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ABSTRACT 
 

In mobile navigation services, on-road path planning is a basic function that finds a route between a 

queried start location and a destination. While on roads, a path planning query may be issued due to dynamic 

factors in various scenarios, such as a sudden change in driving direction, unexpected traffic conditions, or lost 

ofGPS signals. In these scenarios, path planning needs to be delivered in a timely fashion. The requirement of 

timeliness is even more challenging when an overwhelming number of path planning queries is submitted to the 

server, e.g.,during peak hours. As the response time is critical to user satisfaction with personal navigation 

services, it is a mandate for the server to efficiently handle the heavy workload of path planning requests. To meet 

this need, we propose a system, namely, Path Planning by Caching (PPC), that aims to answer a new path 

planning query efficiently by caching and reusing historically queried paths (queried-paths in short). Unlike 

conventional cache-based path planning systems where a cached query is returned only when it matches 

completely with a new query, PPC leverages partially matched queried-paths in cache to answer part(s) of the new 

query. As a result, the server only needs to compute the unmatched path segments, thus significantly reducing the 

overall system workload. 

Keywords:  Spatial Database, Path Planning, Cache. 

 

I. INTRODUCTION 

 

Due to advances in big data analytics, there is a 

growing need for scalable parallel algorithms. These 

algorithms encompass many domains including graph 

processing, machine learning, and signal processing. 

However, one of the most challenging algorithms lie in 

graph processing. Graph algorithms are known to 

exhibit low locality, data dependence memory accesses, 

and high memory requirements. Even their parallel 

versions do not scale seamlessly, with bottlenecks 

stemming from architectural constraints, such as cache 

effects and on-chip network traffic. Path Planning 

algorithms, such as the famous Dijkstra’s algorithm, 

fall in the domain of graph analytics, and exhibit 

similar issues. These algorithms are given a graph 

containing many vertices, with some neighboring 

vertices to ensure connectivity, and are tasked with 

finding the shortest path from a given source vertex to 

a destination vertex. Parallel implementations assign a 

set of vertices or neighboring vertices to threads, 

depending on the parallelization strategy. These 

strategies naturally introduce input dependence. 

Uncertainty in selecting the subsequent vertex to jump 

to, results in low locality for data accesses. 

Moreover, threads converging onto the same 

neighboring vertex sequentialize procedures due to 

synchronization and communication. Partitioned data 

structures and shared variables ping-pong within on-

chip caches, causing coherence bottlenecks. All these 

mentioned issues make parallel path planning a 

challenge. Prior works have explored parallel path 

planning problems from various architectural angles. 

Path planning algorithms have been implemented in 
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graph frameworks. These distributed settings mostly 

involve large clusters, and in some cases smaller 

clusters of CPUs. However, these works mostly 

optimize workloads across multiple sockets and nodes, 

and mostly constitute either complete shared memory 

or message passing (MPI) implementations. In the case 

of single node (or single-chip) setup, a great deal of 

work has been done for GPUs are a few examples to 

name a few. These works analyze sources of 

bottlenecks and discuss ways to mitigate them. 

Summing up these works, we devise that most 

challenges remain in the fine-grain inner loops of path 

planning algorithms. We believe that analyzing and 

scaling path planning on single-chip setup can 

minimize the fine-grain bottlenecks. Since shared 

memory is efficient at the hardware level, we proceed 

with parallelization of the path planning workload for 

single-chip multi-cores. The single-chip parallel 

implementations can be scaled up at multiple nodes or 

clusters granularity, which we discuss. 

 
Fig :over view ppc system 

Furthermore, programming language variations for 

large scale processing also cause scalability issues that 

need to be analyzed effectively so far the most efficient 

parallel shared memory implementations for graph 

processing are in C/C++. However, due to security 

exploits and other potential vulnerabilities, other safe 

languages are commonly used in mission-deployed 

applications. Safe languages guarantee dynamic 

security checks that mitigate vulnerabilities, and 

provide ease of programming. However, security 

checks increase memory and performance overheads. 

