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Automatic Determination of Skeletal Maturity
using Statistical Models of Appearance

Steve A. Adeshina, Timothy F. Cootes, and Judith Adams.

Abstract—This work addresses the problem of automatic determination of skeletal maturity in children and young adults. Skeletal
age assessment is important for diagnosing and monitoring growth and endocrine disorders. We have constructed a system which
uses Statistical Models of Shape and Appearance to locate bones in a radiograph and to predict skeletal maturity. By analysing the
performance on a dataset of about 600 digitised radiographs of normal children we show that different variants of Part+Geometry
(P+G) models are sufficient to initialise an automatic registration algorithm. We built global models of whole hand and local models of
individual bones. We used the same P+G models to locate salient bones of the hand to initialise an Active Appearance Model (AAM)
to match all the bones of the hand in a radiograph. We improved our age estimation results by using multiple local age group models
and multiple local age estimators. We obtained an accuracy of 0.75mm and 0.70mm on sparse points placement for initialization of
automatic registrations and Active Appearance models fitting respectively. We achieved a sub-millimeter accuracy for automatic model
annotation and for locating the bones in a new radiograph. Our skeletal maturity methodology achieved an accuracy in estimating
Skeletal Age of mean absolute error of 0.41 + 0.02 years and 0.47 + 0.03 years for female and male respectively.

Index Terms—Skeletal maturity assessment, Constrained Active Appearance Models, Part-based Models

1 INTRODUCTION

Skeletal age assessment is an important non invasive
routine procedure which is based on the observation of
the X-ray image of the non-dominant hand. A significant
difference in the bone age and the actual age of a
child is an indication of growth abnormalities. Skeletal
assessment is used in the diagnosis and management of
growth and endocrine disorders in children and young
adults [24]. The assessment helps in determining ulti-
mate adult height in children and young adults and in
planning orthopaedic procedure involving the vertebrae
column [25], [17].

The two main methods used are based on the obser-
vation of bone morphology from a radiograph of the
non-dominant hand. Though there are other attempts at
assessing skeletal maturity from other parts of the body,
(Pyle and Hoer (1969) based their method on the analysis
of the knee [17]), the methods attributed to Greulich and
Pyle(GP) [17] and Tanner and Whitehouse(TW2/3) [25]
have remained dominant in the assessment of skeletal
maturity in clinical radiology. The GP method is very
highly subjective, while the TW 2 method is less sub-
jective but time consuming. They are both subjected to
inter- and intra- observers variability. These constitute
our motivation for this work.

Although there has been a great deal of efforts in de-
termining skeletal maturity of children and young adult
using several automated methods [21], [23], the appli-
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cation of Statistical models in this domain is relatively
new. In this work we demonstrate that use of Statistical
models appearance and Parts and Geometry models
to automatically annotate Radiographs of children and
young adults. We built Statistical Models of whole hand
image and of several bone complexes of the hand. By
fitting these models to images of oncoming radiograph
we were able to estimate skeletal age using multiple
linear regressors and the Tanner and Whitehouse (TW3)
readings as ground truth.

We demonstrate that our approach outperforms al-
ternative skeletal maturity determination methodology
across several application areas, achieving what we be-
lieve to be one of the best results yet published in the
literature. Additionally we also automated the process
of building statistical models - a very tedious and time
consuming process.

2 RELATED WORK

There had been many attempts at automating the bone
age assessment procedure. These efforts range from clas-
sical image analysis methods [21], [23], artificial intelli-
gence techniques based on Bayesian inference [18], com-
putational intelligence methods like Neural networks [9]
, [30], and model based methods [19], [22]. The Active
Shape model had been variously applied in a number
of attempts in the determination of bone age, but essen-
tially to segment a reduced region of interest [31], [20].
Majority of these studies are restricted to isolated ar-
eas in the hand while others extract geometric features
without learning. Related model based methods used
include, [27]. Thodberg ef al. used an Active Appearance
Model to reconstruct from the radiographs of the hand
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the borders of 15 bones automatically and computed
intrinsic bone ages for each of the 13 bones (radius, ulna
and 11 short bones). They transformed the intrinsic bone
ages into TW and GP bone ages [28].

