
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2016, 3(4): 60-65

Research Article ISSN: 2394 - 658X

60

Secure Blind Storage with Multiple User Access Provision

P Golda Jeyasheeli, Nadar Jasmine Sunderraj and N Umakanth

Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, India
 jasponruby@gmail.com

ABSTRACT

In cloud computing, the client has to secure their private data from the server. To solve the concern, a storage
scheme is used called as a Blind Server. Blind Server will act as a secured cloud storage service such that it does
not know how the files are organized neither the size of each file nor the data in the file. The server will be free
from computation overhead and will only act as a storage server. Two level securities have been given to the data
stored in the cloud by the client. In the first level, data has been encrypted and stored in the cloud. In the second
level, the file is split into multiple fixed size block and stored in pseudo-random location in the hard disk so that
the server will not be able to learn about which the blocks that make up a file are. This model of storage system is
simulated on CloudSim. In the prior work, there is no information maintained about the blocks that contains the
various splits of a single file and also there is no multiple user access provision. In the proposed scheme, the
information about the blocks that hold the data of a file in the hard disk is stored in an array which is maintained
by the client. By this mechanism, we have reduced the time taken for accessing a file by downloading and
decrypting only the blocks that constitute the file along with multiple user access provision for the data stored in
the cloud storage.

Key words: Cloud computing, security, Blind Server, Multiple User Access Provision

INTRODUCTION

Now-a-days people have become habitual in outsourcing their data from their personal devices to the cloud servers
because of the shortage of storage space in their personal devices like mobiles, personal computers, laptops and
tablets. Therefore an additional responsibility is added on the client side to secure their sensitive data from the
servers which might turn to be an ingenuine one. To achieve this, a higher level security is given to the data in the
cloud. The first level security implies encrypting the data and then storing in the cloud. The second level security is
to store the data in arbitrary locations in the server. The Blind Storage scheme proposed by Naveed et al [2] is
found to be a secured storage scheme which provides security to the data stored in the server against honest but
curious servers. But the time required to access a file on the client side is influenced by a sequence of download
and decrypt operations where decryption is found to be a computationally intensive task. Therefore our main
contribution is to reduce the time required to access a file by the client. This is achieved by reducing the number of
download and decryption operations to be performed by the client. This model is simulated on the CloudSim
framework. CloudSim provides the essential entities to simulate a storage server which helped us in constructing
the blind server model.

Multi-Authority Attribute-Based Encryption (ABE) system is proposed in [5].The different security challenges in a
Public cloud is discussed in [8]. There are many ways for storing data in the cloud in a secured way which is dealt in
[10]-[13]. An identity based hierarchical model for cloud computing and a corresponding encryption scheme is
introduced in [4]. A high performance, distributed ORAM-based cloud data store is proposed in [7]. A dynamic
searchable symmetric encryption scheme has been introduced in [6]. The integrity of the data stored in the server has
to be verified by the client, for which a security mediator has been discussed in [9]. The process of uploading data to
the server has motivated researchers to design secured data storage on the server. Naveed et al [2] have designed
such a scheme where the file is split into multiple fixed size blocks and the file that has been split into multiple files
occupies multiple blocks in the storage array. The similar Blind Storage scheme is also used in [1]. But there is no
data collaboration service proposed for the blind storage scheme in the existing work. A data collaboration scheme
for a group of users has been proposed in [3] which enable the file to be shared among a group of users. During the

Jeyasheeli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65
__

61

process of upload, a longer sequence of pseudo-random numbers are generated using a seed from which a subset is
generated which consists of only free blocks and the size of the subset is equal to the size of the file in terms of
number of blocks required to store the file. The file is finally stored in those blocks.

During the download operation, the pseudo-random sequence is again generated using the seed and a minimum of k
blocks have to be downloaded and decrypted in every transaction. Then the decrypted blocks will be matched for
file id, when the first block containing the file id is found the size of the file is retrieved from this block and the
remaining blocks have to be downloaded and decrypted until all the blocks of the file has been found. This process
involves an overhead of downloading and decrypting blocks that does not constitutes of the file to be accessed.
Decryption is a computation intensive operation on the client and if avoiding the download and decryption of
unwanted blocks is achieved then the time required to access a file on the client side can be significantly improved.

SYSTEM DESIGN

A hard disk consists of many blocks. The file to be stored on the cloud is split into multiple files of a fixed size such
that the size depends on the size of the block. In general the block size varies from 256 bytes to 512 bytes. But the
size of the block can also be fixed to a higher range by which the number of downloads will be minimized. The file
is split into multiple files of equal size (size of split depends on the size of the block in a hard disk) then these
splitted files are stored in random block locations in the hard disk. The random locations are generated by setting a
seed value.

