
International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar-Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 747

AN EFFECTIVE AND ROBUSTIVE ON CACHE-SUPPORTED PATH

PLANNING ON ROADS

K SRINIVASA RAO*1, CHINTALA NAGAMANI 2

**1 ASSISTANT PROFESSOR,DEPARTMENT OF MCA, VIGNAN’S LARA INSTITUTE OF TECHNOLOGY&SCIENCE, VADLAMUDI, GUNTUR, ANDHRA

PRADESH, INDIA.
2MCA STUDENT, DEPARTMENT OF MCA, VIGNAN’S LARA INSTITUTE OF TECHNOLOGY&SCIENCE, VADLAMUDI, GUNTUR,

ANDHRA PRADESH, INDIA

ABSTRACT

In mobile navigation services, on-road path planning is a basic function that finds a route between a

queried start location and a destination. While on roads, a path planning query may be issued due to dynamic

factors in various scenarios, such as a sudden change in driving direction, unexpected traffic conditions, or lost

ofGPS signals. In these scenarios, path planning needs to be delivered in a timely fashion. The requirement of

timeliness is even more challenging when an overwhelming number of path planning queries is submitted to the

server, e.g.,during peak hours. As the response time is critical to user satisfaction with personal navigation

services, it is a mandate for the server to efficiently handle the heavy workload of path planning requests. To meet

this need, we propose a system, namely, Path Planning by Caching (PPC), that aims to answer a new path

planning query efficiently by caching and reusing historically queried paths (queried-paths in short). Unlike

conventional cache-based path planning systems where a cached query is returned only when it matches

completely with a new query, PPC leverages partially matched queried-paths in cache to answer part(s) of the new

query. As a result, the server only needs to compute the unmatched path segments, thus significantly reducing the

overall system workload.

Keywords: Spatial Database, Path Planning, Cache.

I. INTRODUCTION

Due to advances in big data analytics, there is a

growing need for scalable parallel algorithms. These

algorithms encompass many domains including graph

processing, machine learning, and signal processing.

However, one of the most challenging algorithms lie in

graph processing. Graph algorithms are known to

exhibit low locality, data dependence memory accesses,

and high memory requirements. Even their parallel

versions do not scale seamlessly, with bottlenecks

stemming from architectural constraints, such as cache

effects and on-chip network traffic. Path Planning

algorithms, such as the famous Dijkstra’s algorithm,

fall in the domain of graph analytics, and exhibit

similar issues. These algorithms are given a graph

containing many vertices, with some neighboring

vertices to ensure connectivity, and are tasked with

finding the shortest path from a given source vertex to

a destination vertex. Parallel implementations assign a

set of vertices or neighboring vertices to threads,

depending on the parallelization strategy. These

strategies naturally introduce input dependence.

Uncertainty in selecting the subsequent vertex to jump

to, results in low locality for data accesses.

Moreover, threads converging onto the same

neighboring vertex sequentialize procedures due to

synchronization and communication. Partitioned data

structures and shared variables ping-pong within on-

chip caches, causing coherence bottlenecks. All these

mentioned issues make parallel path planning a

challenge. Prior works have explored parallel path

planning problems from various architectural angles.

Path planning algorithms have been implemented in

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering and Techniques - Volume 4 Issue 6, Mar-Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 748

graph frameworks. These distributed settings mostly

involve large clusters, and in some cases smaller

clusters of CPUs. However, these works mostly

optimize workloads across multiple sockets and nodes,

and mostly constitute either complete shared memory

or message passing (MPI) implementations. In the case

of single node (or single-chip) setup, a great deal of

work has been done for GPUs are a few examples to

name a few. These works analyze sources of

bottlenecks and discuss ways to mitigate them.

Summing up these works, we devise that most

challenges remain in the fine-grain inner loops of path

planning algorithms. We believe that analyzing and

scaling path planning on single-chip setup can

minimize the fine-grain bottlenecks. Since shared

memory is efficient at the hardware level, we proceed

with parallelization of the path planning workload for

single-chip multi-cores. The single-chip parallel

implementations can be scaled up at multiple nodes or

clusters granularity, which we discuss.

Fig :over view ppc system

Furthermore, programming language variations for

large scale processing also cause scalability issues that

need to be analyzed effectively so far the most efficient

parallel shared memory implementations for graph

processing are in C/C++. However, due to security

exploits and other potential vulnerabilities, other safe

languages are commonly used in mission-deployed

applications. Safe languages guarantee dynamic

security checks that mitigate vulnerabilities, and

provide ease of programming. However, security

checks increase memory and performance overheads.