Mahmoodi et al. [19] and Volgesang ef al. [31] used a
knowledge based modeling method for the assessment
of skeletal maturity. Cao, Pietka and Gilanz [10] pro-
posed a digital hand atlas and a web-based bone age as-
sessment system. Taani ef al. [7] utilized a Point Distribu-
tion Model (PDM) to determine skeletal maturity. Pietka
et al. [23] describe a Computer-assisted bone age assess-
ment method, which is a classical image (pixel) level
processing of a Region of Interest (ROI). A population
based approach to bone age using the TW3 as knowledge
base was proposed by Zhao et al. [33] recently. Giordano
et al. [16] developed an automated system for bone
age assessment. Bocchi and his co-workers [9] recently
implemented a method to determine bone age with the
Artificial Neural Network(ANN) using the TW2 method.
Tristan and Arribas [29] in their “Radius and ulna
skeletal age assessment system” proposed a method to
automate the TW3 skeletal assessment method using
K-means algorithm for segmentation. Recently Zhang
et al. [32] use classical image processing technique to
automatically extract the Carpal bones of children from
0 - 7 years.

The most closely related work to that presented here
is that of Thodberg et al.[28], who showed how Active
Appearance Models [13], [27] can be used to locate
the bones of the hand and how the parameters of the
associated appearance models can be combined with
other texture measures to predict skeletal age. Whereas
Thodberg et al. used models of the individual bones,
we build local appearance models of the regions around
the bones and joints. Their model building process is
fully manual while we introduced automatic registration
of the bones during the model building process. While
they estimated ages from fifteen bones we estimated ages
from all the bones to get the optimal combination of
bones.

We have used appearance (a combination of shape
and texture) as an entity to determine skeletal maturity.
We used the entire 13 bone complexes consistently for
the prediction of skeletal maturity. The introduction of
an automatic registration method for building of local
models and the use of appearance parameters are the
key contribution of this work. Our results competes
positively with Thodberg’s [28] and ranks amongst the
best in this application domain in the literature.

In our approach we sparsely annotated the digitized
radiograph images to describe the entire bones of the
hands using Parts based models. We then extracted 20
bone complexes and each complex was automatically
registered. Appearance models were built for each of the
extracted complexes. These models were fitted to images
using multiple linear regressors to estimate skeletal ma-
turity for each of the bone complexes. Predicted ages
were obtained for each of the complexes and averaged

for the 13 RUS bones complexes to obtain bone age for
each radiograph. Figure 1 shows maturity growth points
used and some local models of bone complexes. In the
following section we describe the overview of the entire
system.
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Fig. 1. (a) Skeletal maturity growth points based on
TW method. RUS bones: Radius(1), Ulna(2), Metacarpal
[, Ill, V, Proximal phalanges(ppha) I, Ill, V (10,15,16) ,
Middle phalanges (mpha) IlIl, V (14,17), Distal phalanges
(dpha) I, Ill, V (12,13,18); Carpal bones: Capitate(4), Ha-
mate(5), Triquetral(8), Lunate(3), Scaphoid (8), Trapez-
ium(6) and Trapezoid(9).

(b)bones of the hand [1]

2.1

Given a set of radiographs whose skeletal ages we wish
to determine, we use models of the whole hand to locate
the approximate position of the bones, then fit models
of the different bone structures and extract parameters
of the models from each structure. We use the extracted
parameters to estimate age for each bone structure. We
then combine these estimates by averaging over all the
bone structures.

Figure 2 shows the overview of our proposed system.
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Fig. 2. Process diagram for automatic estimation of

skeletal maturity using Active Appearance Models (AAM)
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3 METHODS
3.1 Data Set

We have access to a database of radiographs of the non-
dominant hand of normally developing children being
collated by the University of Manchester. Their ages
ranged between 5 years and 19 years. In the following
work we used a subset of 644 digitized radiographs of
normal children. The images were divided into three
groups of ages 5-7 (66 images), ages 7-13 (335 images)
and ages 14-18 (243 images) years.