Critical sections of code, such as locked data structures, 

now take more time to process, and hence 

communication and synchronization overheads 

exacerbate for parallel implementations. Python is a 

subtle example of a safe language, and hence we 

analyze it’s overheads in the context of our parallel 

path planning workloads. This paper makes the 

following contributions: 

 

• We study sources of bottlenecks arising in 

parallel path planning workloads, such as input 

dependence and  scalability, in the context of a single 

node, single chip setup. 

 

• We analyze issues arising from safe languages, 

in our case Python, and discuss what safe languages 

need to ensure for seamless scalability. 

 

• We plan to open source all characterized 

programs with the publication of this paper. 

Related work 

In this section, we review the related works in the 

research lines of path planning, shortest path caching 

and cache management, which are highly relevant to 

our study. 

Path Planning 

 

The Dijkstra algorithm [4], [5] has been widely used 

for path planning [6] by computing the shortest 

distance be-tween two points on a road network. Many 

algorithms such as A∗ [7], ATL [8] have been 

established to improve its performance by exploring 

geographical constraints as heuristics. Gutman [9] 

propose a reach-based approach for computing the 

shortest paths. An improved version [10] adds shortcut 

arcs to reduce vertices from being visited and uses 

partial trees to reduce the preprocessing time. This 

work further combines the benefits of the reach-based 

and ATL approaches to reduce the number of vertex 

visits and the search space. The experiment shows that 

the hybrid approach provides a superior result in terms 

of reducing query processing time. 

 

Jung et al. [11] propose the HiTi graph model to 

struc-ture a large road network model. HiTi aims to 

reduce the search space for the shortest path 

computation. While HiTi achieves high performance 

on road weight updates and reduces storage overheads, 

it incurs higher computation costs when computing the 

shortest paths than the HEPV and the Hub Indexing 

methods [12], [13], [14]. To compute time-dependent 

fast paths, Demiryurek et al. [15] propose the B-TDFP 

algorithm by leveraging backward searches to reduce 

the search space. It adopts an area-level partition 

scheme which utilizes a road hierarchy to balance each 

area. However, a user may prefer a route with better 

driving experience to the shortest path. Thus, Gonzalez 

et al.propose an adaptive fast path algorithm which 
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utilizes speed and driving patterns to improve the 

quality of routes [16]. 

 

The algorithm uses a road hierarchical partition and 

pre-computation to improve the performance of the 

route com-putation. The small road upgrade is a novel 

approach to improving the quality of the route 

computation. 

 

2.2 Shortest Path Caching 

 

Thomsen et al. [17] propose an efficient shortest 

path cache (SPC). Based on the optimal subpath 

property [18], given a source s and a destination t, the 

shortest path ps;t contains the shortest path pk;j , where s 

≤ k, j ≤ t, SPC computes a benefit value to score a 

shortest path to determine whether to preserve it in the 

cache. The benefit of a path is a summation of the 

benefit value of each sub-path in the shortest path. The 

formula of a benefit value considers two features: the 

popularity of a path and its expense. The popularity of 

a path p is evaluated based on the number of 

occurrences of the historical sub paths which overlap p. 

On the other hand, the expense of a path represents the 

computational time of the shortest path algorithm. Fig. 

2 shows an example to illustrate how to calculate the 

benefit value for a path using SPC. In this example, a 

path p1;3 contains three sub-paths p1;2, p2;3, and p1;3. The 

popularity and expense values for each path from node 

s to node t are listed in the table, denoted as Xs;t and Es;t, 

separately. Accordingly, the benefit value for path p1;3 

is calculated as 2 × 20.3 + 5 × 20.3 + 5 × 40.6 = 345.1 

using SPC. 

 
 

Fig. 2: An example to illustrate the calculation of 

path benefit value in SPC. The popularity and expense 

values for each road segment are listed in the table. For 

the path p1;3 containing three sub-paths, its benefit 

value is calculated as 2 × 20:3 + 5 × 20:3 + 5 × 40:6 = 

345:1. 