Critical sections of code, such as locked data structures,

now take more time to process, and hence

communication and synchronization overheads

exacerbate for parallel implementations. Python is a

subtle example of a safe language, and hence we

analyze it’s overheads in the context of our parallel

path planning workloads. This paper makes the

following contributions:

• We study sources of bottlenecks arising in

parallel path planning workloads, such as input

dependence and scalability, in the context of a single

node, single chip setup.

• We analyze issues arising from safe languages,

in our case Python, and discuss what safe languages

need to ensure for seamless scalability.

• We plan to open source all characterized

programs with the publication of this paper.

Related work

In this section, we review the related works in the

research lines of path planning, shortest path caching

and cache management, which are highly relevant to

our study.

Path Planning

The Dijkstra algorithm [4], [5] has been widely used

for path planning [6] by computing the shortest

distance be-tween two points on a road network. Many

algorithms such as A∗ [7], ATL [8] have been

established to improve its performance by exploring

geographical constraints as heuristics. Gutman [9]

propose a reach-based approach for computing the

shortest paths. An improved version [10] adds shortcut

arcs to reduce vertices from being visited and uses

partial trees to reduce the preprocessing time. This

work further combines the benefits of the reach-based

and ATL approaches to reduce the number of vertex

visits and the search space. The experiment shows that

the hybrid approach provides a superior result in terms

of reducing query processing time.

Jung et al. [11] propose the HiTi graph model to

struc-ture a large road network model. HiTi aims to

reduce the search space for the shortest path

computation. While HiTi achieves high performance

on road weight updates and reduces storage overheads,

it incurs higher computation costs when computing the

shortest paths than the HEPV and the Hub Indexing

methods [12], [13], [14]. To compute time-dependent

fast paths, Demiryurek et al. [15] propose the B-TDFP

algorithm by leveraging backward searches to reduce

the search space. It adopts an area-level partition

scheme which utilizes a road hierarchy to balance each

area. However, a user may prefer a route with better

driving experience to the shortest path. Thus, Gonzalez

et al.propose an adaptive fast path algorithm which

International Journal of Engineering and Techniques - Volume 4 Issue 6, Mar-Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 749

utilizes speed and driving patterns to improve the

quality of routes [16].

The algorithm uses a road hierarchical partition and

pre-computation to improve the performance of the

route com-putation. The small road upgrade is a novel

approach to improving the quality of the route

computation.

2.2 Shortest Path Caching

Thomsen et al. [17] propose an efficient shortest

path cache (SPC). Based on the optimal subpath

property [18], given a source s and a destination t, the

shortest path ps;t contains the shortest path pk;j , where s

≤ k, j ≤ t, SPC computes a benefit value to score a

shortest path to determine whether to preserve it in the

cache. The benefit of a path is a summation of the

benefit value of each sub-path in the shortest path. The

formula of a benefit value considers two features: the

popularity of a path and its expense. The popularity of

a path p is evaluated based on the number of

occurrences of the historical sub paths which overlap p.

On the other hand, the expense of a path represents the

computational time of the shortest path algorithm. Fig.

2 shows an example to illustrate how to calculate the

benefit value for a path using SPC. In this example, a

path p1;3 contains three sub-paths p1;2, p2;3, and p1;3. The

popularity and expense values for each path from node

s to node t are listed in the table, denoted as Xs;t and Es;t,

separately. Accordingly, the benefit value for path p1;3

is calculated as 2 × 20.3 + 5 × 20.3 + 5 × 40.6 = 345.1

using SPC.

Fig. 2: An example to illustrate the calculation of

path benefit value in SPC. The popularity and expense

values for each road segment are listed in the table. For

the path p1;3 containing three sub-paths, its benefit

value is calculated as 2 × 20:3 + 5 × 20:3 + 5 × 40:6 =

345:1.

Because SPC has to score each sub-path in the short-est

path, the time complexity is high. Assuming that a

shortest path contains n nodes, a shortest path contains

(n × (n − 1))/2 sub-paths. The time complexity for

scoring a shortest path is O(n
2
). In the above study,

each query is answered independently. However, when

queries in the current request pool share similar

properties, they may be processed as a group. Thus,

Mahmud et al. [1] propose a group-based approach to

accelerate the processing by calculating the similarity

among a group of queries and send the common part as

a query to the server. Therefore, only dissimilar

segments for each query are answered by the server

individually. However, this work does not explore any

cache mechanism in the system.

