
International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan – Feb 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 144

An Investigation on Basic Concepts of Particle Swarm

Optimization algorithm for VLSI Design
Rajeswari.P 1, Afsana R Chadachana 2, Dr.Theodore Chandra S3

1(Dayananda Sagar College of Engineering, Bangalore, and)

2(PG student, Dayananda Sagar College of Engineering, Bangalore)
3 (Dept of ECE, Dayananda Sagar University, Bangalore)

I. INTRODUCTION

This paper presents an investigation of

particle swarm optimization algorithm inspired by

the flocking and schooling patterns of birds and

fish, Particle Swarm Optimization (PSO) was

invented by Russell Eberhart and James Kennedy in

1995. Originally, these two started out developing

computer software simulations of birds flocking

around food sources, and then later realized how

well their algorithms worked on optimization

problems.

Particle Swarm Optimization might sound

complicated, but it's really a very simple algorithm.

Over a number of iterations, a group of variables

have their values adjusted closer to the member

whose value is closest to the target at any given

moment. Imagine a flock of birds circling over an

area where they can smell a hidden source of food.

The one who is closest to the food chirps the

loudest and the other birds swing around in his

direction. If any of the other circling birds comes

closer to the target than the first, it chirps louder

and the others veer over toward him.

This tightening pattern continues until one

of the birds happens upon the food. It's an algorithm

that's simple and easy to implement.

The algorithm keeps track of three global

variables. Target value or condition, global best

(gBest) value indicating which particle's data is

currently closest to the target, Stopping value

indicating when the algorithm should stop if the

target isn't found

Each particle consists of: Data representing

a possible solution, a Velocity value indicating how

much the Data can be changed, a personal best

(pBest) value indicating the closest the particle's

Data has ever come to the Target.

The particle’s data could be anything. In the

flocking bird’s example above, the data would be

the X, Y, Z coordinates of each bird. The individual

coordinates of each bird would try to move closer to

the coordinates of the bird which is closer to the

food's coordinates (gBest). If the data is a pattern or

sequence, then individual pieces of the data would

be manipulated until the pattern matches the target

pattern.

RESEARCH ARTICLE OPEN ACCESS

Abstract:
 Particle Swarm Optimization algorithm is an evolutionary algorithm that has been applied to many different

engineering and technological problems with considerable success. Since its first publication is in 1995, it has been

continually modified trying to improve its convergence properties. Thus, many variants have been proposed in the

literature. Some of these variants were related to a particular problem and had little application outside the field where

they have been proposed. These PSO variants have been used to solve a wide range of optimization and inverse problems:

continuous, discrete, dynamical, multioptimal, and combinatorial, with and without additional constraints. This paper

insisting the importance of the stochastic stability analysis of the particle trajectories in order to achieve convergence and

an algorithm for classical particle swarm optimization (PSO) is discussed. Also, it codes in MATLAB environment is

included.

Keywords — particle swarm optimization (PSO), MATLAB.

International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan – Feb 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 145

The velocity value is calculated according to

how far an individual's data is from the target. The

further it is, the larger the velocity value. In the

bird’s example, the individuals furthest from the

food would make an effort to keep up with the

others by flying faster toward the gBest bird. If the

data is a pattern or sequence, the velocity would

describe how different the pattern is from the target,

and thus, how much it needs to be changed to match

the target.

Each particle's pBest value only indicates

the closest the data has ever come to the target since

the algorithm started.

The gBest value only changes when any

particle's pBest value comes closer to the target

than gBest. Through each iteration of the algorithm,

gBest gradually moves closer and closer to the

target until one of the particles reaches the target.

It's also common to see PSO algorithms

using population topologies, or "neighbourhoods",

which can be smaller, localized subsets of the

global best value. These neighbourhoods can

involve two or more particles which are

predetermined to act together, or subsets of the

search space that particles happen into during

testing. The use of neighbourhoods often helps the

algorithm to avoid getting stuck in local minima.

