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I. INTRODUCTION 

This paper presents an investigation of 

particle swarm optimization algorithm inspired by 

the flocking and schooling patterns of birds and 

fish, Particle Swarm Optimization (PSO) was 

invented by Russell Eberhart and James Kennedy in 

1995. Originally, these two started out developing 

computer software simulations of birds flocking 

around food sources, and then later realized how 

well their algorithms worked on optimization 

problems. 

Particle Swarm Optimization might sound 

complicated, but it's really a very simple algorithm. 

Over a number of iterations, a group of variables 

have their values adjusted closer to the member 

whose value is closest to the target at any given 

moment. Imagine a flock of birds circling over an 

area where they can smell a hidden source of food. 

The one who is closest to the food chirps the 

loudest and the other birds swing around in his 

direction. If any of the other circling birds comes 

closer to the target than the first, it chirps louder 

and the others veer over toward him.  

 

 

This tightening pattern continues until one 

of the birds happens upon the food. It's an algorithm 

that's simple and easy to implement. 

The algorithm keeps track of three global 

variables. Target value or condition, global best 

(gBest) value indicating which particle's data is 

currently closest to the target, Stopping value 

indicating when the algorithm should stop if the 

target isn't found 

Each particle consists of: Data representing 

a possible solution, a Velocity value indicating how 

much the Data can be changed, a personal best 

(pBest) value indicating the closest the particle's 

Data has ever come to the Target. 

The particle’s data could be anything. In the 

flocking bird’s example above, the data would be 

the X, Y, Z coordinates of each bird. The individual 

coordinates of each bird would try to move closer to 

the coordinates of the bird which is closer to the 

food's coordinates (gBest). If the data is a pattern or 

sequence, then individual pieces of the data would 

be manipulated until the pattern matches the target 

pattern. 
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The velocity value is calculated according to 

how far an individual's data is from the target. The 

further it is, the larger the velocity value. In the 

bird’s example, the individuals furthest from the 

food would make an effort to keep up with the 

others by flying faster toward the gBest bird. If the 

data is a pattern or sequence, the velocity would 

describe how different the pattern is from the target, 

and thus, how much it needs to be changed to match 

the target. 

Each particle's pBest value only indicates 

the closest the data has ever come to the target since 

the algorithm started. 

The gBest value only changes when any 

particle's pBest value comes closer to the target 

than gBest. Through each iteration of the algorithm, 

gBest gradually moves closer and closer to the 

target until one of the particles reaches the target. 

It's also common to see PSO algorithms 

using population topologies, or "neighbourhoods", 

which can be smaller, localized subsets of the 

global best value. These neighbourhoods can 

involve two or more particles which are 

predetermined to act together, or subsets of the 

search space that particles happen into during 

testing. The use of neighbourhoods often helps the 

algorithm to avoid getting stuck in local minima. 

II.     LITERATURE SURVEY 

Kennedy and R. Eberhart, Particle swarm 

optimization, Proceedings IEEE International 

Conference on Neural Networks (ICNN ’95), Perth, 

WA, Australia, November–December (1995), Vol. 

4, pp. 1942–1948. Particle Swarm Optimization 

(PSO) was first proposed in 1995.28 It was 

originated in social modelling, being one of its 

fathers, James Kennedy, a social psychologist. The 

first PSO algorithm was closely related to the 

graphic animation of flocks. 

F. Heppner and U. Grenander, A stochastic 

nonlinear model for coordinated bird flocks, The 

Ubiquity of Chaos, edited by E. Krasner, AAAS 

Publications (1990), pp. 233–238. 0 With time, 

PSO has been further developed, modified, and 

successfully applied for optimization in many 

engineering problems and technological fields. 

Although the PSO algorithm seems very simple to 

implement, one of the most interesting questions 

from the beginning was understanding its 

convergence properties and avoiding its numerical 

instabilities. 

B.Brandstätter and U.Baumgartner, Particle 

swarm optimization—Mass-spring system 

analogon. IEEE Transactions on Magnetics 38, 997 

(2002). All these modifications tried to improve the 

PSO performance; one of the most important 

achievements was the stochastic stability analysis 

of the PSO trajectories and the use of physical 

models to understand the PSO swarm dynamics. 

Both approaches served to dramatically improve the 

knowledge about how PSO works. In conclusion, 

nowadays PSO should be considered as a stochastic 

algorithm with a well established theoretical 

background. Thus, PSO should not be considered a 

heuristic algorithm anymore. 