2.3 Cache Management

Caching techniques have been employed to alleviate

the workload of web searches. Since cache size is

limited, cache replacement policies have been a subject

of research. The cache replacement policy aims to

improve the hit ratio and reduce access latency.

Markatos et al. conduct experiments to analyze

classical cache replacement approaches on real query

logs from the EXCITE search engine [19]. Three im-

portant observations are described as follows. First, a

small number of queries are frequently re-used. By

preserving re-sults of these queries in cache, the system

is able to respond to the users without incurring time-

consuming computa-tions. Second, while a larger

cache size implies a higher hit ratio, significant

overheads may be incurred for cache maintenance.

Third, static cache replacement has better per-formance

when the cache size is small, and vice versa for

dynamic cache replacement. Static cache replacement

[19], [20], [21], [22], [23], [24] aims to preserve the

results of the most popular and frequent queries, thus

incurring a very low workload during query processing.

However, the cache content may not be up to date to

respond to recent trends in issued queries. Dynamic

cache replacement [19], [25], [26], in contrast to a

static cache, preserves the results of the most recent

queries, but the system incurs an extra workload.

In order to improve the retrieval efficiency of the path

planning system, Thomsen et al. propose a new cache

man-agement policy [17] to cache the results of

frequent queries for reuse in the future. To enhance the

hit ratio, a benefit value function is used to score the

International Journal of Engineering and Techniques - Volume 4 Issue 6, Mar-Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 750

paths from the query logs. Consequently, the hit ratio is

increased, hence reducing the execution times.

However, the cost of constructing a cache is high, since

the system must calculate the benefit values for all sub-

paths in a full-path of query results. For on-line, map-

based applications, processing a large number of

simultaneous path queries is an important issue. In this

paper, we provide a new framework for reusing the

previ-ously cached query results as well as an effective

algorithm for improving the query evaluation on the

server.

PPATTERN DETECTION

To detect the best PPatterns, an idea is to calculate

the esti-mation distance based on each cached path by

Eq. (5), and select the cached path with the shortest

distance. However, it faces several challenges. Firstly,

the distance estimation in Eq. (3) requires the server to

compute the unshared segments (i.e., SDP(s′ , a),

SDP(b, t ′)). Therefore, it incurs significant

computation to exhaustively examine all cached paths.

Secondly, such an exhaustive operation implicitly

assumes that each cached path is a PPattern candidate

to the query. However, this is not always true. For

example, a path in Manhattan does not contribute to a

query in London. While we assume that users may

accept an approximate path if its error is within a

certain tolerable range, exhaustive inspection cannot

not be sure that the path with the minimal error is

found until all paths are inspected. To address these

challenges, we aim to narrow down the inspection

scope to only good candidates.

4.1 Probabilistic Model for PPattern Detection

The coherency property of road networks indicates

that two paths are very likely to share segments while

source nodes (and their destination nodes, respectively)

are close to each other [27]. This property has been

used in many applications for various purposes, e.g.,

efficient trajectory lookups as the common segments

among multiple paths are queried only once [1]. Notice

that this property is mainly attributed to the locality of

the path source and destination nodes. We argue that,

for two queries, if they satisfy certain spatial

constraints, their shortest distance paths are very likely

to be the PPatterns to the other.

Several existing studies have proposed algorithms to

group paths with similar trajectories together [27]. In

these studies, paths within a cluster can be taken as the

PPatterns to each other. Given a new query, the system

checks whether it fits into an existing cluster and

directly returns the shortest path if there exists at least

one path in that cluster. How-ever, all these studies

require a complete knowledge graph computed from

the basic road network data, which incurs a heavy

workload and distracts from our goal. Differing from

the existing studies, we propose a method to detect the

potential PPatterns for an input query using only

existing paths in cache.

In summary, the coherency property indicates that

two queries are more likely to share sub-paths if they

meet the following three spatial constraints

concurrently: (1) the source nodes of the two queries

are close to each other;

(2) the destination nodes of the two queries are

close to each other; and (3) the source node is distant

from the destination node for both queries. Formally,

we denote p(qs;t,qs;t) as the probability for two queries

qs;t′and qs;t to be PPatterns of each other. Thus,

constraints (1) and (2)

indicate p(qs′;t′ , qs;t) ∝ 1 and

p(qs′;t′ , qs;t) ∝ 1 ,D(s;s ′)D(t;t ′)

respectively. On the other hand, constraint (3)

 implies p(qs′;t′ , qs;t) ∝ D(s′, t′) × D(s,

t). Thereafter, the final prob-ability can be computed as

the product of these three terms. As we would like the

three factors to achieve sufficient satis-faction

concurrently, the probability will only be computed if

each factor is over a threshold as expressed by Eq. (1).