3.2 Part Based Models

In earlier work we described how Part based Models
are built [2]. For our purpose we start by Initializing a
model with a set of boxes; then Automatically define
a set of arcs; Build a P+G model of one example; Use
model to find matches in dataset; Rank result by final fit
value; Build P+G models from 50% of matches; Iterate.
The matching algorithm thus seeks to find the candidates
which minimise the following function

> fii(piip;) 1)

(i,7)€Arcs

N
F=Y filg)+a
=1

where the first items represent the function of the
intensity of the Patch model and the second item rep-
resent the second item represents the geometrical rela-
tionship between the patches. The value of « affects the
relative importance of patch and geometry matches. In
the following we use o = 0.1, chosen by preliminary
experiments on a small subset of the data. For details
please see [2]

3.3 Building the Model

We initialise a model using a set of parts defined by
boxes placed on a single image by the user (for instance,
the rectangles shown in Figure ??a). This takes about one
minute to do, and allows the algorithm to take advan-
tage of user supplied knowledge. We then automatically
define a set of connecting arcs based on the distances
between the centres of the boxes. We use a variant of
Prim’s algorithm for the minimum spanning tree, where
each node has two parent nodes, rather than one [8].
We then refine the model by applying it to the whole
dataset, ranking the results by final fit value (per image),
and building statistical models of intensity and pairwise
relationship from the best 50% of the matches.

3.4 Construction of Statistical Appearance Models

Statistical appearance models (SAM) [13] were generated
by combining a model of shape variation with a model of
texture variation. Each radiograph was manually anno-
tated with points around important structures. Statistical
models of shape and texture (intensities in the reference

frame) were constructed by applying Principal Compo-
nent Analysis (PCA) to the resulting annotations, leading
to linear models of the form

x =x+P,b, g=g+ Pgbg (2)

where x is the mean shape, g is the mean texture,
PP, are the main modes of shape and texture variation
and by,b, are the shape and texture model parameter
vectors. Combining the shape and texture models gives
a combined appearance model of the form

x=%+Qsc g=g+Qyc ®)

where Q;, Q, are matrices describing the modes of vari-
ation derived from the training set and c is a combined
vector of appearance parameters controlling both shape
and texture.

3.5 Groupwise registration

The sparse annotation uses only a few points for each
local bone complex model, so does not represent de-
tails of the bone shape. To improve the density of the
correspondences we applied a ‘groupwise’ non-rigid
registration algorithm, similar to that in [12], initialised
with the manual points. For each structure we defined
a dense triangulated mesh on one image, then used
the sparse annotation from PBM to propagate this to
the other images using thin-plate spline interpolation.
We then estimated the mean shape and texture and
applied a non-rigid registration approach to improve
the correspondence between each image and the mean.
The process is repeated until convergence, leading to an
accurate, dense correspondence across the set. Models
of shape, texture and appearance were then constructed
from the resulting points.

3.6 Active Appearance Model search

The AAM matching algorithm is outlined below. There
are two main components: a parameterized model of ob-
ject appearance, and an estimate of relationship between
parameter errors and image residuals [11].

The appearance model parameters, ¢, and shape trans-
formation parameters, t, define the position of the model
points in an image frame, X, which gives the shape of
the image patch to be represented by the model. During
the matching we sample the pixels in the region of the
image, gimn and project them to the texture model frame,
gs = T7'(gim). The current texture model is given by
gn = g + P,Qgc The model, image difference in the
normalized texture frame is

r(p) = 8s—8m 4)

where p are the parameters of the of the model p? =
(cT|tT|u”). A scalar measure of difference is the sum of
squares of the elements of r, E(p) = r’r. A first order
Taylor expansion of equation 4 gives
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or
r(p+op) = r(p) + 5 -0p )
p
where the ij" element of matrix g—; is j;?
J