 A. Banks, J. Vincent, and C. Anyakoha, A 

review of particle swarm optimization. part I: 

background and development. Natural Computing 

6, 467 (2007). Natural and biologically inspired  

relates to the algorithms that are based on certain 

natural phenomena, arising from the connection 

between biology, computer science, artificial 

intelligence and applied mathematics. In the field of 

optimization, these algorithms try to provide a 

solution to the difficulties that appear in certain 

technological problems, such as ill-posed inverse 

problems with noisy data, non-convex and non 

differentiable optimization, etc. that cannot be 

easily tackled by traditional optimization methods. 

Colorni, M. Dorigo, and V. Maniezzo, 

Distributed optimization by ant colonies, European 

Conference on Artificial Life (1991), pp. 134–142. 

A subgroup of bio-inspired algorithms is the 

evolutionary algorithms. These are based on 

populations that evolve with time and have a 

stochastic component aimed at escaping from 

entrapment in local optima. Examples of such 

algorithms are Genetic Algorithms, Differential 

Evolution, Ant Colony System and Particle Swarm 

Optimization. 

J. L. Fernandez Martinez, Z. Fernández-

Muñiz, and M. J. Tompkins, on the topography of 

the cost functional in linear and nonlinear inverse 
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problems. Geophysics 77, W1 (2012). Ant Colony 

System and Particle Swarm Optimization are in 

case of nonlinear inverse problems these algorithm 

lie in flat elongated valleys of the cost function 

topography. In this case, these algorithms can be 

used to explore the cost functions, if the fitness of 

the members of the population is fast to manage. In 

any case, it is a best universal algorithm over all the 

possible problems. 

 A. Carlisle and G. Dozier, An off-the-shelf 

PSO, Proceedings of the Particle Swarm 

Optimization Workshop, Indianapolis, April (2001), 

pp. 1–6. The behaviour of PSO was analyzed by 

doing numerical experiments. As noticed before, in 

the initial PSO version without the inertia weight, 

the particles were stable if the mean total 

acceleration was chosen in less range and 

trajectories were oscillatory. Mean trajectories of 

the particles were unstable for the values expect this 

interval. Therefore the initial PSO modifications 

were focused at maintaining the particles inside the 

search space, providing swarm stability and 

convergence for different benchmark functions, we 

can expect that these results are applicable to the 

real life problems. 

A. ADVANTAGES 

 

1. Insensitive to scaling of design variables.  

2. Simple implementation. 

3. Easily parallelized for concurrent processing. 

4. Derivative free. 

5. Very few algorithm parameters.  

6. Very efficient global search algorithm.  

 
   B.DISADNANTAGES 

1. Slow convergence in refined search stage (weak 

local search ability) 
 

     C.PSO APPLICATIONS 

1. Training of neural networks  

2. Identification of Parkinson’s disease 

3. Extraction of rules from fuzzy networks  

4. Image recognition  

5. Optimization of electric power distribution 

networks 

6. Structural optimization  

7. Optimal shape and sizing design 

 8. Topology optimization 

 9. Process biochemistry 

 10. System identification in biomechanics. 

III. ALGORITHM FLOW CHART FOR  PSO 

 

 
 

Figure 1.Flow diagram illustrating the particle 

swarm optimization algorithm. 

IV.PSEUDO CODE OF FLOWCHART 

For each particle 

{ 

    Initialize particle 

} 

 

Do until maximum iterations or minimum error 

criteria 

{ 

    For each particle 

    { 

        Calculate Data fitness value 

        If the fitness value is better than pBest 

        { 

            Set pBest = current fitness value 

        } 
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        If pBest is better than gBest 

        { 

            Set gBest = pBest 

        } 

 } 

 

For each particle 

    { 

        Calculate particle Velocity 

        Use gBest and Velocity to update particle Data 

    } 

 

I. MAIN CODE OF THE PSO 

EXAMPLE 

 

% -----------------------------------Start 

clc; 

clear all; 

close all; 

 

%% initialization 

 

swarm_size = 64;                       % number of the 

swarm particles 

maxIter = 50;                              % maximum 

number of iterations 

inertia = 1.0; 

correction_factor = 2.0; 

 

% set the position of the initial swarm 

 

a = 1:8; 

[X,Y] = meshgrid(a,a); 

C = cat(2,X',Y'); 

D = reshape(C,[],2); 

swarm(1:swarm_size,1,1:2) = D;          % set the 

position of the particles in 2D 

swarm(:,2,:) = 0;                             % set initial 

velocity for particles 

swarm(:,4,1) = 1000;                        % set the 

best value so far 

plotObjFcn = 1;        % set to zero if you do not 

need a final plot 

 

%% define the objective funcion here (vectorized 

form) 

 

objfcn=  @(x)(x(:,1) - 20).^2 + (x(:,2) - 25).^2; 

tic; 

%% The main loop of PSO 

for iter = 1:maxIter 

    swarm(:, 1, 1) = swarm(:, 1, 1) + swarm(:, 2, 

1)/1.3;       %update x position with the velocity 

    swarm(:, 1, 2) = swarm(:, 1, 2) + swarm(:, 2, 

2)/1.3;       %update y position with the velocity 

    x = swarm(:, 1, 1);                                        

            % get the updated position 

    y = swarm(:, 1, 2);                                         % 

updated position 

fval = objfcn([x y]);                                       % 

evaluate the function using the …..  