Initially, for every file to be uploaded we will generate a File id and a key. These keys will be held by the client and
will be useful for the download operation to be performed on the files stored in the server. The one who holds the
key is seen as an authenticated client to download the data from the server. The key generation will take place only
once for each file and has to be stored in the client for further access to the file. The server does not have to perform
any computation. It is free from computation overhead and will have the work of acting only as a storage server. All
the computation is done on the client side. Hence the server will not be able to learn about which are the blocks that
contains the various split of a single file as all the computation is done on the client side.

Blind Server
The model consists of a client and a server. The server will only be used for storage purposes. All the computation
will be done by the client only. Fig 1 represents the overall design of a Blind Server system. The storage is
constructed such that it consists of a number of blocks. Each block is of a fixed size. The file to be stored by the
client on the server is split into many parts each split file will be equal to the block size. Each split file will be stored
in the server in an unsystematic order so that the server will not have the knowledge about size of the file and about
where the files are stored on the server. The contents of the file are encrypted therefore the server will not know
about the file’s contents. The server is given the name blind because even though it stores the files it cannot have an
access to the data in the files and it will neither know about which are the blocks that have to be merged to access a
single file as the files splits are stored in an arbitrary order.

Fig. 1 Blind Server System

A storage array has to be constructed such that the array consists of Bn blocks. The size of the storage array should
be fixed based on number of blocks needed for the files to be uploaded. In the prior work [2], the size of the array is
set to be 4 times as many blocks as total data blocks to be stored.

Client Side Computation
All the computation required to upload the files to the server and downloading the files from the server has to be
performed on the client. The below given steps is a summary of the Blind Server algorithm. The algorithm will be
discussed in detail in the next section. For each file the client wants to store in the server, the following steps have to
be performed:

CLIENT

 SERVER
Blind Server

Upload

Download

Split file into
multiple files

Decrypt and
merge the split

files

Jeyasheeli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65
__

62

1. Divide the file into equal parts according to the block size. For eg: If the block size is 512 bytes then the file has
to be divided accordingly such that each file split is 512 bytes.

2. Generate a file id for the file.
3. Generate a key for the file.
4. The file id and the key generated is to be stored on the client side.
5. Set the seed. The seed value is the product of the file id and key.
6. Using the seed generate an arbitrary sequence of bock numbers.
7. Check which are the blocks that are empty among the sequence of blocks generated and take the first FS blocks

from the sequence generated. where, FS is the size of the file in terms of blocks i.e the number of blocks required
to store the complete file.

8. Perform Encryption on the data to be stored in the cloud. The file to be stored on the cloud will contain
encrypted data.

9. If FS blocks are found to be empty among the sequence generated then upload the files in those blocks.

Encryption and Decryption of data is done using the AES algorithm. Encryption is done before uploading the file on
the cloud server and Decryption is done after retrieving the file from the server.
Let S be the storage array in the server that consists of Bn blocks of block size Bs each. Each block will store each
split file. The split file will be containing encrypted content which will make the server unable to know the contents
of the file. The server will reinforce only two operations storing the data, and allowing the client to retrieve the data.
There will be no computation to be performed by the server and the server will be free from computation overhead.

BLIND SERVER Algorithm
The client can store a set of files on this blind server. The server will be blind to see the content of the files and the
size of the individual files. The Storage array S will consist of Bn blocks of b bits each. For each file to be stored on
the server, do the following:

Storing the Files in the server
1. Split the file into equal size blocks.
2. For every file among the set of files to be stored on the server generate file id and key which will be one time

generation keys.
3. Set the seed for generating arbitrary location of blocks in the storage array S.

α = File id * key (1)
4. Depending on the number of blocks in the storage array S generate a lengthy sequence using the seed.
5. From the lengthy sequence take a subset of Q0 block numbers.

nBQ ⊆0 (2)
The size of Q0 is given by,

),*(λβ SFMax (3)

Where, β is the incremental parameter which is set to be greater than one. λ , is the minimum number of blocks
transmitted in every upload and download operation.
6. From the arbitrary sequence generated by the seed α , Q0 will take the n unique numbers and the size of n=

Size of(Q0).
7. The set Q0 should be chosen such that it satisfies two conditions:

i. A minimum of SF blocks in the storage array S pointed out by the set Q0 should be free.

ii. Minimum one block in the storage array S pointed out by set Q1 should be free 01 QQ ⊆
.