If our current residual is r, we intend to choose dp
. s . 2 . .
so as to minimize |r(p+dp)|” by equating equation 5 to
zero, we then get a Root Mean Square solution as shown
below:

orT or\ ' orT
) ©)

dp dp)  Ip

It would be necessary to re-calculate g—r in standard
optimization exercise and this is computationally expen-
sive. It is however considered approximately fixed - the
estimation can be done from the training set. Numeric
differentiation can be used to estimate g—; displacing
each parameter systematically from the known optimal
value on typical images and computing the average over
a set. Residuals at displacements of differing magnitudes
measured - say 0.55D for each parameter and this is
combined with a Gaussian to smooth them. R is pre-
calculated and used for subsequent searches [11]. The
images used in calculating the partial residuals can be
examples from the training set or the images generated
using the appearance model.

op = —Rr(p) where R = (

3.7 Constrained active appearance models (CAAM)

The AAM as a local search method depends on an
update matrix learned near correct solutions. As a result,
it depends upon adequate initialisation. Usually this
initialisation is provided by prior estimates of some of
the shape points, either manually, or through automatic
methods as discussed in preceding sections. There may
be some prior knowledge of the variances associated
with these initialisation points. Cootes et al. developed
the Constrained AAM [14] to incorporate such con-
straints.

Essentially the least squares minimisation of the stan-
dard AAM is replaced by a maximum a-posteriori
(MAP) formulation, which seeks to maximise the prob-
ability of the model given the data which (by Bayes
theorem) is proportional to:

P(datalmodel) P(model) (7)

Assuming a uniform prior on the model parameters.
This can be equated to a least squares formulation where
Gaussian residuals are not correlated and the variances
are equal. A Gaussian prior could be assumed on the
model parameters, and Cootes et al. showed how the
AAM update step can be reformulated to incorporate
this prior. In the rest of this section we will be concentrat-
ing on incorporating prior knowledge about constrained
points. We worked with a simplified version of [14] and
assumed a constant model prior [1].

The Jacobian of the residual can be represented as J
(see section 3.6)

J_ or

= ®)

as a result equation 6 in section section 3.6 can be re-
written as

R=[173] 137 9)
Suppose we have prior estimates of the positions of
some points in the image frame X, together with their
covariance matrix Sx. Unknown points can be repre-
sented by zeroes, together with large upper bounds in
Sx, and effectively zeroes in Sx ~'. Let d(p) = (X — X)
be a Vector of the displacements of the current point
positions from their prior positions. We assume further
that the prior point positions are Gaussian distributed,
and also that the texture residuals are independently and
identically distributed with variance o,%. r is the Vector
of residuals. Then maximising the logarithm of the MAP
is equivalent to minimising (see section 3.6):

Ei(p) =0, *rTr+d"Sx'd (10)

By using a first order Taylor expansion similar to
that used to derive the basic AAM update equation, the
parameter update is given by the solution to the equation
set:

Aép=—a (11)

where, after defining the Jacobian of d w.r.t p as K

A = (0,727T+KTSx 'K) 12)
a = (0,7237r(p)+K7Sx'd)
and
K= (13)
op

When computing the prior point displacement
Jacobian K, it is necessary to take into account the
global pose transformation t as well as the appearance
model parameters c. Cootes further developed the
special case of isotropic prior point positional variance
with zero off-diagonal terms, and when the pose
transformation S;(x) is a similarity transform which
scales by s. Let x¢ be the prior point positions mapped
into the model frame, so xo = S; '(Xg), and let
y = s(x —xg). Then d”Sx'd = y"Sx " 'y.

In this case:

A = (020734 K, Sx Ky

14
(UT’QJTr(p) + Km,TSX71Y) 4

a =

The Jacobian K,, is the concatenation (%‘%) and:

g% = SQS
5 (S, 1(X ,
% = X tét( o)) —(X—Xo)'(%%y’o’o)

(15)

The update equation can then be solved using stan-

dard methods in linear algebra; for example, since the

matrix A is symmetric, Cholesky decomposition can

be used for speed to invert A; but if that appears ill-

conditioned, then SVD can be used to robustly calculate
an inverse (in the least-squares sense).



