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1. INTRODUCTION 

Mostly the tractor driven container lifting 

devices (CLD) are used for lifting up to 4.5 

cubic meter containers for the transportation of 

solid waste. The various components of CLD 

are like hydraulic cylinder, leaf spring, hoisting 

chain, mechanical jack, cross-rod etc. 

Hydraulic cylinders are actuation devices that 

convert the hydraulic energy of pressurized 

fluids into the mechanical energy needed to 

control the movement of machine linkages and 

attachments. Usually, hydraulic cylinder 

manufactures design them considering 

buckling load by using Euler equation and 

safety factor, assuming that the cylinder is 

column under concentric load. The most 

known double acting cylinder is using the 

single rod end. This type of cylinder provides  

 

 

 

 

 

 

 

 

 

 

 

 

power in both directions, with a pressure port at any 

end.  

Many methods are now available for design 

optimization of various mechanical elements but no 

single method gives 100 percent satisfaction. Special 

design are not standardized as the common sizes and 

construction of manufacturing methods is not 

available, that is why if mathematically optimization 

is not possible in actual practice. This is due to the 

accessibility of components in standard sizes and 

constraints due to manufacturing and production 

practices. Some algorithms have been developed to 

handle the different nature of design variables. This 

issue is of the huge importance in solving sensible 

problems of design optimization. During the last few 

years lots of mathematical linear and nonlinear 

programming methods have been developed for 

solving optimization problems. However, no 

particular method has been found to be totally 

capable and strong for all different kinds of 

engineering optimization problems. Some methods 

are used for that as 
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1) penalty-function method,  

2) augmented Lagrangian method, and  

3) conjugate gradient method,  

 

These methods are not always appropriate in solving 

all optimization problem used by a mechanical 

design engineer. Additional methods may apply the 

first and second order with essential conditions to 

search for a local minimum by solving a set of 

nonlinear equations.  

These methods usually search for a solution in the 

region of the starting point. Here the global optimum 

cannot be assured because the outcome will depend 

on the selection of the initial point, if there is more 

than one local optimum in the problem. Moreover 

gradient search becomes complicated and unsteady, 

when the objective function and constraints have 

many sharp peaks. 

2.    OPTIMIZATION TECHNIQUE  - GENETIC  

ALGORITHM 

In the course of the most recent couple of years, 

genetic algorithms (GAs) have been widely utilized 

as a hunt and streamlining devices in different issue 

areas, including the sciences and engineering. The 

principle purposes behind their prosperity are their 

expansive materialness, usability and worldwide 

perspective. 

GAs combine the concept of artificial survival of the 

fittest with genetic operators abstracted from 

nature to form a robust search mechanism. GAs 

differs from traditional optimization algorithms in 

many ways. 

• GAs search from population of points, not a single 

point. 

• GAs work with a coding of the parameter set, not 

the parameters themselves. 

• GAs use objective function information, not 

derivatives, calculus or other auxiliary knowledge. 

• GAs use probabilistic transition rules, not 

deterministic rules. 

    The genetic algorithm differs from a classical, 

derivative-based, optimization algorithm in two 

main ways. This is summarized in the following 

Table 1.  

 

Table 1: Comparison of Classical and Genetic 

Algorithm 

Classical Algorithm Genetic Algorithm 
Generation of single 

point at every iteration. 

The progression of points 

approaches an optimal 

solution. 

Generation of population 

of points at every 

iteration. The best point 

in the population 

approaches an optimal 

solution. 

Selects the next point in 

the progression by a 

deterministic 

computation. 

Selects the next 

population by 

computation which uses 

random number 

generators. 

 

2.1   Outline of Genetic Algorithm 
This section describes fractural analysis of outline of 

genetic algorithm. The following stepwise description 

shows how the genetic algorithm proceeds: 

(1) In the beginning, algorithm creating arbitrary 

initial population. 

(2) Afterwards, algorithm creates a progression of 

novel populations. At every step, the algorithm 

uses the individuals in the recent generation to 

create the next population.  