II. LITERATURE SURVEY

Kennedy and R. Eberhart, Particle swarm

optimization, Proceedings IEEE International

Conference on Neural Networks (ICNN ’95), Perth,

WA, Australia, November–December (1995), Vol.

4, pp. 1942–1948. Particle Swarm Optimization

(PSO) was first proposed in 1995.28 It was

originated in social modelling, being one of its

fathers, James Kennedy, a social psychologist. The

first PSO algorithm was closely related to the

graphic animation of flocks.

F. Heppner and U. Grenander, A stochastic

nonlinear model for coordinated bird flocks, The

Ubiquity of Chaos, edited by E. Krasner, AAAS

Publications (1990), pp. 233–238. 0 With time,

PSO has been further developed, modified, and

successfully applied for optimization in many

engineering problems and technological fields.

Although the PSO algorithm seems very simple to

implement, one of the most interesting questions

from the beginning was understanding its

convergence properties and avoiding its numerical

instabilities.

B.Brandstätter and U.Baumgartner, Particle

swarm optimization—Mass-spring system

analogon. IEEE Transactions on Magnetics 38, 997

(2002). All these modifications tried to improve the

PSO performance; one of the most important

achievements was the stochastic stability analysis

of the PSO trajectories and the use of physical

models to understand the PSO swarm dynamics.

Both approaches served to dramatically improve the

knowledge about how PSO works. In conclusion,

nowadays PSO should be considered as a stochastic

algorithm with a well established theoretical

background. Thus, PSO should not be considered a

heuristic algorithm anymore.

 A. Banks, J. Vincent, and C. Anyakoha, A

review of particle swarm optimization. part I:

background and development. Natural Computing

6, 467 (2007). Natural and biologically inspired

relates to the algorithms that are based on certain

natural phenomena, arising from the connection

between biology, computer science, artificial

intelligence and applied mathematics. In the field of

optimization, these algorithms try to provide a

solution to the difficulties that appear in certain

technological problems, such as ill-posed inverse

problems with noisy data, non-convex and non

differentiable optimization, etc. that cannot be

easily tackled by traditional optimization methods.

Colorni, M. Dorigo, and V. Maniezzo,

Distributed optimization by ant colonies, European

Conference on Artificial Life (1991), pp. 134–142.

A subgroup of bio-inspired algorithms is the

evolutionary algorithms. These are based on

populations that evolve with time and have a

stochastic component aimed at escaping from

entrapment in local optima. Examples of such

algorithms are Genetic Algorithms, Differential

Evolution, Ant Colony System and Particle Swarm

Optimization.

J. L. Fernandez Martinez, Z. Fernández-

Muñiz, and M. J. Tompkins, on the topography of

the cost functional in linear and nonlinear inverse

International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan – Feb 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 146

problems. Geophysics 77, W1 (2012). Ant Colony

System and Particle Swarm Optimization are in

case of nonlinear inverse problems these algorithm

lie in flat elongated valleys of the cost function

topography. In this case, these algorithms can be

used to explore the cost functions, if the fitness of

the members of the population is fast to manage. In

any case, it is a best universal algorithm over all the

possible problems.

 A. Carlisle and G. Dozier, An off-the-shelf

PSO, Proceedings of the Particle Swarm

Optimization Workshop, Indianapolis, April (2001),

pp. 1–6. The behaviour of PSO was analyzed by

doing numerical experiments. As noticed before, in

the initial PSO version without the inertia weight,

the particles were stable if the mean total

acceleration was chosen in less range and

trajectories were oscillatory. Mean trajectories of

the particles were unstable for the values expect this

interval. Therefore the initial PSO modifications

were focused at maintaining the particles inside the

search space, providing swarm stability and

convergence for different benchmark functions, we

can expect that these results are applicable to the

real life problems.