                                   

% position  of the particle 

 

    % compare the function values to find the best 

ones 

    for ii = 1:swarm_size 

        if fval(ii,1) < swarm(ii,4,1) 

swarm(ii, 3, 1) = swarm(ii, 1, 1);                  % 

update best x position, 

swarm(ii, 3, 2) = swarm(ii, 1, 2);                  % 

update best y postions 

swarm(ii, 4, 1) = fval(ii,1);                            % 

update the best value so far 

        end 

    end 

 

    [~, gbest] = min(swarm(:, 4, 1));                           

% find the best function value in total 

 

    % update the velocity of the particles 

    swarm(:, 2, 1) = 

inertia*(rand(swarm_size,1).*swarm(:, 2, 1)) + 

correction_factor*(rand(swarm_size,1).*(swarm(:, 

3, 1) ... 

        - swarm(:, 1, 1))) + 

correction_factor*(rand(swarm_size,1).*(swarm(g

best, 3, 1) - swarm(:, 1, 1)));     %x velocity 

component 

 

    swarm(:, 2, 2) = 

inertia*(rand(swarm_size,1).*swarm(:, 2, 2)) + 

correction_factor*(rand(swarm_size,1).*(swarm(:, 

3, 2) ... 

        - swarm(:, 1, 2))) + 

correction_factor*(rand(swarm_size,1).*(swarm(g
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best, 3, 2) - swarm(:, 1, 2)));    %y velocity 

component 

 

    % plot the particles 

clf;plot(swarm(:, 1, 1), swarm(:, 1, 2), 'bx');             

% drawing swarm movements 

axis([-2 40 -2 40]); 

pause(.1);                                                 

    % un-comment this line to… 

      

 % decrease the animation speed 

disp(['iteration: ' num2str(iter)]); 

end 

toc 

%% plot the function 

if plotObjFcn 

ub = 40; 

    lb = 0; 

npoints = 1000; 

    x = (ub-lb) .* rand(npoints,2) + lb; 

    for ii = 1:npoints 

        f = objfcn([x(ii,1) x(ii,2)]); 

        plot3(x(ii,1),x(ii,2),f,'.r');hold on 

    end 

 

% -----------------------------------END 

 
 

V.RESULTS 

 

 

Fig2:2D view of the output (At starting point) 

 

 

 

Fig3:2D view of the output 

 

 

Fig4:2D view of the output (close to the 

destination) 

 

 

Fig5:3D view of the output 
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In the particle swarm algorithm, the 

trajectory of each individual in the search space is 

adjusted by dynamically altering the velocity of 

each particle, according to its own moving 

experience and the moving experience of the other 

particles in the search space. The position vector 

and the velocity vector of the ith particle in the d-

dimensional search space can be represented as Xi 

= (xi1,xi2,xi3,...,xid) and Vi = (vi1,vi2,vi3,...,vid) 

respectively. According to a user defined fitness 

function, let us say the best position of each particle 

(which corresponds to the best fitness value 

obtained by that particle at time t) is Pi = 

(Pi1,Pi2,Pi3,...,Pid), and the fittest particle found so 

far at time t is Pg=(Pg1,Pg2,Pg3,...,Pgd). Then, the new 

velocities and the positions of the particles for the 

next fitness evaluation are calculated using the 

following two equations: 

 

Vi  (t+1) = w *Vi (t) + C 1 ( Pi (t)  – Xi (t) ) + C2 ( g(t)  

–  Xi (t) ) 

 

Xi (t+1) = Xi (t) + Vi (t) 

 

 Now the standard PSO is as follows, the 

equations for  updating the  new  velocities and the 

positions of the partiicles for every next fitness 

value, Pbest values, Gbest values and inertia term 

are as follows; 

 

Vij (t+1) = w * Vij (t) + r1 * c1 (Pij (t)  - Xij (t) ) + r2 

* c2 (gi(t) – xij (t)) 

 

Xij (t+1) = Xij (t) + Vij (t +1) 

 

 

VI.CONCLUSION 

In this work, an algorithm for particle swarm 

optimization (PSO) is discussed. Also, its codes in 

MATLAB environment are included. The 

effectiveness of the algorithm was analyzed with 

the help of an example of variable optimization 

problem. Also, the convergence characteristic of the 

algorithm was discussed successfully. 
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