3.   OPTIMIZATION IN HYDRAULIC 

CYLINDER DESIGN – A CASE STUDY  

 
Monotonicity and dominance were used to find 

general principles for designing hydraulic cylinders 

optimal for a wide class of objective functions and 

stress conditions. The design method, although 

guaranteed to give the optimum design. 

Optimal cylinders should be designed for minimum 

force. Only two designs can be optimal—one with 

maximum pressure and minimum wall thickness; the 

other with maximum stress.  

In the former case, the design is retained if and only if 

the stress is less than allowable. Otherwise, a one-

variable search in a restricted interval is needed. The 

results suggest the potential importance of 

monotonicity and dominance in identifying the 

critical constraints in a design. 

 

(1) Inside diameter, d              x(1)         
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(2) Wall thickness, t                 x(2) 

(3) Material Stress, s 

(4) Force, f 

(5) Oil Pressure, p               x(3)     

(6) Cross-sectional area of hydraulic cylinder, A 

First Optimum design will be with maximum 

pressure and minimum wall thickness, second with 

maximum stress. 

Subject to 

 

( )

( )2 2
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, 5 5000 49050
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There are three physical relations: 

First relates force, pressure and area. 

2

4
f d p
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The second gives the wall stress, 
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Also to find Cross-sectional area of hydraulic 

cylinder: 

Cross-sectional area,  

( )
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3.1 Single Objective Optimization Problem –  

Nonlinear Constrained Minimization 
 

Optimization Toolbox provides widely used 

algorithms for standard and large-scale optimization. 

These algorithms solve constrained and 

unconstrained continuous and discrete problems. The 

toolbox includes functions for linear programming, 

quadratic programming, binary integer programming, 

nonlinear optimization, nonlinear least squares, 

systems of nonlinear equations, and multi-objective 

optimization. We can use them to find optimal 

solutions, perform tradeoff analyses, balance 

multiple design alternatives, and incorporate 

optimization methods into algorithms and models. 

Using MATLAB 2012 following examples were 

created and solved related to optimization and design 

hydraulic cylinder to be used for container lifting 

device. 

Example 1 
app2 --  Minimize the force, f   

 

ObjectiveFunction = @simple_fitness2; 

nvars = 3;    % Number of variables 

LB = [50 7 15.696];   % Lower bound 

UB = [80 16 19.62];  % Upper bound 

ConstraintFunction = @simple_constraint2; 

Options=gaoptimset('generations',[50],'PopulationSi

ze',[25],'PlotFcns',{@gaplotbestf,@gaplotmaxconstr

},'Display','iter'); 

[x,fval] = 

ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,Constra

intFunction,[1 2],options) 

 

simple_constraint2 

function [c, ceq] = simple_constraint2(x) 

c=[0.785*x(1)^2*x(3)-49050;29430-0.785*x(1)^2 

*x(3);80-x(3)*x(1)/(2*x(2));x(3)*x(1)/(2*x(2))-92]; 

ceq = [ ]; 

 

simple_fitness2 

function y = simple_fitness2(x) 

y = 0.785*x(1)^2*x(3); 

 

The iteration table in the command window shows 

how MATLAB searched for the lowest value of 

force function. This table is the same whether to be 

used as Optimization Tool or the command line. 

MATLAB reports the value of three variables (i.e. 

internal diameter (d), cylinder wall thickness (t), 

pressure (p) and minimization of force, (f) as below: 

 

 

 

Output  

         x =   57.0000    7.0000   19.6200 

         fval =   5.0040e+04 



International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan – Feb 2018 

ISSN: 2395-1303                                       http://www.ijetjournal.org                             Page 219 

 
Fig.1 Optimization using MATLAB for the     

function : Minimization of force value (f) 

exerted on piston 

 

Example 2 
app16  –Minimization of cross-sectional area 

 
ObjectiveFunction = @simple_fitness16; 
nvars = 3;    % Number of variables 
LB = [50 7 15.696];   % Lower bound 
UB = [80 16 19.62];  % Upper bound 
ConstraintFunction = @simple_constraint16; 
options = 

gaoptimset('generations',[50],'PopulationS

ize',[25],'PlotFcns',{@gaplotbestf,@gaplot

maxconstr},'Display','iter'); 
[x,fval] = 

ga(ObjectiveFunction,nvars,[],[],[],[],LB,

UB,ConstraintFunction,[1 2],options) 