A. ADVANTAGES

1. Insensitive to scaling of design variables.

2. Simple implementation.

3. Easily parallelized for concurrent processing.

4. Derivative free.

5. Very few algorithm parameters.

6. Very efficient global search algorithm.

 B.DISADNANTAGES

1. Slow convergence in refined search stage (weak

local search ability)

 C.PSO APPLICATIONS

1. Training of neural networks

2. Identification of Parkinson’s disease

3. Extraction of rules from fuzzy networks

4. Image recognition

5. Optimization of electric power distribution

networks

6. Structural optimization

7. Optimal shape and sizing design

 8. Topology optimization

 9. Process biochemistry

 10. System identification in biomechanics.

III. ALGORITHM FLOW CHART FOR PSO

Figure 1.Flow diagram illustrating the particle

swarm optimization algorithm.

IV.PSEUDO CODE OF FLOWCHART

For each particle

{

 Initialize particle

}

Do until maximum iterations or minimum error

criteria

{

 For each particle

 {

 Calculate Data fitness value

 If the fitness value is better than pBest

 {

 Set pBest = current fitness value

 }

International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan – Feb 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 147

 If pBest is better than gBest

 {

 Set gBest = pBest

 }

 }

For each particle

 {

 Calculate particle Velocity

 Use gBest and Velocity to update particle Data

 }

I. MAIN CODE OF THE PSO

EXAMPLE

% -----------------------------------Start

clc;

clear all;

close all;

%% initialization

swarm_size = 64; % number of the

swarm particles

maxIter = 50; % maximum

number of iterations

inertia = 1.0;

correction_factor = 2.0;

% set the position of the initial swarm

a = 1:8;

[X,Y] = meshgrid(a,a);

C = cat(2,X',Y');

D = reshape(C,[],2);

swarm(1:swarm_size,1,1:2) = D; % set the

position of the particles in 2D

swarm(:,2,:) = 0; % set initial

velocity for particles

swarm(:,4,1) = 1000; % set the

best value so far

plotObjFcn = 1; % set to zero if you do not

need a final plot

%% define the objective funcion here (vectorized

form)

objfcn= @(x)(x(:,1) - 20).^2 + (x(:,2) - 25).^2;

tic;

%% The main loop of PSO

for iter = 1:maxIter

 swarm(:, 1, 1) = swarm(:, 1, 1) + swarm(:, 2,

1)/1.3; %update x position with the velocity

 swarm(:, 1, 2) = swarm(:, 1, 2) + swarm(:, 2,

2)/1.3; %update y position with the velocity

 x = swarm(:, 1, 1);

 % get the updated position

 y = swarm(:, 1, 2); %

updated position

fval = objfcn([x y]); %

evaluate the function using the …..

% position of the particle

 % compare the function values to find the best

ones

 for ii = 1:swarm_size

 if fval(ii,1) < swarm(ii,4,1)

swarm(ii, 3, 1) = swarm(ii, 1, 1); %

update best x position,

swarm(ii, 3, 2) = swarm(ii, 1, 2); %

update best y postions

swarm(ii, 4, 1) = fval(ii,1); %

update the best value so far

 end

 end

 [~, gbest] = min(swarm(:, 4, 1));

% find the best function value in total

 % update the velocity of the particles

 swarm(:, 2, 1) =

inertia*(rand(swarm_size,1).*swarm(:, 2, 1)) +

correction_factor*(rand(swarm_size,1).*(swarm(:,

3, 1) ...

 - swarm(:, 1, 1))) +

correction_factor*(rand(swarm_size,1).*(swarm(g

best, 3, 1) - swarm(:, 1, 1))); %x velocity

component

 swarm(:, 2, 2) =

inertia*(rand(swarm_size,1).*swarm(:, 2, 2)) +

correction_factor*(rand(swarm_size,1).*(swarm(:,

3, 2) ...