-------(1)

and fl(qs′ ;t′ , qs;t) = D(s′ , t′) × D(s, t)

respectively indi-cate the source-source, destination-

destination and source-destination node distance

factors between the two queries of qs′;t′ and qs;t;

wx is a weight indicating the contribution from each

factor fx; Dx is a threshold controling the valida-tion

scope for fx; and u(•) is a shifted unit step function:

International Journal of Engineering and Techniques - Volume 4 Issue 6, Mar-Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 751

------(2)

When the score p(qs′;t′ , qs;t) is over a threshold,

it is very likely that the two paths will share a path

segment. In

Fig. 3: Correlation between source-destination distance

and the sortest path distance.

PPatterns detection, given a query, we check every

queried-path in cache and select the ones with top

scores as PPattern candidates:

P T (qs′;t′ , qs;t) = {1 : p(qs ;t , qs;t) > ϵ

 0 : otherwise′′

 .

where ϵ is a probability threshold. Note that in the

above,all distances are Euclidean distances.

Based on the above, we select the highest ranked

PPat-terns for a new query. In the following, we prove

that the estimation error is upper-bounded to a value

2α(Ds + Dt) where Ds and Dt are source-source and

destination- destination distance thresholds and α is a

parameter ap-

proximating the relation between the shortest path

distance of two points on a road network and their true

Euclidean distance, i.e., SP D(a, b) = αD(a, b). Factor α

can be esti-mated through an empirical study on the

road network. For example, Fig. 5 shows the

correlation between the shortest path distance and the

Euclidean distance of endpoints for 5k queries on a real

road network database. To validate the estimation

bound, Fig. 6 summarizes three scenarios where

a new query qs;t is estimated from a pattern

candidate qs′;t′ .

In the first scenario (see Fig. 6(a)), there exists at

least one common segment between the paths of the

two queries. In

the other two scenarios (shown in Figs. 6(b) and

6(c)), there exist no common segments, but the two

queries are similar to each other

An Efficient Grid-Based Solution

In order to retrieve these patterns efficiently, we

propose a grid-based solution to further improve the

system per-formance. The main idea is to divide the

whole space into equally sized grid cells, where the

endpoints of all paths are mapped to the grid cells. As

such, the grid index facilitates efficient cache lookups

[28], [29]. The distance measures can be approximated

by counting the total number of covered grids.

Therefore, Eq. (9) is transformed as follows:

 P T (qs′;t′ , qs;t) = 1 : D(s, t) ≤ Dl)

 g(s) = g(s), g(t) = g(t0 : otherwise.

where g() is the grid cell in which a

node is located.

Algorithm 1 PPatterns Detection.

Input: qs;t: a query ; Dl: distance threshold; Dg: grid

cell size,

C: a cache.

Output: All candidate PPatterns P T .

1. if D(s; t) < Dl then

2. Return P T = ∅.

3. end if

4. Divide the target space by size Dg.

5. Determine the start grid gs and destination grid

gt.

6. Qs ← Logged queries whose paths pass gs.

7. Qt ← Logged queries whose paths pass gt.

8. Q = Intersect(Qs; Qt).

9. P T ← (Sub)paths from Gs to Gt for each query

in Q.

10. Return P T .

CACHE-SUPPORTED SHORTEST PATH

ESTIMA-TION

Based on the PPatterns detected above, we estimate

the shortest path for a new query using Note that the

detected PPatterns contribute to at least a part of the

answer path returned to the users and actually increases

the cache utilization.

To detect the estimated shortest path, we propose a

heuristic algorithm as shown in Algorithm 2.

International Journal of Engineering and Techniques - Volume 4 Issue 6, Mar-Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 752

Fig. : Illustration of the four cases in P P C.

Algorithm 2 Shortest Path Estimation.

Input: query source node s
′
 and destination node t

′
;

all candi-date PPatterns P T ; Cache C.

Output: Estimated shortest path p^∗.

1: if isEmpty(P T)) then

2: p^∗ ← Calculate path from server and return.

3: end if

4: Initialize Estimated Shortest Distance ESD = ∞.

5: for each path p ∈ P T do

6: if p is a complete hit then

7: Return p^∗s′;t′ = p.

8: end if

9: s∗ = arg mins∈Vp D(s′; s).

