parameter

varied there was a difference in the number of kdddled in the array for the same set of fileable-2 gives the
details of the uploaded files their respective sind the block position occupied by each file ia Hard disk. To
effectively use all the blocks in the hard disk w@oaded 5 files each of 10 Mb. Now our hard disksists of 51
blocks therefore among the 51 blocks, 50 blocksushoontain files. But we found that when the vabfef is

63

Jeyashedli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65

varied the blocks in the hard disk is not utilizgftectively. This is shown in Table -3 where thevnealues 10B, 9B
represents 10 Blocks and 9 Blocks respectivelyefBeasents the blocks in the hard disk).

We are uploading a group of files, there is no obin uploading the first four files of 10 Mb eabhbt when the
fifth file (10 Mb) is uploaded it occupies only @ 4 blocks in the hard disk even when empty blasksavailable in
the hard disk. This happens becay3eplays a major role in declaring the size of thesat @ which consists of

pseudo-random locations i.e the randomly choseonkblocations from the hard disk. In order to malicient
utilization of all the 51 blocks in the hard diske tested different values . The values used foff were (5, 4,

3, 2). Table -3 discusses about the different \sataken fo3 . The parameters should be chosen such that all the

blocks in the hard disk are utilized efficientlg ivhen empty blocks are available then they musisied effectively
and the files have to be uploaded successfully. Wémpty blocks are not available and we wish tooag!
additional group of files into the server then #iee of the storage array in the server has tmbeased. In the
prior work [2] they have proposed to set the vadfiehe storage array to be 4 times as many blosktha total
blocks to be stored. But this will lead to overheadthe storage.

Before increasing the size of the storage arrayhewe to make use of the storage space currentlijablea by
effectively setting the parameter valgieThis can reduce the storage overhead to smahex¥Ve can summarize
that the larger the value pf the more effectively the available blocks in Haed disk are used.

Table -1Uploaded Files Table-2 Blocks occupied by Each Filein the Hard Disk
File name Size (no of blocks) File name | Size (no of blocks Blocks Occupied
Cohen 10 Cohen 10 35,42,30,29,7,34,45, 21,9,41
Positive 3 Positive 3 14,25,13
CEFd 7 CEFd 7 43,22,1,27,37,39,2
PB 2 PB 2 28,16
CAEE 3 CAEE 3 8,18,49
Table-4 Variationsin the Number of Pseudo-Random L ocations Gener ated
Table-3Variationin p Value Files Pseudo Pseudo Pseudo Pseudo
Uploaded - - - - Up- locations locations locations locations
P p=5 p=4 p=3 p=2 Loaded | [52] [53] [54] [62]
File 1 108 108 108 108 File 1 10B 10B 10B 10B
File 2 108 108 108 108 File 2 10B 10B 10B 10B
File 3 108 108 108 108 File 3 10B 10B 10B 10B
File 4 10B 10B 10B 10B File 4 10B 10B 10B 10B
File 5 10B 9B 5B 4B File 5 8B 8B 8B 8B

The subset Qis taken from a longer sequence generated. The dfizhis longer sequence should also be set
efficiently, so that the subset can be retrievexnfiit effectively. The size of the longer sequenas also tested
with different values as shown in Table IV to valid the variations in the blocks occupied. In tallethe column
Pseudo- locations [52] indicates that the sizeheffiseudo-random sequence generated using thevasesl (52
pseudo-random locations have been generated, fluahwhe subset §ill be taken).

Thep value was set to be 5 because u§irag 5 we got effective results. We generated psearitom locations by
varying the size of the superset from 52 to 61vidnich the results weren't effective but when theesof the

superset was fixed at 62 we got good results. \B&th and Pseudo-locations [62] , we were able toaglall the

five files of 10 Mb each leaving only one blockeaapty among the 51 blocks in the hard disk. Furifhttre client

wants to store additional files in the server, ttiensize of the storage array S has to be scales will reduce the
storage overhead as the size of the storage asrayaled only after effective utilization of currdatocks in the

storage array(hard-disk) whereas in the prior wbik said to have the size of S to be 4 time asyntdocks as the
number of total data blocks to be stored.

Different values for the sequence ghés tested to check the variations in the blocksuped. When there is still
empty blocks available for files to be uploadedréhis no need to scale the size of the storagey avhech can
reduce the storage overhead. Hence the proposethsds said to be effective in terms of the tinleetato access
the file on the client side and in terms of storagerhead.