 - swarm(:, 1, 2))) +

correction_factor*(rand(swarm_size,1).*(swarm(g

International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan – Feb 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 148

best, 3, 2) - swarm(:, 1, 2))); %y velocity

component

 % plot the particles

clf;plot(swarm(:, 1, 1), swarm(:, 1, 2), 'bx');

% drawing swarm movements

axis([-2 40 -2 40]);

pause(.1);

 % un-comment this line to…

 % decrease the animation speed

disp(['iteration: ' num2str(iter)]);

end

toc

%% plot the function

if plotObjFcn

ub = 40;

 lb = 0;

npoints = 1000;

 x = (ub-lb) .* rand(npoints,2) + lb;

 for ii = 1:npoints

 f = objfcn([x(ii,1) x(ii,2)]);

 plot3(x(ii,1),x(ii,2),f,'.r');hold on

 end

% -----------------------------------END

V.RESULTS

Fig2:2D view of the output (At starting point)

Fig3:2D view of the output

Fig4:2D view of the output (close to the

destination)

Fig5:3D view of the output

International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan – Feb 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 149

In the particle swarm algorithm, the

trajectory of each individual in the search space is

adjusted by dynamically altering the velocity of

each particle, according to its own moving

experience and the moving experience of the other

particles in the search space. The position vector

and the velocity vector of the ith particle in the d-

dimensional search space can be represented as Xi

= (xi1,xi2,xi3,...,xid) and Vi = (vi1,vi2,vi3,...,vid)

respectively. According to a user defined fitness

function, let us say the best position of each particle

(which corresponds to the best fitness value

obtained by that particle at time t) is Pi =

(Pi1,Pi2,Pi3,...,Pid), and the fittest particle found so

far at time t is Pg=(Pg1,Pg2,Pg3,...,Pgd). Then, the new

velocities and the positions of the particles for the

next fitness evaluation are calculated using the

following two equations:

Vi (t+1) = w *Vi (t) + C 1 (Pi (t) – Xi (t)) + C2 (g(t)

– Xi (t))

Xi (t+1) = Xi (t) + Vi (t)

 Now the standard PSO is as follows, the

equations for updating the new velocities and the

positions of the partiicles for every next fitness

value, Pbest values, Gbest values and inertia term

are as follows;

Vij (t+1) = w * Vij (t) + r1 * c1 (Pij (t) - Xij (t)) + r2

* c2 (gi(t) – xij (t))

Xij (t+1) = Xij (t) + Vij (t +1)

VI.CONCLUSION

In this work, an algorithm for particle swarm

optimization (PSO) is discussed. Also, its codes in

MATLAB environment are included. The

effectiveness of the algorithm was analyzed with

the help of an example of variable optimization

problem. Also, the convergence characteristic of the

algorithm was discussed successfully.

REFERENCES

1 J. Kennedy and R. Eberhart, Particle swarm

optimization, Proceedings IEEE

International Conference on Neural

Networks (ICNN ’95), Perth, WA, Australia,

November–December (1995), Vol. 4, pp.

1942–1948. 29

2 F. Heppner and U. Grenander, A stochastic

nonlinear model for coordinated bird flocks,

The Ubiquity of Chaos, edited by E.

Krasner, AAAS Publications (1990), pp.

233–238.

3 B. Brandstätter and U. Baumgartner,

Particle swarm optimization— Mass-spring

system analogon. IEEE Transactions on

Magnetics 38, 997 (2002).

4 Banks, J. Vincent, and C. Anyakoha, A

review of particle swarm optimization. part

I: background and development. Natural

Computing 6, 467 (2007).

5 Colorni, M. Dorigo, and V. Maniezzo,

Distributed optimization by ant colonies,

European Conference on Artificial Life

(1991), pp. 134–142.

6 J. L. Fernández-Martínez, Z. Fernández-

Muñiz, and M. J. Tompkins, On the

topography of the cost functional in linear

and nonlinear inverse problems. Geophysics

77, W1 (2012).

7 Carlisle and G. Dozier, An off-the-shelf

PSO, Proceedings of the Particle Swarm

Optimization Workshop, Indianapolis, April

(2001), pp. 1–6.