 

simple_constraint16 
function [c, ceq] = simple_constraint16(x) 
c = [0.785*x(1)^2*x(3)-49050; 

x(3)*x(1)/(2*x(2))-80]; 
ceq = []; 

simple_fitness16 
function y = simple_fitness16(x) 
y = 3.14*((x(1)*x(2)+x(2)^2)); 

 

Again the iteration table in the command window 

shows how MATLAB searched for the lowest value 

of cross-sectional area function. This table is the 

same whether to be used as Optimization Tool or the 

command line. MATLAB reports the value of three 

variables (i.e. internal diameter (d), cylinder wall 

thickness (t), pressure (p) and minimization of cross-

sectional area, (A) as below: 

 

Output 

 x =   50.0000    7.0000   16.0707 

 fval = 1.2529e+03 

 

 

 
Fig.2 Optimization using MATLAB for the function :  

Minimization of Cross-sectional area (A) of 

the Hydraulic Cylinder 

 

4. MULTI OBJECTIVE OPTIMIZATION 

USING GENETIC ALGORITHM  
A multi-objective optimization problem (MOOP) 

tool deals with more than one objective function. 

There are fundamental differences between the 

working principles of single and multi-objective 

optimization algorithms. However, in a single 

objective optimization, the task is to find one 

solution which optimizes the sole objective function.  

The general form of Multi-objective optimization 

problem (MOOP) is stated as follows: 

 

( )

( )
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In many engineering problems we need to find 

solutions in the presence of conflicting objectives. In 

such cases, solutions are chosen such that there are 

reasonable trade-offs among different objectives. In 

certain problems, it may not be obvious that the 

objectives are not conflicting to each other. In such 

combinations of objectives, the resulting Pareto-

optimal set will contain only one optimal solution. 

Pareto optimization is a methodology for solving 

multi criteria decision problems. This methodology 

provides a systematic approach towards design 

problems with multiple conflicting objectives. Pareto 

optimality is the major concept in multiple criteria 

optimization and it is defined as follows: 

A feasible solution to a multi criteria optimization 

problem is Pareto optimal (or non-inferior) if there 

exists no other feasible solution that will yield an 
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improvement in one criterion without causing a 

decrease in at least one other criterion.  

Using Pareto search instead of generating a single 

optimal solution, many solutions are generated that 

satisfy Pareto Optimality Criterion. The set of all 

Pareto optimal solutions form a surface known as a 

Pareto front. The Pareto front helps engineers to 

realize the nature of trade-offs that require to be 

made in order to select superior solutions. Thus 

Pareto optimization techniques usually generate a 

large number of alternatives which the decision 

maker should investigate to arrive at his best 

compromise solution. 

 

4.1 Difference with Single-Objective Optimization 
Besides having multiple objectives there are number 

of primary variances between single objective and 

multi objective optimization, as under:[16] 

4.1.1     Two goals Instead of one[16] 

In a single-objective optimization, there is one goal 

that looks for an optimum solution. In the case of 

multi-modal optimization, the goal is to find a 

number of local and global optimal solutions, instead 

of finding one optimum solution. However, most 

single-objective optimization algorithms aim at 

finding one optimum solution, even when there exist 

a number of optimal solutions.  

However, in multi-objective optimization, there are 

clearly two goals. Progressing towards the Pareto-

optimal front is definitely an important goal. An 

algorithm that finds a closely packed set of solutions 

on the Pareto-optimal front satisfies the first goal of 

convergence to the Pareto-optimal front, but does not 

satisfy maintenance of a diverse set of solutions. 

Since all objectives are important in a multi-

objective optimization, a diverse set of obtained 

solutions close to the Pareto-optimal front provides a 

variety of optimal solutions, trading objectives 

differently. A multi-objective optimization algorithm 

that cannot find a diverse set of solutions in a 

problem is as good as a single-objective optimization 

algorithm. Since both goals are essential, a proficient 

multi-objective optimization algorithm must work on 

fulfilling both of them. Because of these dual tasks, 

multi-objective optimization is more difficult than 

single-objective optimization. 