A. Communication Costs

All the encryption, decryption key and the key geted for each file will be stored in the cliennl@the file to be
stored and it's block location has to be givenh® server. There will be only one round of commatidn during
upload and download whereas in the prior scheme thél be two rounds of communication during th@ashload

64

Jeyashedli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65

operation when the size of the file is large. la finst round, A blocks will be downloaded and if size of the fite i

terms of blocks is greater thahthen the remaining blocks have to be downloadeds&Hlocks are indexed by the
pseudo-random sety@om which the remaining blocks have to be downézhd

In our method there will be only one round of conmication during download as the information abobich are
the blocks that constitute a single file is stoired data structure in the client. The informataiyout which are the
blocks to be downloaded are then sent to the semdrthose blocks can be downloaded from the sefle
process will be repeated for downloading a sefle$ from the server. This will therefore reduce thme taken to
access a file on the client.

B. Computation Overhead

As there is no computation to be done on the setherserver is free from computation overhead. Jérger will
only act as a cloud storage service. All the comipart will be done by the client. The expensive rafien
considered on the client is the encryption and ygeimn. But this overhead is also reduced by reuythe number
of decryptions to be performed on the client dudiegvnload while comparing to the previous work.

CONCLUSION

Secured cloud data storage was simulated on CloudBie Client will perform the encryption and thece/pted
data is stored in pseudo-random locations in tineeseThe data stored in the cloud can be accesgeadultiple
users with the one-to-many encryption paradigm. 3éwer is free from computation. This is donehat ¢ost of
minimum information leakage to the server therelyvjaling a secured cloud data storage. The futwekwould
be to make the scheme secure against activelyptsenver.

REFERENCES

[1] Hongwei Li, Dongxiao Liu, Yuanshun Dai, Tom H LuaXyemin Shen, Enabling Efficient Multi-Keyword
Ranked Search Over Encrypted Mobile Cloud Data ligindBlind StoragelEEE Transactions on Emerging Topics
in Computing, 2015, 3 (1), 127-138.

[2] M Naveed, M Prabhakaran and CA Gunter, Dynamicrchable Encryption via Blind StoragéEEE
Symposium on Security and Privacy, San Jose, California, USA, 2014, 639-654.

[3] Xin Dong, Jiadi Yu, Yanmin Zhu, Yingying Chen, Yuano and Minglu Li, SECO: Secure and Scalable Data
Collaboration Services in Cloud Computititisevier Computers & Security, 2015, 91-105.

[41H Li, Y Dai, L Tian and H Yang, Identity based Astitication for Cloud Computing?roceeding of First
International Conference, Cloud Computing (CloudCom), Berlin, Germany: Springer-Verlag009, 157-166.

[5] A Lewko and B Waters, Decentralizing Attribute-bésgencryption,Proceeding of 30" Annual International
Conference on the Theory and Applications of Cryptographic Techniques EUROCRYPT, Berlin, Germany:
Springer-Verlag2011, 568-588.

[6] S Kamara, C Papamanthou and T Roeder, Dynamic sddec Symmetric EncryptiorBroceeding of ACM
Conference on Computer and Communications Secitéw York, NY, USA,2012, 965-976.

[7] E Stefanov and E Shi, Oblivistore: High Performa@tsivious Cloud Storagé EEE Security and Privacy, San
Francisco, California, USA013, 253-267.

[8] Ren Cong Wang and Qian Wang, Security ChallengethéPublic Cloud KuilEEE Computer Society, 2012,
69-73.

[9] Sanket Chaudhari, Akanksha Singh and Sheetal AsBpeurity Mediator Using Blind Signatures and Key
Rotation Algorithm,International Journal of Advanced Research in Computer and Communication Engineering,
2015, 4 (3), 436-439.

[10]Roopa Manjunath, Secure Way of Storing Data iru@losing Third Party AuditotfOSR Journal of Computer
Engineering, 2013, 12, 69-74.

[11]Anuradha R and Y Vijayalatha, A Distributed Stagdgtegrity Auditing for Secure Cloud Storage Seesi ,
International Journal of Advanced Research in Computer Science and Software Engineering, 2013, 3 (8), 1138-
1143.

[12]Manasi Doshi and Swapnaja Hiray, Secure and Dataabjcs Storage Services on Cloudternational
Journal of Advanced Research in Computer Science and Software Engineering, 2013, 3 (11), 690-692.

[13]Boyang Wang, Sherman SM Chow, Ming Li and Hui Sipring Shared Data on the Cloud via Security-
Mediator, Xidian University, Xi'an, China2013.

65