INTERNATIONAL JOURNAL OF COMPUTER TECHNIQUES, VOL. 4, NO. 1, JANUARY 2017 5

3.8 Estimation of skeletal maturity

Given the appearance models we can compute shape,
texture and appearance parameter vectors for each struc-
ture on each image.

We use classical linear regression of the form, A =
wTp+ Ap, where A is the predicted age, w is a vector of
weights, p is the parameter vector and Ay is a constant.
In the following we describe experiments comparing the
performance of different models of the carpal bones [1].

4 EXPERIMENTS AND RESULTS
4.1 Pilot Experiments

In our earlier works we performed experiments to deter-
mine the required optimal number of bones, the type of
models, the most effective parameters amongst others
[6]. The following are the conclusions derived from
the experiments and they actually formed the basis of
further experiments.

» That global hand models perform poorly when com-
pared with local ones in skeletal age estimation.

o That improvements in accuracy can be achieved
by using models of the joint complexes and bones
constructed by automatic registration, compared to
those built from manual annotation as in table ??.

o Appearance parameters correlate with skeletal ma-
turity better than shape or texture features alone.

o The Carpal bones seem to contribute negatively to
the estimation of skeletal maturity.

o The results also show that the 13 bones complexes
of Radius, Ulna and Short bones are sufficient to
estimate bone age.

o That good predictions of Chronological Age can be
made using simple linear predictors based on the
parameters of appearance models of bones and joint
complexes of the hand as earlier shown in [28].

o That a series of linear predictors may perform better
than a single linear predictor.

o That Chronological Age may not be the best predic-
tor of skeletal age.

o These results also confirms what was described in
the literature.

4.2

The block diagram in Figure 2 requires that we anno-
tate training radiographic image before we can build
models. Initially we manually annotated images but the
process was ultimately automated, with very minimal
manual intervention. It was also very important to locate
salient landmarks on the radiographs. This process will
be useful, both as an initialization for the automatic
annotation of the Radiograph and for model matching
to ensure that the Models do not collapse into a local
minimum. The parts and Geometry models was key
to achieving the proceeding requirement. Locating the
bones and building global and local models of the hand
is a direct consequence of identifying salient points on

Major earlier experimental works

the hand. We briefly discuss the following published
experimental works.

o Constructing part based models for groupwise reg-
istration [2]

» Automatic Annotation of Radiographs using part
and Geometry model for building statistical models
for skeletal maturity [3].

o Automatic model matching using part based mode
constrained active appearance models [4]

o Automatic determination of skeletal maturity using
statical models of appearance [1]

4.2.1 Constructing part based models for groupwise
registration

This section addresses the problem of building detailed
models of the shape and appearance of complex struc-
tures, given only a training set of representative im-
ages and some minimal manual intervention. Using a
sparse annotation of a single image we can construct a
parts+geometry model capable of locating a small set
of features on every training image. Iterative refinement
leads to a model which can locate structures accurately
and reliably. The resulting sparse annotations are suffi-
cient to initialise a dense groupwise registration algo-
rithm, which gives a detailed correspondence between
all images in the set. We demonstrate the method on
a large set of radiographs of the hand, achieving less
than 1 millimeter accuracy. With this method we are
able to locate automatically 19 major landmarks on the
hand radiograph. Figure 3 shows a typical Part Based
Model and the located 19 points. These major points
becomes very useful in initial annotation and building of
original models and initialization of unseen radiograph
for automated model matching. Further details on this
can be found in [2]

Fig. 3. (a) A part and geometry model, (b) Resulting
points from the model superimposed on a hand radio-
graph.
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4.2.2 Automatic Annotation of Radiographs using part
and Geometry model