 

 

4.1.2  Dealing with two search spaces[16] 

Another difficulty is that multi-objective 

optimization involves two search spaces, instead of 

one. In a single-objective optimization, there is only 

one search space – the decision variable space. An 

algorithm works in this space by accepting and 

rejecting solutions based on their objective function 

values. Here in addition to the decision variable 

space, there is also the objective function space. 

When this happens, the proceedings in both spaces 

must be coordinated in such a way that the creation 

of new solutions in the decision variable space is 

complimentary to the diversity needed in the 

objective space. This by no means, is an easy task 

and more importantly is dependent on the mapping 

between the decision variables and objective 

function values.    

4.1.3   No Artificial Fix-Ups[16] 

The most real world optimization problems are 

naturally posed as a multi-objective optimization 

problem. Multi-objective optimization for finding 

multiple Pareto-optimal solutions eliminates all such 

fix-ups and can, in principle, find a set of optimal 

solutions corresponding to different weight and e-

vectors. It is true that a multi-objective optimization 

is, in general more complex than a single-objective 

optimization, but the avoidance of multiple 

simulation runs, no artificial fix-ups, availability of 

efficient population based optimization algorithms, 

and above all, the concept of dominance helps to 

overcome some of the difficulties and give a user the 

practical means to handle multiple objectives, a 

matter which was not possible to achieve in the past. 

 

5.  MULTI – OBJECTIVE OPTIMIZATION 

Definition: Point x
∗
∈ Ω  is a non-inferior solution 

if for some region of x∗  there does not exist a x∆  

such that ( )x x∗
+ ∆ ∈Ω  and  

( ) ( )

( ) ( )

, 1,...., ,

.

i i

j j

F x x F x i m and

F x x F x for at least one j

∗ ∗

∗ ∗

+ ∆ ≤ =

+ ∆ <
 

In the two-dimensional representation of Figure 4 the 

set of non-inferior solutions lies on the curve 

between C and D. Points A and B represent specific 

non inferior points. 
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Fig.4  Set of Non inferior Solutions 

A and B are clearly non inferior solution points 

because an improvement in one objective, F1, 

requires a degradation in the other objective, F2, i.e. ,

1 1 2 2, .B A B AF F F F< >  

Since any point in Ω  that is an inferior point in 

which enhancement can be attained in all the 

objectives, it is clear that such a point is of no value. 

Multi-objective optimization is, therefore, concerned 

with the generation and selection of non-inferior 

solution points. 

Non inferior solutions are also called Pareto optima. 

A general goal in multi-objective optimization is 

constructing the Pareto optima. [30] 

Following three examples are related to multi-

objective optimization of same hydraulic cylinder 

using MATLAB 2012. 

 

Example 3 
app9 -- Multi objective Optimization, Pareto 

Optimization, Minimization the stress, s & 

Maximization of force, f linked with  mymulti4.m.     

[d = x(1), t = x(2) and p = x(3)] 
App9 

options = 

gaoptimset('PopulationSize',60,... 
'ParetoFraction',0.7,'PlotFcns',@gaplotpar

eto); 
[xfval flag output population] = 

gamultiobj(@mymulti4,3,... 
[],[],[],[],[55,7,15.696],[70,15,19.62],op

tions) 

mymulti4.m 
function f = mymulti4(x) 
f(1) = -x(3)*x(1)/(2.0*x(2)); 
f(2) = 0.785*x(1)^2*x(3); 

Table 2: Value of each variable Internal diameter (d), 

Thickness of Cylinder (t) and Internal 

Pressure (p) after each iteration 

Sr. 

No. 