10: ds = D(s
′
; s∗).

11: Remove s∗ from path node-set Vp.

12: t∗ = arg mint∈Vp D(t; t′).

13: dt = D(t∗; t′).

14: Let dr = |SDP(s
′
; t
′
)|.

^ .

15: d = ds + dr + dt

16: if d < ESD then

17: ESD = d.

18: Update best PPattern p∗ = ps∗;t∗ .

19: end if

20: end for

21: if s′ is not equal to vs
p∗ then

22: SDP(s
′
; vs

p∗) ←Compute shortest path SDP(s
′
;

vs
p∗).

23: end if

24: if t
′
 is not equal to vt

p∗ then

25: SDP(vt
p∗ ; s

′) ←Compute shortest path

SDP(vt
p∗ ; t

′
).

26: end if

27: Return p^∗ = SDP(s′; vs
p∗) ⊙ p∗ ⊙ SDP(vt

p∗ ; t′).

CACHE MANAGEMENT

In a cache-supported system, it is important to

efficiently manage the cache contents to accelerate the

path planning. Therefore, in this section, we first

discuss the implemen-tation of a grid-based index,

followed by describing a dy-namic cache update and

replacement policy

CONCLUSION

In this paper, we propose a framework, to be specific,

Path Planning by Caching (PPC), to answer another

path planning inquiry with quick reaction by

proficiently caching and reusing the authentic queried-

paths. Not at all like the customary reserve based path

planning frameworks, where a queried-path in the store

is utilized just when it coordinates impeccably with the

new inquiry, PPC influences the somewhat coordinated

stored questions to answer part(s) of another inquiry.

Subsequently, the server just needs to figure the

unmatched fragments, in this manner essentially

decreasing the general framework workload. Thorough

experimentation on a genuine street organize database

demonstrates that our framework outflanks the cutting

edge path planning procedures by decreasing 32% of

the computational dormancy by and large.

II. REFERENCES

[1] H. Mahmud, A. M. Amin, M. E. Ali, and T.

Hashem, “Shared Ex-ecution of Path Queries on Road

Networks,” Clinical Orthopaedics and Related

Research, vol. abs/1210.6746, 2012.

[2] L. Zammit, M. Attard, and K. Scerri,

“Bayesian Hierarchical Mod-elling of Traffic Flow -

With Application to Malta’s Road Net-work,” in

International IEEE Conference on Intelligent

Transportation Systems, 2013, pp. 1376–1381.

International Journal of Engineering and Techniques - Volume 4 Issue 6, Mar-Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 753

[3] S. Jung and S. Pramanik, “An Efficient Path

Computation Model for Hierarchically Structured

Topographical Road Maps,” IEEE Transactions on

Knowledge and Data Engineering, vol. 14, no. 5, pp.

1029–1046, 2002.

[4] E. W. Dijkstra, “A Note on Two Problems in

Connexion with Graphs,” Numerische Mathematik, vol.

1, no. 1, pp. 269–271, 1959.

[5] U. Zwick, “Exact and approximate distances in

graphs – a survey,” in Algorithms – ESA 2001, 2001,

vol. 2161, pp. 33–48.

[6] A. V. Goldberg and C. Silverstein,

“Implementations of Dijkstra’s Algorithm Based on

Multi-Level Buckets,” in Network Optimiza-tion, 1997,

vol. 450, pp. 292–327.

[7] P. Hart, N. Nilsson, and B. Raphael, “A

Formal Basis for the Heuristic Determination of

Minimum Cost Paths,” IEEE Transac-tions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107,

1967.

[8] A. V. Goldberg and C. Harrelson, “Computing

the Shortest Path: A Search Meets Graph Theory,” in

ACM Symposium on Discrete Algorithms, 2005.

[9] R. Gutman, “Reach-Based Routing: A New

Approach to Shortest Path Algorithms Optimized for

Road Networks,” in Workshop on Algorithm

Engineering and Experiments, 2004.

[10] A. V. Goldberg, H. Kaplan, and R. F. Werneck,

“Reach for A*: Efficient Point-to-Point Shortest Path

Algorithms,” in Workshop on Algorithm Engineering

and Experiments, 2006, pp. 129–143.

[11] S. Jung and S. Pramanik, “An Efficient Path

Computation Model for Hierarchically Structured

Topographical Road Maps,” IEEE Transactions on

Knowledge and Data Engineering, vol. 14, no. 5, pp.

1029–1046, 2002.

[12] R. Goldman, N. Shivakumar, S.