Statistical Models of Shape and Appearance require
annotation of the bones of the hand of children and
young adults. Due to very large variation in the shape
and appearance of these bones, automatic annotation
is particularly challenging. In this experiment we built
a semi-automatic Parts and Geometry model to locate
sparse points in each of the Radiographic image. These
sparse points were then used as control points to propa-
gate densely manually annotated points on one image
to other images. The resulting propagation was used
to build Statistical models that have be found to be
useful in estimating skeletal maturity. By analysing per-
formance on dataset of 537 digitized images of normal
children we achieved an automatic annotation accuracy
of a mean point to curve error of 1mm £ 0.08 and a
median error 0.94mm. Automatic annotation reduces the
need for tedious manual annotation. The resulting anno-
tated images were subsequently used to build global and
local models. Suffice it to say here that, these annotation
process also allows us to separate the radiograph image
into the constituent bones and bone complex that are
required for building Local models. For further details
please see [5]

a) Imagel

b) Enlarged

Fig. 4. Quantitative results of propagation of 2,797 points
based on the Part based models’ automatic initialization
for two examples in group 3

4.2.3 Automatic model matching using PBM Con-
strained Active Appearance Models for skeletal maturity

One critical requirement in automated skeletal maturity
estimation is matching built models to unseen images
of the bones of the hand. Oftentimes some form of ini-
tialization is required to prevent the model from falling
into local minima. In this experiment [4]we used part-
based models to initialize the image of an incoming
radiographic image and then fit a global Active Appear-
ance models of the whole hand using the found points
from the Part based models as ‘weighted’ constraints.
Having found the approximate positions of the bones of
the hands we then fit local models to refine the model

fit. By analysing performance on our dataset of digitized
images of normal children we achieved a model fitting
accuracy of an overall point to point median error of
0.7mm. Figure 5 shows stages required for matching an
unseen radiographic images. This is to ensure each bone
is located for subsequent matching which models that
were already built. For details please see [4].

Refine w/ AAM

Final results

Fig. 5. Process flow for CAAM fit. From 19 automatically
found points on 94 images, 330 manual points on a
reference image, a TPS warp of manual points to other
images, a further refine fit and final points’ result.

4.3 Estimating Skeletal maturity from model param-
eters

Statistical appearance models [13], [15] were generated
by combining a model of shape variation with a model
of texture variation. Each radiograph was automatically
annotated with 19 points around important structures.
The sparse 19 points were used to densely annotate
each Radiograph. Statistical models of shape and texture
(intensities in the reference frame) were constructed by
applying Principal Component Analysis (PCA) to the
resulting annotations, leading to linear models of the
form

x =X+ P;b,

g=g+Pyb, (16)

where X is the mean shape, g is the mean texture, P,,P,,
are the main modes of shape and texture variation and
b,,b, are the shape and texture model parameter vectors.
In addition a combined model is constructed

x =X+ Qsc

g=8+Qyc 17)

where Q,, Q, are matrices describing the modes of vari-
ation derived from the training set and c is a combined
vector of appearance parameters controlling both shape
and texture.

By matching these models to each structure in each
image, we can extract the relevant model parameters.

We use a linear regressor to predict the age from the
parameters (Equation 18),
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A=wlp+ 4 (18)

where A is the Predicted Age, w is a vector of weights,
p is the vector of parameters (either b,, by, ¢) and Ay is
the intercept constant.

Images as shown in Table 1 were automatically anno-
tated as described above. Shape, texture and appearance
models were built.

For each model we computed the shape, texture and
appearance parameters for every image. We then eval-
uated the utility of linear age prediction models using
a Leave-One-Out (LOO) paradigm. We trained linear
regressors to predict age on all but one image, then
tested the prediction on the left-out image. Since male
and female children are known to develop at different
rates, different regressor models were used for the male
and the female sets. We evaluated performance using the
mean absolute error between prediction and Chronolog-
ical Age.

Preliminary experiments published in earlier work [6]
show that a set of models representing local structures
of the bone performs better than a single model. In
this regard we used several models of different bone
structures.

We improved the overall age prediction by averaging
the ages estimated from each local bone model over the
set (A, = % Zfil A;, where A; is the prediction from the
it" local model).