 Size of Q1= � (4)
 The generation of set Q1 will be useful for downloading the files from the server.
8. If the above two conditions is not satisfied then adjust your parameter α so that the condition is satisfied.
9. Choose a set Q2 in such a way that the block numbers pointed out by Q2 are all free and that the size of Q2 =

SF .

10. Encrypt the data in the files.
11. Store the

SF file splits onto the
SF blocks in the storage array.

Data-Sharing Among a Group of Users
The data stored in the blind storage can be shared among a group of users. This is achieved by one to many
encryption paradigms. The root user encrypts data with multiple recipients public keys and stores it into the cloud
server. So only those intended recipients can decrypt the data using their own secret key. The root user only takes
public keys of the recipients as input to encrypt the data.

Jeyasheeli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65
__

63

The private key is given to the intended recipients from the root user. The private key is generated by the root user
and provided to all the intended recipients. The root user picks a master key for itself. The master key is a random
seed picked by itself. A public key is considered as the e-mail id. The root user generates private key for the other
users with whom it wants to share the file with, generally they are known as the intended recipients. The private key
is generated for the intended recipients by the root user as follows:

11 pbkuserruserruseruser HMPP += (5)

Where, Puser1 is the private key generated for user1, Pruser is the private key of the root user, Mruser is the master key of
the root user and Hpbkuser1 is the hashed value of the public key of user1. In the same way the root user generates
private keys for all the n users with whom the root user wants to share the file with. The Ciphertext is set as follows:

)](),(,,[1 λλ HFmHmHmHC ruserpbkuser ⊕⊕= (6)

C is the Ciphertext, m is a secret value set as m=),(FH λ where F is the data in the file. λ is picked in a random

way where n}1,0{∈λ .

Downloading Files from the Server
The client who wants to access the file from the server should hold the file id and the key generated for each file.
The client refers to the root user and the intended recipients with whom the root user wants to share the file stored in
the cloud storage. Any user without the file id and key will not be able to access the file from the server and will be
treated as an unauthorized one. Compute the seed using the file id and key.

α = File id * key (7)
Now evaluate whether the seed is a valid one (i.e evaluate whether such a document has been uploaded in the
server). For each file stored in the server an array is maintained which consists of the seed value and the block
locations in the hard disk in which that particular file was uploaded. When the user wants to access a file the initial
step is to generate the seed. The root user is the one who uploads the file to the blind storage initially. Therefore at
the time of private key generation to the n users the root user should also send the seed value to the n users so that
the file can be downloaded from these n users later when they want an access to it. Then the seed is evaluated and
found whether it is a valid one. If such a seed value is not maintained in the array, then the seed is said to be an
invalid one i.e such a file using that seed was not uploaded in the server. This may happen when an unauthorized
user tries to access the file or when an authorized user gives wrong file id or key generated for that file.

If the seed value is found to be a valid one then the array maintained for that file will hold the seed value along with
the pseudo-random locations for that file. The block locations in the hard-disk in which various splits of that file is
stored can be retrieved from the array and then the file can be downloaded from the server. The downloaded files
will then be decrypted and merged to form the original file. To decrypt the data the root user has to first calculate the
λ . Then compute)(λHCp ⊕ , the resultant will yield the file data F, where Cp=)(λHF ⊕ and is the input for

the decryption process. The intended recipients of the file will perform the decryption as follows: Firstly, computes

the 1pbkuserH . Then computes λ followed by the computation of FHCp =⊕)(λ .After accessing the file the

file contents have to be encrypted and then upload the file to the server.

RESULTS AND DISCUSSIONS

The model of the blind server was implemented using CloudSim. CloudSim is used as a foundation for
implementing the Blind Server scheme. NetBeans 8.0.2 IDE is used.

File Split
The first file named ‘Cohen’ is of size 8,880Kb. The file has been split into 10 multiple files. Nine files each of
977Kb and one file of 91Kb. The single file needs ten blocks in the hard disk to store the 10 multiple splits. The type
of documents that has been used are text documents. The hard disk was created such that it consists of 51 blocks.
The blocks have been numbered from 0 to 50. Each block is of 1Mb each. A set of five files were uploaded. The
files taken were of size (10Mb, 3Mb, 7Mb, 2Mb, 3Mb) shown in Table I. Each uploading and downloading of files
required only one round of communication whereas in prior scheme [2] two round of communication would be
needed for large files.