Internal 

Diameter, d, 

x(1) in mm 

Thickness of 

Cylinder, t, 

x(2) in mm 

Internal 

Pressure, p,  

x(3) in N/mm2 

1 55.0000 7.0000 15.6960 

2 55.0000 7.0000 15.6960 

3 67.9488 7.0004 19.6177 

4 66.0879 7.0006 19.6142 

5 62.1038 7.0008 19.6095 

6 55.0697 7.0001 18.7284 

7 55.0000 7.0000 15.6960 

8 61.5011 7.0044 19.5724 

9 63.2799 7.0007 19.4776 

10 55.1592 7.0002 19.3134 

11 60.1210 7.0009 19.2270 

12 55.2045 7.0004 17.5064 

13 61.5487 7.0005 19.3465 

14 62.6038 7.0008 19.6095 

15 63.6634 7.0008 19.5930 

16 66.7628 7.0882 19.6077 

17 67.3658 7.0007 19.6087 

18 67.9488 7.0629 19.6177 

19 55.3786 7.0004 18.9923 

20 63.1262 7.0008 19.3906 

21 65.5459 7.0007 19.5991 

22 64.5898 7.0014 19.5215 

23 68.4488 7.0629 19.6177 

24 55.2372 7.0003 16.9682 

25 57.5214 7.0014 19.0636 

26 56.3554 7.0000 18.9304 

27 57.2708 7.0014 18.9802 

28 61.4504 7.0005 19.2710 

29 65.9134 7.0005 19.4305 

30 60.0506 7.0007 19.2578 

31 57.0909 7.0000 19.2807 

32 55.4016 7.0001 17.8215 

33 55.6155 7.0005 19.5148 

34 58.6515 7.0005 19.2076 

35 66.6374 7.0005 19.6171 

36 55.2858 7.0005 18.7972 

Sr. Internal Thickness of Internal 
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No. Diameter, d, 

x(1) in mm 

Cylinder, t, 

x(2) in mm 

Pressure, p,  

x(3) in N/mm2 

37 59.1644 7.0004 19.4069 

38 61.2350 7.0006 19.5046 

39 55.0697 7.0001 18.2284 

40 55.4872 7.0003 16.4682 

41 59.3659 7.0006 18.6440 

42 63.8413 7.0005 19.4967 

43 57.2254 7.0003 18.0292 

44 61.6910 7.0002 19.6070 

45 60.0506 7.0007 19.2578 

46 60.6888 7.0006 19.3176 

47 57.5941 7.0009 19.4783 

48 55.1072 7.0002 18.4943 

49 66.8232 7.0563 19.5605 

50 61.4631 7.0019 19.1307 

51 57.3776 7.0009 19.5002 

52 66.8318 7.0054 19.4653 

53 55.0000 7.0000 15.6960 

54 65.1528 7.0007 19.4174 

55 62.9997 7.0002 19.1572 

56 56.0235 7.0003 19.1430 

57 64.8733 7.0005 19.5825 

58 55.0697 7.0626 18.2284 

59 58.6515 7.0005 19.4576 

60 67.6158 7.0007 19.6087 

 

 
Fig.5 : Pareto optimization using Genetic Algorithm 

plot of Stress generated(N/mm2) v/s Force on Piston 

(N) 

Example 4 

app6 --  Multiobjective Optimization, Pareto 

Optimization, Minimization of the force, f & 

Maximization of thickness, t linked with  

mymulti1.m.     [d = x(1), s = x(2) and p = x(3)] 

App6 
options = 

gaoptimset('PopulationSize',60,... 
'ParetoFraction',0.7,'PlotFcns',@gaplotpar

eto); 
[xfval flag output population] = 

gamultiobj(@mymulti1,3,... 
                  

[],[],[],[],[55,80,15],[80,92,19.62],optio

ns) 

mymulti1.m 
function f = mymulti1(x) 
f(1) = -0.785*x(1)^2*x(3); 
f(2) = x(3)*x(1)/(2.0*x(2)); 

 
Table 3 : Value of each variable Internal diameter (d), 

Stress of Cylinder (s) and Internal Pressure 

(p) after each iteration 

 

Sr. 

No. 