Venkatasubramanian, and H. Garcia-Molina,

“Proximity Search in Aatabases,” in Interna-tional

Conference on Very Large Data Bases, 1998, pp. 26–

37.

[13] N. Jing, Y.-W. Huang, and E. A.

Rundensteiner, “Hierarchical Optimization of Optimal

Path Finding for Transportation Appli-cations,” in

ACM Conference on Information and Knowledge

Manage-ment, 1996.

[14] N. Jing, Y. wu Huang, and E. A.

Rundensteiner, “Hierarchical En-coded Path Views for

Path Query Processing: An Optimal Model and its

Performance Evaluation,” IEEE Transactions on

Knowledge and Data Engineering, vol. 10, pp. 409–

432, 1998.

[15] U. Demiryurek, F. Banaei-Kashani, C. Shahabi,

and A. Ran-ganathan, “Online Computation of Fastest

Path in Time-Dependent Spatial Networks,” in

International Conference on Ad-vances in Spatial and

Temporal Databases, 2011.

[16] H. Gonzalez, J. Han, X. Li, M. Myslinska, and

J. P. Sondag, “Adaptive Fastest Path Computation on a

Road Network: a Traffic Mining Approach,” in

International Conference on Very Large Data Bases,

2007.

[17] J. R. Thomsen, M. L. Yiu, and C. S. Jensen,

“Effective caching of shortest paths for location-based

services,” in ACM International Conference on

Management of Data, 2012.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest,

and C. Stein, Introduc-tion to Algorithms, Third

Edition, 2009.

[19] E. Markatos, “On Caching Search Engine

Query Results,” Com-puter Communications, vol. 24,

no. 2, pp. 137–143, 2001.

[20] R. Ozcan, I. S. Altingovde, and O. Ulusoy, “A

Cost-Aware Strategy for Query Result Caching in Web

Search Engines,” in Advances in Information Retrieval,

2009, vol. 5478, pp. 628–636.

[21] R. Baeza-Yates, A. Gionis, F. Junqueira, V.

Murdock, V. Plachouras, and F. Silvestri, “The Impact

of Caching on Search Engines,” in International ACM

Conference on Research and Development in

Information Retrieval, 2007.

International Journal of Engineering and Techniques - Volume 4 Issue 6, Mar-Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 754

[22] R. Baeza-Yates and F. Saint-Jean, “A Three

Level Search Engine Index Based in Query Log

Distribution,” in String Processing and Information

Retrieval, 2003, vol. 2857, pp. 56–65.

[23] R. Ozcan, I. S. Altingovde, B. B. Cambazoglu,

F. P. Junqueira, and zgr Ulusoy, “A Five-Level Static

Cache Architecture for Web Search Engines,”

Information Processing and Management, vol. 48, no. 5,

pp. 828 – 840, 2012.

[24] R. Ozcan, I. S. Altingovde, and O. Ulusoy,

“Static Query Result Caching Revisited,” in

International Conference on World Wide Web, 2008.

[25] Q. Gan and T. Suel, “Improved Techniques for

Result Caching in Web Search Engines,” in

International Conference on World Wide Web, 2009.

[26] X. Long and T. Suel, “Three-level Caching for

Efficient Query Pro-cessing in Large Web Search

Engines,” in International Conference on World Wide

Web, 2005.

[27] J. Sankaranarayanan, H. Samet, and H. Alborzi,

“Path Oracles for Spatial Networks,” Proceedings of

the VLDB Endowment, vol. 2, no. 1, pp. 1210–1221,

2009.

[28] H. Hu, J. Xu, and D. L. Lee, “A Generic

Framework for Moni-toring Continuous Spatial

Queries over Moving Objects,” in ACM International

Conference on Management of Data, 2005.

[29] X. Xiong, M. F. Mokbel, and W. G. Aref,

“SEA-CNN: Scalable Processing of Continuous K-

Nearest Neighbor Queries in Spatio-temporal

Databases,” in IEEE International Conference on Data

Engineering, 2005.

[30] H. Kanoh, “Dynamic Route Planning for Car

Navigation Sys-tems Using Virus Genetic

Algorithms,” International Journal of Knowledge-

based and Intelligent Engineering Systems, vol. 11, no.

1, pp. 65–78, 2007.

[31] M. Ali, J. Krumm, T. Rautman, and A.

Teredesai, “Acm sigspatial gis cup 2012,” in ACM

International Conference on Advances in Geographic

Information Systems, 2012.

[32] “Cloudmade,” downloads.cloudmade.com.