 

Because SPC has to score each sub-path in the short-est 

path, the time complexity is high. Assuming that a 

shortest path contains n nodes, a shortest path contains 

(n × (n − 1))/2 sub-paths. The time complexity for 

scoring a shortest path is O(n
2
). In the above study, 

each query is answered independently. However, when 

queries in the current request pool share similar 

properties, they may be processed as a group. Thus, 

Mahmud et al. [1] propose a group-based approach to 

accelerate the processing by calculating the similarity 

among a group of queries and send the common part as 

a query to the server. Therefore, only dissimilar 

segments for each query are answered by the server 

individually. However, this work does not explore any 

cache mechanism in the system. 

 

2.3 Cache Management 

 

Caching techniques have been employed to alleviate 

the workload of web searches. Since cache size is 

limited, cache replacement policies have been a subject 

of research. The cache replacement policy aims to 

improve the hit ratio and reduce access latency. 

Markatos et al. conduct experiments to analyze 

classical cache replacement approaches on real query 

logs from the EXCITE search engine [19]. Three im-

portant observations are described as follows. First, a 

small number of queries are frequently re-used. By 

preserving re-sults of these queries in cache, the system 

is able to respond to the users without incurring time-

consuming computa-tions. Second, while a larger 

cache size implies a higher hit ratio, significant 

overheads may be incurred for cache maintenance. 

Third, static cache replacement has better per-formance 

when the cache size is small, and vice versa for 

dynamic cache replacement. Static cache replacement 

[19], [20], [21], [22], [23], [24] aims to preserve the 

results of the most popular and frequent queries, thus 

incurring a very low workload during query processing. 

However, the cache content may not be up to date to 

respond to recent trends in issued queries. Dynamic 

cache replacement [19], [25], [26], in contrast to a 

static cache, preserves the results of the most recent 

queries, but the system incurs an extra workload. 

 

In order to improve the retrieval efficiency of the path 

planning system, Thomsen et al. propose a new cache 

man-agement policy [17] to cache the results of 

frequent queries for reuse in the future. To enhance the 

hit ratio, a benefit value function is used to score the 
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paths from the query logs. Consequently, the hit ratio is 

increased, hence reducing the execution times. 

However, the cost of constructing a cache is high, since 

the system must calculate the benefit values for all sub-

paths in a full-path of query results. For on-line, map-

based applications, processing a large number of 

simultaneous path queries is an important issue. In this 

paper, we provide a new framework for reusing the 

previ-ously cached query results as well as an effective 

algorithm for improving the query evaluation on the 

server. 

PPATTERN DETECTION 

 

To detect the best PPatterns, an idea is to calculate 

the esti-mation distance based on each cached path by 

Eq. (5), and select the cached path with the shortest 

distance. However, it faces several challenges. Firstly, 

the distance estimation in Eq. (3) requires the server to 

compute the unshared segments (i.e., SDP(s′ , a), 

SDP(b, t ′ )). Therefore, it incurs significant 

computation to exhaustively examine all cached paths. 

Secondly, such an exhaustive operation implicitly 

assumes that each cached path is a PPattern candidate 

to the query. However, this is not always true. For 

example, a path in Manhattan does not contribute to a 

query in London. While we assume that users may 

accept an approximate path if its error is within a 

certain tolerable range, exhaustive inspection cannot 

not be sure that the path with the minimal error is 

found until all paths are inspected. To address these 

challenges, we aim to narrow down the inspection 

scope to only good candidates. 

 

4.1 Probabilistic Model for PPattern Detection 

 

The coherency property of road networks indicates 

that two paths are very likely to share segments while 

source nodes (and their destination nodes, respectively) 

are close to each other [27]. This property has been 

used in many applications for various purposes, e.g., 

efficient trajectory lookups as the common segments 

among multiple paths are queried only once [1]. Notice 

that this property is mainly attributed to the locality of 

the path source and destination nodes. We argue that, 

for two queries, if they satisfy certain spatial 

constraints, their shortest distance paths are very likely 

to be the PPatterns to the other. 