Internal 

Diameter, d, 

x(1) in mm 

Stress of 

Cylinder, s, x(2) 

in N/mm2 

Internal 

Pressure, 

p,  x(3) in 

N/mm2 

1 55.0078 91.6168 15.0018 

2 79.9919 91.7703 19.6176 

3 79.9919 91.7547 19.6176 

4 79.2017 91.7932 16.5609 

5 55.0078 91.6480 15.0018 

6 55.0078 91.6793 15.0018 

7 79.9694 91.8333 19.3448 

8 79.8608 91.7727 15.8229 

9 66.3763 91.7202 15.1005 

10 76.0792 91.7928 15.0875 

11 79.4116 91.7394 17.0860 

12 79.8643 91.8274 19.0110 

13 63.2734 91.7015 15.0096 

14 79.8288 91.7790 17.8853 

15 65.0628 91.7493 15.2036 

16 64.9417 91.6681 15.0416 

17 77.6260 91.7956 15.2363 

18 67.0868 91.7160 15.3411 

Sr. 

No. 

Internal 

Diameter, d, 

Stress of 

Cylinder, s, x(2) 

Internal 

Pressure, 
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x(1) in mm in N/mm2 p,  x(3) in 

N/mm2 

19 70.5506 91.6568 15.0636 

20 75.3182 91.7606 15.3205 

21 67.3269 91.7229 15.0905 

22 79.3568 91.7997 16.7358 

23 79.6428 91.7405 18.5703 

24 79.9240 91.8879 17.5826 

25 79.9256 91.8502 18.3170 

26 77.3328 91.8284 15.1115 

27 72.7814 91.7847 15.0560 

28 79.8332 91.8116 18.7950 

29 59.9086 91.7026 15.4638 

30 56.6810 91.7107 15.0201 

31 69.1143 91.7195 15.1666 

32 59.2841 91.8107 15.5315 

33 79.7091 91.7845 16.0754 

34 79.8247 91.7922 17.2598 

35 65.0814 91.7806 15.2036 

36 79.6472 91.7693 16.2253 

37 57.2698 91.7542 15.1802 

38 79.6972 91.7660 18.5507 

39 61.4632 91.7095 15.1355 

40 62.8751 91.6910 15.1317 

41 55.0078 91.6793 15.0018 

42 57.5984 91.7088 15.0473 

43 78.8803 91.7897 15.8159 

44 68.5697 91.7179 15.2937 

45 79.1919 91.7576 17.0069 

46 59.2251 91.6635 15.1759 

47 78.6092 91.7721 17.4948 

48 73.1853 91.7286 15.5022 

49 76.8068 91.7216 15.4737 

50 75.4550 91.8006 15.3853 

51 68.5267 91.7862 15.0148 

52 78.1924 91.7886 15.5452 

53 79.9295 91.7737 19.3981 

54 72.4331 91.7462 15.4561 

55 79.7663 91.7790 17.8853 

56 70.4219 91.7718 15.4908 

57 79.9240 91.8254 17.5826 

58 63.2734 91.6390 15.0643 

59 55.0586 91.7418 15.0018 

60 79.5994 91.7578 15.6826 

 

 
 

Fig.6 :  Pareto optimization using Genetic Algorithm 

plot of Force  (N) v/s  Thickness of Cylinder (mm) 

 

Example 5 
app17 -- Multiobjective Optimization, Pareto 

Optimization, Minimization the force, f & 

Maximization of  cross-sectional area, A  linked with  

mymulti17.m.    [d = x(1), t = x(2) and p = x(3)] 
options = 

gaoptimset('PopulationSize',60,... 
'ParetoFraction',0.7,'PlotFcns',@gaplotpar

eto); 
[xfval flag output population] = 

gamultiobj(@mymulti17,3,... 
                          

[],[],[],[],[55,07,15.696],[70,16,19.62],o

ptions) 

mymulti17.m 
function f = mymulti17(x) 
f(1) = -0.785*x(1)^2*x(3); 
f(2) = 3.14*((x(1)*x(2)+x(2)^2)); 

 

 

 

 

 

 

 

 
Table 4 : Value of each variable Internal diameter (d), 

Thickness of Cylinder (t) and Internal 

Pressure (p) after each iteration 
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Sr. 

No. 

