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1. Introduction 

 In sheet metal forming 

operations, springback is a decisive 

parameter in designing the appropriate 

tooling. Final part shape depends on the 

springback which occurs after the removal 

of applied loads from the deformed sheet 

and results in the deviation of the product 

from the applied tooling shape. One of the 

major technical issues associated with 

these bars is elastic recovery of material 

(springback) after completion of forming 

process. In  forming operation, springback 

is an important consideration in designing 

the punch and die set. During the forming 

process, when the load is applied, the sheet 

is deformed plastically and the contour of 

the sheet section matches that of the die. 

On removal of the applied load, the sheet 

section takes up a different shape due to 

elastic recovery on removal of the applied 

load is commonly known as springback. 

Torsional spring is the measure of angle of 

untwist on removal of the torque after 

twisting the section beyond the elastic 

limit.  

  

    Initially springback studies were limited 

to sheet bending operations only. Sachs[1], 

Schroeder[2], Gardiner[3], Singh and 

Johnson[4] and others studied the 

springback considering bending of sheets 

of different shapes, and depicted 

springback as a function of material 

thickness, length and width of the sheets 

taken. Their studies were limited to V and 

U-shaped dies for applying bending loads 

and they predicted the springback as a 

measure of change in the curvature 

distribution.Huch[5], Nadai[6] and 

Upadhyay[7], have all done a number of 

excellent works on the elasto plastic 

torsion of bars with rectangular sections, 

but their interest has been limited to 

monotonically increasing loads only. 

Dwivedi et al [8,9] analytically predicted 

the residual angle of twist and torque 

relation etc. for bars of elastic strain-

hardening materials with narrow 

rectangular sections. This works, however, 

has the limitation that it is valid for thin 

rectangular strips only. Dwivedi et al 

[10,11] dealt with the torsional springback 

of square-section bars of linear and non 

linear work-hardening materials. Dwivedi 

et al [12]also dealt with the torsional 
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springback of L-shaped section bars of non 

linear work-hardening materials. 

 An accurate analysis of 

springback has been made in the past on 

sheet bending and tube bending operations 

through experiment [13-18].Torsional 

springback in thin tubes with non-linear 

work hardening analysis by Choubey et 

al[19-21]. Dwivedi et. al. [23] Study of 

Residual Stresses in I Sectioned Bars of 

Non-Linear work-hardening materials 

under torsion. Lal et al [24-33] Analysis 

the Springback of different cross sectioned 

bar of linear and non linear work- 

hardening materials under torsional 

loading.  

 In the following, a 

numerical scheme has been prepared for 

analysing the problem of torsional 

springback and elastic-plastic boundary in 

equilateral triangular cross sectioned bars 

of non-linear work-hardening materials. 

2. Basic Theory 

2.1 Elastic Torsion 

Consider a prismatic bar under elastic 

torsion [22]. Let u , v and w be the small 

displacements of a point (x, y, z) , relative 

to its initial position, in the X-, Y-, Z- 

directions respectively. At a section z = 

constant, the cross-section rotates about 

the Z axis, and so  

                          u yz= − θ , v xz= θ  and  

w f (x, y)= θ                      

   (1)                 

where θ is the angle of twist per unit 

length. For elastic deformation, θ  is small 

and is constant along the length of bar; 

f (x, y)θ is called the warping function and 

is assumed to be independent of z. 

 If a stress function ψ  is taken such that  

                                      
xz

y

∂ψ
τ =

∂
 and

yz
x

∂ψ
τ = −

∂
,                                           

   (2) 

then the elastic torsion equation is given as  

                                        
2 2

2

2 2
2G

x y

 ∂ ψ ∂ ψ
∇ ψ = + = − θ 

∂ ∂ 
                                  

   (3) 

with aψ =  constant (taken to be zero) 

along the boundary of the cross-section. 

 The torque T is given by  

                                             

A
T 2 dx dy,= ψ∫∫                                 

    (4)                                 

Where A is the cross-section of the bar. 

 

 

2.2 Plastic Torsion 

 A somewhat less realistic 

representation of the tensile stress-strain 

behaviour of compressible metals, other 

than the Ramberg-Osgood relation, is the 

piecewise linear relation (elastic-linearly 

strainharding materials). However, this 

approximation does model certain features 

of plastic flow. In particular, the behavior 

of aluminium alloys is very closely 

approximated by this type of an 

idealization.  

If the stresses are non-

dimensionalized by the yield stress, σy and 

the strain by the corresponding yield strain 
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εy=σy/E, then a generalized form of the 

constitutive equation is given by 

        

13 1 2
(1 ) ( )

2 3

n
ij ij e ij kk ijS S

ν
ε ν α σ σ δ− − 

= + + +  
 

    (5) 

where 
ij

ε and 
ij

S are respectively 

the normalized strain and non-dimensional 

deviatoric stress components, /ij ij yσ σ σ=

and α=0.02 is the permanent plastic strain 

corresponding to the usual engineering 

definition of yield. Using the von Mises 

criterion, the yielding of the material is 

characterized by 1eσ =  

For uniaxial tension, equation (7) is 

reduces to 

 

])(1[ 1−+= n

yE σ

σσ
ε        (6) 

From Fig. 1, the amount of springback 

twist is  

                                     
s P Rθ = θ − θ .                                                                       

   (7) 

Since the slope of the elastic loading line 

(AB) and that of the unloading line (XY) 

are the same, hence 

                                     P

s 0

0

T

T

 
θ = θ 

 
.                                                                     

   (8) 

 

         Fig. 1 Loading-Unloading curve 

 