4.4 Predicted Age with Chronological Age

The goal of these experiments is to compare predicted
age with chronological age in this cohort of normal
children. Though chronological age is not the best pre-
dictor of skeletal age, there is a reasonable relationship
for normal children. The GP atlas was based on the
assumption that the chronological age is equal to skeletal
age for normal children.

We used the same experimental protocol as for pre-
liminary experiments, but being a larger data set, broken
down by age range.

These experiments were performed for each of the 13
bone complexes in each of the three groups. The predic-
tions were averaged over the 13 RUS bone complexes.
Table 1 show the mean absolute errors and the root mean
square errors for the three age-groups.

Figure 6 shows the scatter plots for the three age-
groups. The plots confirm the earlier hypothesis that
chronological age correlate with bone age. However the
spread around each line is about +1 year. This shows
that skeletal age is not the best predictor of chronolog-
ical age. However it shows that the choice of multiple
predictors is useful. We explore further by using expert
TW3 readings as will be shown in the next section.

4.5 Predicted Age with expert TW3 readings.

The motivation for the experiment is to investigate the
performance of linear predictors using expert TW3 read-

Female
Age range | Images | Mean abs rms error
Age-group 1 5-7 33 0.52 £0.07 | 0.66 £0.11
Age-group 2 7-13 152 0.53 £0.03 | 0.63 +0.04
Age-group 3 13-18 113 0.65 £0.04 | 0.80 +0.08
Male
Age range | Images | Mean abs rms error
Age-group 1 5-7 26 0.61 £0.06 | 0.67 +0.07
Age-group 2 7-13 147 0.52 £0.03 | 0.66 £0.05
Age-group 3 13-18 98 0.67 £0.05 | 0.80 +0.08
TABLE 1

Mean absolute predictions error (years), root mean
square (rms) error (years) and number of images, using
Chronological Age as the ground truth

ings. Most methods for estimating skeletal maturity use
expert TW3 readings as ground truth. This experiment
compares our result with what is published in the liter-
ature [26]. At the conception of this project, the expec-
tation from the clinical radiologists was to simply auto-
mate the process of TW3 reading. By performing these
experiments, we show that it is possible to predict age by
training linear predictors with expert TW3 readings. Our
result compares favorably with other published method
in this regard.

We have access to TW3 expert readings! for about 450
images. We used the final computed age for each image.
We performed a similar experiment to that described in
Section 4.4 but used the final predicted TW3 ages to train
the linear predictors. However, some of the images are
above chronological age of 18 years. Observation of the
data shows that every image with chronological age of
15 years and above for female were estimated as adult
and scored at the maximum skeletal age of 15 years.
For male the maximum skeletal age scored is 16.5 years.
We excluded images around these extremes as our linear
estimators would have been confused if chronological
ages from 15 - 18 years are equated to skeletal age of 15
years during training for female and chronological ages
from 16.5 - 18 years are equated to skeletal age 16.5 years
for male.

The limit for scoring of bone age in the TW system
is 5-15 years for female and 5-16.5 years for male [26].
The limit of bone age estimation for the GP method is
0-18 years for male and female [17]. This is however
very subjective, being an atlas based system, where
chronological age is equated to skeletal age.

Table 2 show the mean absolute prediction errors, the
root mean square errors and the number of images used.

Figure 7 shows the plots of expert TW 3 final age
reading against Predicted Age for male and female. The
predictions is better than that of chronological age may
have been limited by the upper limit of 15/16.5 years for
female and male respectively. It is believed that these
limitations are imposed as a result of the limitations
of what the human eye can see. An age prediction

1. Courtesy of Lianne Reddie and Prof Judith Adams
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Female
Age range | Images | Mean abs rms error
Age-group 1 5-7 27 0.36 +0.05 | 0.44 +0.06
Age-group 2 7-13 131 0.47 £0.03 | 0.58 +0.04
Age-group 3 13-15 73 0.34 +0.03 | 0.41 +0.02
Male
Age range | Images | Mean abs rms error
Age-group 1 5-7 25 0.67 £0.07 | 0.77 £0.05
Age-group 2 7-13 111 0.43 +0.03 | 0.55 +0.05
Age-group 3 13-16.5 72 0.45 £0.04 | 0.59 £0.07
TABLE 2