 

Several existing studies have proposed algorithms to 

group paths with similar trajectories together [27]. In 

these studies, paths within a cluster can be taken as the 

PPatterns to each other. Given a new query, the system 

checks whether it fits into an existing cluster and 

directly returns the shortest path if there exists at least 

one path in that cluster. How-ever, all these studies 

require a complete knowledge graph computed from 

the basic road network data, which incurs a heavy 

workload and distracts from our goal. Differing from 

the existing studies, we propose a method to detect the 

potential PPatterns for an input query using only 

existing paths in cache. 

 

In summary, the coherency property indicates that 

two queries are more likely to share sub-paths if they 

meet the following three spatial constraints 

concurrently: (1) the source nodes of the two queries 

are close to each other; 

 

(2) the destination nodes of the two queries are 

close to each other; and (3) the source node is distant 

from the destination node for both queries. Formally, 

we denote p(qs;t,qs;t) as the probability for two queries 

qs;t′and qs;t to be PPatterns of each other. Thus, 

constraints (1) and (2) 

indicate p(qs′;t′ , qs;t) ∝ 1 and 

p(qs′;t′ , qs;t) ∝ 1 ,D(s;s ′ )D(t;t ′ )

  

respectively. On the other hand, constraint (3)

 implies p(qs′;t′ , qs;t) ∝ D(s′, t′) × D(s, 

t). Thereafter, the final prob-ability can be computed as 

the product of these three terms. As we would like the 

three factors to achieve sufficient satis-faction 

concurrently, the probability will only be computed if 

each factor is over a threshold as expressed by Eq. (1). 

-------(1) 

and fl(qs′ ;t′  , qs;t) = D(s′ , t′) ×  D(s, t) 

respectively indi-cate the source-source, destination-

destination and source-destination node distance 

factors between the two queries of qs′;t′ and qs;t; 

wx is a weight indicating the contribution from each 

factor fx; Dx is a threshold controling the valida-tion 

scope for fx; and u(•) is a shifted unit step function: 
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------(2) 

When the score p(qs′;t′ , qs;t) is over a threshold, 

it is very likely that the two paths will share a path 

segment. In 

  
 

Fig. 3: Correlation between source-destination distance 

and the sortest path distance.   

      

PPatterns detection, given a query, we check every 

queried-path in cache and select the ones with top 

scores as PPattern candidates:    

P T (qs′;t′ , qs;t) = {1 : p(qs ;t , qs;t) > ϵ 

   0 :  otherwise′′

 . 

where ϵ is a probability threshold. Note that in the 

above,all distances are Euclidean distances. 

    

Based on the above, we select the highest ranked 

PPat-terns for a new query. In the following, we prove 

that the estimation error is upper-bounded to a value 

2α(Ds + Dt) where Ds and Dt are source-source and 

destination- destination distance thresholds and α is a 

parameter ap- 

proximating the relation between the shortest path 

distance of two points on a road network and their true 

Euclidean distance, i.e., SP D(a, b) = αD(a, b). Factor α 

can be esti-mated through an empirical study on the 

road network. For example, Fig. 5 shows the 

correlation between the shortest path distance and the 

Euclidean distance of endpoints for 5k queries on a real 

road network database. To validate the estimation 

bound, Fig. 6 summarizes three scenarios where 

a new query qs;t is estimated from a pattern 

candidate qs′;t′ . 

In the first scenario (see Fig. 6(a)), there exists at 

least one common segment between the paths of the 

two queries. In 

the other two scenarios (shown in Figs. 6(b) and 

6(c)), there exist no common segments, but the two 

queries are similar to each other 

An Efficient Grid-Based Solution  

    

In order to retrieve these patterns efficiently, we 

propose a grid-based solution to further improve the 

system per-formance. The main idea is to divide the 

whole space into equally sized grid cells, where the 

endpoints of all paths are mapped to the grid cells. As 

such, the grid index facilitates efficient cache lookups 

[28], [29]. The distance measures can be approximated 

by counting the total number of covered grids. 