Internal 

Diameter, d, 

x(1) in mm 

Thickness of 

Cylinder, t, x(2) 

in mm 

Internal 

Pressure, 

p,  x(3) in 

N/mm2 

1 55.0000 7.0000 16.0085 

2 69.9987 7.0283 19.6200 

3 69.9987 7.0127 19.6200 

4 57.6986 7.0018 19.5913 

5 55.0031 7.0002 18.8725 

6 63.5562 7.0312 19.5854 

7 55.0000 7.0000 17.5416 

8 55.0000 7.0000 16.0085 

9 55.0000 7.0000 16.0241 

10 55.0000 7.0000 16.9024 

11 55.0031 7.0012 18.8725 

12 56.7591 7.0100 19.6194 

13 69.2413 7.0112 19.6099 

14 68.5541 7.0106 19.5913 

15 56.3311 7.0160 19.5552 

16 55.0000 7.0000 16.3537 

17 69.9987 7.0225 19.6200 

18 61.9767 7.0049 19.6109 

19 69.9987 7.0127 19.6200 

20 66.5631 7.0163 19.6021 

21 59.7798 7.0104 19.6011 

22 55.0012 7.0001 18.3711 

23 62.3718 7.0077 19.4629 

24 63.9051 7.0162 19.6023 

25 67.5167 7.0110 19.4657 

26 60.9584 7.0099 19.3632 

27 55.0000 7.0000 17.0923 

28 67.5035 7.0199 19.6129 

29 68.0485 7.0104 19.6050 

30 58.8005 7.0098 19.2952 

31 55.4372 7.0396 19.2665 

32 65.5574 7.0109 19.6028 

33 55.9352 7.0152 19.5074 

34 55.3623 7.0012 18.9455 

Sr. 

No. 

Internal 

Diameter, d, 

x(1) in mm 

Thickness of 

Cylinder, t, x(2) 

in mm 

Internal 

Pressure, 

p,  x(3) in 

N/mm2 

35 63.8330 7.0108 19.3648 

36 69.6822 7.0121 19.6186 

37 64.9928 7.0043 19.5858 

38 65.8195 7.0137 19.6042 

39 60.3892 7.0092 19.5858 

40 59.5785 7.0034 19.2825 

41 61.5670 7.0146 19.6042 

42 57.3518 7.0055 19.4248 

43 65.6511 7.1359 19.6028 

44 55.1262 7.0001 18.3711 

45 59.4147 7.0100 19.4629 

46 58.3674 7.0041 19.2737 

47 55.2397 7.0133 19.3382 

48 62.2097 7.0236 19.4095 

49 63.2301 7.0185 19.6084 

50 60.8089 7.0126 19.6011 

51 57.7745 7.0087 19.3398 

52 59.3529 7.0099 19.3541 

53 68.9767 7.0144 19.5854 

54 56.8451 7.0144 19.5399 

55 67.1126 7.0062 19.5764 

56 67.1009 7.0032 19.5319 

57 55.7167 7.0280 19.4999 

58 62.8502 7.0158 19.6097 

59 57.6018 7.0055 19.4248 

60 66.5631 7.0163 19.3521 
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Fig.7 :  Pareto optimization using Genetic Algorithm  

plot of Force  (N) v/s  Cross-sectional area 

of Cylinder  (mm2) 

 

6. Conclusion 

For the single objective optimization problem 

(minimizing the force/cross-sectional area/thickness 

of cylinder), the objective function is monotonic 

with respect to its variable only (i.e. inside diameter, 

d). In this case since the constraints pressure (p) and 

thickness (t) are active. Multi-objective optimization 

problem results in a number of optimal solutions, 

known as Pareto-optimal solutions. Pareto 

optimization is a methodology for solving multi 

criteria decision problems. This methodology 

provides a systematic approach towards design 

problems with multiple conflicting objectives. In 

Pareto optimal design situations, the designer has 

more than one performance measure of interest. An 

optimal solution is generally defined as the best 

solution. However, with multi criteria problems, the 

"best" is often dependent upon a designer's 

preferences. The Pareto optimization methodology 

usually generates a large number of alternatives 

which the designer evaluates in order to arrive at his 

best solution often termed the best compromise 

solution. The Pareto-optimal curves can be thought 

of as providing a boundary of efficient solutions. If a 

design is not on the boundary, the curve shows how 

much of one objective can be improved without 

hurting others. 
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