To make efficient use of the blocks in the hard disk, the value of β was set to (3, 4, 5). Each time the parameter

varied there was a difference in the number of blocks filled in the array for the same set of files. Table-2 gives the
details of the uploaded files their respective size and the block position occupied by each file in the hard disk. To
effectively use all the blocks in the hard disk we uploaded 5 files each of 10 Mb. Now our hard disk consists of 51
blocks therefore among the 51 blocks, 50 blocks should contain files. But we found that when the value of β is

Jeyasheeli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65
__

64

varied the blocks in the hard disk is not utilized effectively. This is shown in Table -3 where the row values 10B, 9B
represents 10 Blocks and 9 Blocks respectively (B represents the blocks in the hard disk).

We are uploading a group of files, there is no problem in uploading the first four files of 10 Mb each but when the
fifth file (10 Mb) is uploaded it occupies only 9 to 4 blocks in the hard disk even when empty blocks are available in
the hard disk. This happens because β plays a major role in declaring the size of the subset Q0 which consists of

pseudo-random locations i.e the randomly chosen block locations from the hard disk. In order to make efficient
utilization of all the 51 blocks in the hard disk, we tested different values forβ . The values used for β were (5, 4,

3, 2). Table -3 discusses about the different values taken forβ . The parameters should be chosen such that all the

blocks in the hard disk are utilized efficiently i.e when empty blocks are available then they must be used effectively
and the files have to be uploaded successfully. When empty blocks are not available and we wish to upload
additional group of files into the server then the size of the storage array in the server has to be increased. In the
prior work [2] they have proposed to set the value of the storage array to be 4 times as many blocks as the total
blocks to be stored. But this will lead to overheads in the storage.

Before increasing the size of the storage array we have to make use of the storage space currently available by
effectively setting the parameter value β. This can reduce the storage overhead to small extent. We can summarize
that the larger the value of β, the more effectively the available blocks in the hard disk are used.

Table -1Uploaded Files

File name Size (no of blocks)

Cohen 10

Positive 3

CEFd 7

PB 2

CAEE 3

Table -2 Blocks occupied by Each File in the Hard Disk

File name Size (no of blocks) Blocks Occupied

Cohen 10 35,42,30,29,7,34,45, 21,9,41

Positive 3 14,25,13

CEFd 7 43,22,1,27,37,39,2

PB 2 28,16

CAEE 3 8,18,49

Table -3Variation in β Value

Uploaded
Files

β= 5 β = 4 β = 3 β =2

File 1 10B 10B 10B 10B

File 2 10B 10B 10B 10B

File 3 10B 10B 10B 10B

File 4 10B 10B 10B 10B

File 5 10B 9B 5B 4B

Table-4 Variations in the Number of Pseudo-Random Locations Generated

Files
Up-
Loaded

Pseudo
locations
[52]

Pseudo
locations
[53]

Pseudo
locations
[54]

Pseudo
locations
[62]

File 1 10B 10B 10B 10B

File 2 10B 10B 10B 10B

File 3 10B 10B 10B 10B

File 4 10B 10B 10B 10B

File 5 8B 8B 8B 8B

The subset Q0 is taken from a longer sequence generated. The size of this longer sequence should also be set
efficiently, so that the subset can be retrieved from it effectively. The size of the longer sequence was also tested
with different values as shown in Table IV to validate the variations in the blocks occupied. In table IV, the column
Pseudo- locations [52] indicates that the size of the pseudo-random sequence generated using the seed was 52 (52
pseudo-random locations have been generated, from which the subset Q0 will be taken).

The β value was set to be 5 because using β as 5 we got effective results. We generated pseudo-random locations by
varying the size of the superset from 52 to 61 for which the results weren’t effective but when the size of the
superset was fixed at 62 we got good results. With β=5 and Pseudo-locations [62] , we were able to upload all the
five files of 10 Mb each leaving only one block as empty among the 51 blocks in the hard disk. Further if the client
wants to store additional files in the server, then the size of the storage array S has to be scaled. This will reduce the
storage overhead as the size of the storage array is scaled only after effective utilization of current blocks in the
storage array(hard-disk) whereas in the prior work it is said to have the size of S to be 4 time as many blocks as the
number of total data blocks to be stored.

Different values for the sequence and β is tested to check the variations in the blocks occupied. When there is still
empty blocks available for files to be uploaded there is no need to scale the size of the storage array which can
reduce the storage overhead. Hence the proposed scheme is said to be effective in terms of the time taken to access
the file on the client side and in terms of storage overhead.