Fig. 2 Definition of grid system 

Corresponding to this recovered angle of 

twist, the unloading problem is solved by 

seeking the solution of corresponding 

elastic torsion equation 

                                     
2 2

s s

s2 2
2G

x y

∂ ψ ∂ ψ
+ = − θ

∂ ∂
                                             

   (9) 

If the stress function ψP corresponding to 

the plastic twisting pθ   at point X (Figure 

1) be known by solving equation (7), then 

after unloading, the resulting ψ surface on 

the cross-section is given by 

   ψR= ψP- ψS  

     

            (10) 

and residual shear stress, (τij)R , are given 

by 
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  ( ) , ( )R R
xz R yz R

y x

ψ ψ
τ τ

∂ ∂
= = −

∂ ∂

      

            (11) 

3. Scheme of numerical solution 

Before coming to a numerical solution, 

coordinates are non-dimensionalized as 

L

y

L

x
== ηξ ,     (12) 

where L is a characteristic length of 

the prismatic bar. Further, a new stress 

function φ  defined by 

)),((/1),( 2
yxL ψηξφ =       (13) 

On replacing the coordinates and 

stress function by non-dimensionalized 

coordinate and φ , elastic torsion equation 

and plastic torsion equation equation 

reduces to 

θφ G22 −=∇        (elastic 

deformation)      (14) 

1 23
{(1 ) (2 )( ) }

2

n
eE nθ ν α σ φ−− = + + − ∇  

23
( 1)( ) {( ) ( ) }

2

n
e e en ξ ξ η ηα σ σ φ σ φ−+ − +                 

(Plastic deformation)  (15) 

Stress components are given by 

,xz yzL Lη ξτ φ τ φ= =    (16) 

and therefore       

2/122 ])()[(
3

ηξ φφ
σ

σ += L
y

e
   (17) 

Equation (4), which gives the value of the 

torque becomes  (18) 

             
ηξφ ddLT A  )(2 4

∫∫=  

4. Results and Discussion 

 Since the numerical technique 

described is based on finite difference 

approximations, it becomes necessary to 

decide upon an approximate mesh size 

which will give a solution converging to 

the actual one. By carrying out actual 

computations, it was found that the size of 

suitable mesh depends on the shape of the 

cross-section. If the gradient of the stress 

function is expected to change rapidly in a 

particular direction then a finer mesh must 

be used in that direction. 

 For the equilateral triangular 

section  a solution was obtained using 

different mesh sizes. It was seen that if we 

keep reducing the mesh size (h) (Fig. 2), 

then after a certain value of h the solution 

converge to a value which does not change 

appreciably with any further decrease in 

the mesh size. The solution was attempted 

by taking 10, 12, 14 and 15 meshes along 

the vertical edge of the section; a mesh 

size of 1/30 (i.e. 16 meshes along 

horizontal edge) was found to be an 

optimum choice from the point of the view 

of accuracy and the computational time, 

and hence, all the results in the following 

correspond to h=1/16. 

 The effect of n on the elasto-plastic 

boundary and on σ _̅e has been shown. 

The difference between the initial guess 

(obtained from the elastic solution) of the 

elasto-plastic boundary and the elasto-

plastic boundary obtained from elasto-

plastic solution. Some of the conclusions 

which can be drawn from these graphs are 

as follows; Elasto-plastic boundaries, for 

different values of θ _̅p and N for an 

equilateral triangular section are shown in 

Fig. 3 and 4, respectively. It is clear from 

Fig. 3 that the elasto-plastic boundary 
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starts developing at first from the re

entrant corner, where stress concentration 

is very high, and with increasing values of 

��� , the plastic zone moves inward 

encompassing more and more of outer 

zones. It is also seen from Fig. 4, that 

work-hardening index (N) has little effect 

on the elasto-plastic boundary. It means 

that even if one commits some error in 

determining the value of n the elasto

plastic boundaries are hardly affected.

Fig 3 Elasto-Plastic boundaries of a equilateral

triangular section for N=5 

Fig.4 Elasto-Plastic boundaries of a equilateral 

triangular section for ���=4.0. 

 

Fig.5 and Fig. 6  shows the variation of 

equivalent stress (��� ) along the line of 

symmetry SS’ for different values of 

N=5 & N=9. From the  figures we come to 

know that as the strain hardening 

parameter is increased variation in stress is 

redused. In Fig. 7& 8 variations of this 
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symmetry SS’ for different values of ���for  

N=5 & N=9. From the  figures we come to 

know that as the strain hardening 

parameter is increased variation in stress is 

redused. In Fig. 7& 8 variations of this 

stress are shown for differen

for ���  =3.0 and ���  =4.0. It is clear from 

Fig. 7 and 8 that N has a little effect on

and ���  decreases with increase in N but it 

is opposite in case of residual 

increases with increasing value of N. 

Figures 9 and 10 shows the variation of 

stress function Ф along the line of 

symmetry SS’ for N=5 and N=9 taking 

as a parameter. In fig11 and 6.0 the same 

is shown for ���=3.0and	�� �=4.0 taking N 

as a parameter. 
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stress are shown for different values of N 

=4.0. It is clear from 

Fig. 7 and 8 that N has a little effect on		����� 

decreases with increase in N but it 

is opposite in case of residual 	�� �	where it 

increases with increasing value of N. 

shows the variation of 

 along the line of 
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as a parameter. In fig11 and 6.0 the same 
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  Fig7 Equivalent stress 	�� �along the line of 

symmetry SS’ for ��� =3.0 

 

 Fig8  Equivalent stress 	�� �along the line of 

symmetry SS’ for ��� =4.0 

4. Conclusion 

The proposed numerical scheme is found 

to predict the torsional springback quite 

successfully. The accuracy of the 

theoretical results, of course, depends on 

the mesh size. The non linear strain 

hardening index (n) has little effect on the 

elasto-plastic boundary.  
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