Therefore, Eq. (9) is transformed as follows: 

 P T (qs′;t′ , qs;t) = 1 : D(s, t) ≤ Dl)

 g(s) = g(s ), g(t) = g(t0 : otherwise. 

   

where g( ) is the grid cell in which a 

node is located. 

 

 

Algorithm 1 PPatterns Detection. 

 

 

Input: qs;t: a query ; Dl: distance threshold; Dg: grid 

cell size, 

C: a cache. 

Output: All candidate PPatterns P T . 

1. if D(s; t) < Dl then 

2. Return P T = ∅. 

3. end if 

4. Divide the target space by size Dg. 

5. Determine the start grid gs and destination grid 

gt. 

6. Qs ← Logged queries whose paths pass gs. 

7. Qt ← Logged queries whose paths pass gt. 

8. Q = Intersect(Qs; Qt). 

9. P T ← (Sub)paths from Gs to Gt for each query 

in Q. 

10. Return P T . 

 

CACHE-SUPPORTED SHORTEST PATH 

ESTIMA-TION 

 

Based on the PPatterns detected above, we estimate 

the shortest path for a new query using Note that the 

detected PPatterns contribute to at least a part of the 

answer path returned to the users and actually increases 

the cache utilization.  

To detect the estimated shortest path, we propose a 

heuristic algorithm as shown in Algorithm 2. 
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Fig. : Illustration of the four cases in P P C. 

 

 

 

 

Algorithm 2 Shortest Path Estimation. 

 

 

Input: query source node s
′
 and destination node t

′
; 

all candi-date PPatterns P T ; Cache C. 

Output: Estimated shortest path p^∗. 

1: if isEmpty(P T )) then 

2: p^∗ ← Calculate path from server and return. 

3: end if 

4: Initialize Estimated Shortest Distance ESD = ∞. 

 

5: for each path p ∈ P T do 

6: if p is a complete hit then 

7: Return p^∗s′;t′ = p. 

8: end if 

9: s∗ = arg mins∈Vp D(s′; s). 

10: ds = D(s
′
; s∗). 

 

11: Remove s∗ from path node-set Vp. 

12: t∗ = arg mint∈Vp D(t; t′). 

13: dt = D(t∗; t′). 

14: Let dr = |SDP(s
′
; t
′
)|. 

^ . 

15: d = ds + dr + dt 

16:  if d < ESD then 

17:  ESD = d. 

18: Update best PPattern p∗ = ps∗;t∗ . 

19: end if 

20: end for 

21: if s′ is not equal to vs
p∗ then 

22: SDP(s
′
; vs

p∗ ) ←Compute shortest path SDP(s
′
; 

vs
p∗ ). 

23: end if 

24: if t
′
 is not equal to vt

p∗ then 

25: SDP(vt
p∗ ; s

′) ←Compute shortest path 

SDP(vt
p∗ ; t

′
). 

26: end if 

27: Return p^∗ = SDP(s′; vs
p∗ ) ⊙ p∗ ⊙ SDP(vt

p∗ ; t′). 

CACHE MANAGEMENT 

 

In a cache-supported system, it is important to 

efficiently manage the cache contents to accelerate the 

path planning. Therefore, in this section, we first 

discuss the implemen-tation of a grid-based index, 

followed by describing a dy-namic cache update and 

replacement policy 

 
 

CONCLUSION 

 

In this paper, we propose a framework, to be specific, 

Path Planning by Caching (PPC), to answer another 

path planning inquiry with quick reaction by 

proficiently caching and reusing the authentic queried-

paths. Not at all like the customary reserve based path 

planning frameworks, where a queried-path in the store 

is utilized just when it coordinates impeccably with the 

new inquiry, PPC influences the somewhat coordinated 

stored questions to answer part(s) of another inquiry. 

Subsequently, the server just needs to figure the 

unmatched fragments, in this manner essentially 

decreasing the general framework workload. Thorough 

experimentation on a genuine street organize database 

demonstrates that our framework outflanks the cutting 

edge path planning procedures by decreasing 32% of 

the computational dormancy by and large. 
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