A. Communication Costs
All the encryption, decryption key and the key generated for each file will be stored in the client. Only the file to be
stored and it’s block location has to be given to the server. There will be only one round of communication during
upload and download whereas in the prior scheme there will be two rounds of communication during the download

Jeyasheeli et al Euro. J. Adv. Engg. Tech., 2016, 3(4):60-65
__

65

operation when the size of the file is large. In the first round, λ blocks will be downloaded and if size of the file in

terms of blocks is greater than λ then the remaining blocks have to be downloaded. These blocks are indexed by the
pseudo-random set Q0 from which the remaining blocks have to be downloaded.

In our method there will be only one round of communication during download as the information about which are
the blocks that constitute a single file is stored in a data structure in the client. The information about which are the
blocks to be downloaded are then sent to the server and those blocks can be downloaded from the server. The
process will be repeated for downloading a set of files from the server. This will therefore reduce the time taken to
access a file on the client.

B. Computation Overhead
As there is no computation to be done on the server, the server is free from computation overhead. The server will
only act as a cloud storage service. All the computation will be done by the client. The expensive operation
considered on the client is the encryption and decryption. But this overhead is also reduced by reducing the number
of decryptions to be performed on the client during download while comparing to the previous work.

CONCLUSION

Secured cloud data storage was simulated on CloudSim. The Client will perform the encryption and the encrypted
data is stored in pseudo-random locations in the server. The data stored in the cloud can be accessed by multiple
users with the one-to-many encryption paradigm. The server is free from computation. This is done at the cost of
minimum information leakage to the server thereby providing a secured cloud data storage. The future work would
be to make the scheme secure against actively corrupt server.

REFERENCES

[1] Hongwei Li, Dongxiao Liu, Yuanshun Dai, Tom H Luan, Xuemin Shen, Enabling Efficient Multi-Keyword
Ranked Search Over Encrypted Mobile Cloud Data Through Blind Storage, IEEE Transactions on Emerging Topics
in Computing, 2015, 3 (1), 127-138.
[2] M Naveed, M Prabhakaran and CA Gunter, Dynamic Searchable Encryption via Blind Storage, IEEE
Symposium on Security and Privacy, San Jose, California, USA, 2014, 639-654.
[3] Xin Dong, Jiadi Yu, Yanmin Zhu, Yingying Chen, Yuan Luo and Minglu Li, SECO: Secure and Scalable Data
Collaboration Services in Cloud Computing, Elsevier Computers & Security, 2015, 91-105.
[4] H Li, Y Dai, L Tian and H Yang, Identity based Authentication for Cloud Computing, Proceeding of First
International Conference, Cloud Computing (CloudCom), Berlin, Germany: Springer-Verlag, 2009, 157-166.
[5] A Lewko and B Waters, Decentralizing Attribute-based Encryption, Proceeding of 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques EUROCRYPT, Berlin, Germany:
Springer-Verlag, 2011, 568-588.
[6] S Kamara, C Papamanthou and T Roeder, Dynamic Searchable Symmetric Encryption, Proceeding of ACM
Conference on Computer and Communications Security, New York, NY, USA, 2012, 965–976.
[7] E Stefanov and E Shi, Oblivistore: High Performance Oblivious Cloud Storage, IEEE Security and Privacy, San
Francisco, California, USA, 2013, 253–267.
[8] Ren Cong Wang and Qian Wang, Security Challenges for the Public Cloud Kui, IEEE Computer Society, 2012,
69-73.
[9] Sanket Chaudhari, Akanksha Singh and Sheetal Asopa, Security Mediator Using Blind Signatures and Key
Rotation Algorithm, International Journal of Advanced Research in Computer and Communication Engineering,
2015, 4 (3), 436-439.
[10] Roopa Manjunath, Secure Way of Storing Data in Cloud using Third Party Auditor, IOSR Journal of Computer
Engineering, 2013, 12, 69-74.
[11] Anuradha R and Y Vijayalatha, A Distributed Storage Integrity Auditing for Secure Cloud Storage Services ,
International Journal of Advanced Research in Computer Science and Software Engineering, 2013, 3 (8), 1138-
1143.
[12] Manasi Doshi and Swapnaja Hiray, Secure and Data Dynamics Storage Services on Cloud, International
Journal of Advanced Research in Computer Science and Software Engineering, 2013, 3 (11), 690-692.
[13] Boyang Wang, Sherman SM Chow, Ming Li and Hui Li, Storing Shared Data on the Cloud via Security-
Mediator, Xidian University, Xi’an, China, 2013.

