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I.     INTRODUCTION 

 
The study of the streamline and potential flow is very 

important in fluid mechanics.by the following equation we can 

determine the concavity and point of inflection in any point of 

the fluid flow. 

Stream line is an imaginary line drawn through the flow 

field in such a manner that the velocity vector of the fluid at 

each and every point on the streamline is tangent to the 

streamline at that instance. A tangent to the curve at any point 

gives the 

direction of the 

velocity vector 

at that point. 

Whereas a 

steady, 

irrotational flow 

is classified as a 

potential flow.  

In the given figure of the aerofoil we can see that at some 

place the equipotential line and the stream line there is some 

concave portion so as a result there is a possibility of having a 

point of inflection. So, this can be determined by the 

following inequalities.  

 

 

II.     RELATED MATHEMATICS 

 
 

 

 

CONCAVITY OF THE POTENTIAL FUNCATION: - 

Where, u is the velocity component on x-direction 

And v is the velocity component on y-direction 

For potential function, 
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Abstract: 
This paper is based on the concavity andpoint of inflection of a streamline function and potential function. Though the streamline and 

potential function is orthogonal to each other but they must have concavity and must be having a point of inflection. 

The inequalities and their proof will give the concavity and the point of inflection of the streamline function and potential function. By this 

research work we can determine the concavity of the imaginary streamline and potential line of a given velocity vector and can relate it to the 

propagation of aerofoil in air. 
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The equation of the potential function, 

dy u

dx v
= −  

Then, if we find out the double derivative then we can 

determine the concavity. 
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On substituting the value in equation 1, we get, 
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CONCAVITY OF THE STREAMLINE FUNCATION: - 

Where, u is the velocity component on x-direction 

And v is the velocity component on y-direction 

 

 

 

 

 

We know, 

0

d dx dy
x y

vdx udy

dy v

dx u

ψ ψ
ψ

∂ ∂
= +

∂ ∂

⇒ − + =

⇒ =

 

Let, 
2

2

2

2

2

r
x

s
x y

t
y

ψ

ψ

ψ

∂
=

∂

∂
=

∂ ∂

∂
=

∂

 

The equation of the streamline function, 

dy v

dx u
=  

Then, if we find out the double derivative then we can 

determine the concavity. 
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For equipotential line:

Concavity inequation is: -
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Concavity inequation is: -
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Note: - These inequation can be called as sdh’s inequation. 

CONCLUSIONS 

By the given derivation and the result, the potential line and 

the stream line is having some concavity and point of 

inflection at some place in the flow of fluid. In case of 

different flow net the concavity and point of inflection can be 

determined by this inequality and which can provide a 

different dimension in the stability of an aerofoil in air. 
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