Mean absolute predictions error (years), root mean
square (rms) error (years) and number of images, using
TW 3 expert readings as the ground truth

system can potentially go beyond these limits. Though
we we thought in [1] that developing a system purely
on one or two raters’ reading is not ideal. However, with
further introspection, we now believe that a model can
generalize to images it has not seen as examples. We
advice the use of Chronological age as a substitute for
the TW3 and suggested to our Expert to read the ‘left
out’ range with GP atlas.

4.6 Predicted Age with Consensus Skeletal Age

In line with the thought of Thodberg et al.[28] we inves-
tigate a new maturity measure that does not depend on
the readings of the experts.

They believed that there are inherent properties of
different bone complexes represented by the extracted
features that correlate with maturity. To ensure that the
children in this study are normal, continuous medical
tests and investigations are carried out on a regular basis.
For this reason, the normality of the children can be as-
sumed and we could rely on chronological age in a way
that emphasises those image features that are related to
maturity rather those that relate to Chronological age
[28]. This they achieved using the concept of Consensus
Skeletal Age.

Similar experiments were performed as in preceding
sections. Observation of the predictions from chrono-
logical age shows that the predictions for the 13 bone
complexes have minimal differences. This reflects the
differences in the development of the bone complexes.
The development of the bone complexes tend to com-
plement for each other. We therefore postulate that there
is a value for the skeletal age which has a relationship
with chronological age. This value tends to be around
that predicted based on chronological age. Since we
have predictions from 13 complexes we simply average
the values and used these average values (Consensus
Skeletal Age) to train our regressor. This approach was
first introduced by Thodberg et al.[28]. We differ slightly
in our approach. Based on medical studies, a number
of complexes are considered necessary and sufficient for
bone ageing. This is because the development of these
bones are considered to be complementary [26]. The

redundancy based on synchronous development seem
to have been compensated for by reducing the numbers
of complexes to 13 in TW system. The TW system
and the GP system assess 13 and 28 bones respectively
[26], [17]. We believe any reduction below this number
may lead to losing vital information about the bone
age of the individual. We therefore adopted a consistent
averaging of values as opposed to Thodberg’s where
they set a threshold of acceptable predictions from each
bone complex and a minimum threshold of at least 7
complexes before age can be estimated from the image.

Table 3 and Figure 8 show results obtained by using
the Consensus Skeletal Age. We will refer to this Pre-
dicted Age as Intrinsic Skeletal Age.

Female
Age range | Images | Mean abs rms error
Age-group 1 5-7 33 0.15+0.02 | 0.2040.01
Age-group 2 7-13 152 0.12+0.01 | 0.14+0.002
Age-group 3 13-18 113 0.24:0.01 0.244-0.01
Male
Age range | Images | Mean abs rms error
Age-group 1 5-7 26 0.2840.04 0.3440.03
Age-group 2 7-13 147 0.15£0.01 | 0.1840.003
Age-group 3 13-18 98 0.1640.01 0.2040.01
TABLE 3

Mean absolute prediction error (years), root mean
square (rms) error (years) and number of images, using
Consensus Skeletal Age as the ground truth

Female

Images | Mean abs rms error
Chrono Age 298 0.57 £0.02 | 0.70 £0.04
Consensus Age 298 0.15 £0.01 | 0.19 +0.002
Expert TW3 231 0.41 £0.02 | 0.52 £0.03

Male

Images | Mean abs rms error
Chrono Age 271 0.58 £0.03 | 0.72 £0.04
Consensus Age 271 0.16 £0.01 | 0.21 +0.004
Expert TW3 208 0.47 £0.03 | 0.59 £0.04

TABLE 4

Mean absolute prediction error (years), root mean
square (rms) error (years) and number of images.
Predictions from Chronological Age, Consensus Skeletal
Age and TW3 readings respectively

4.7 Evaluating precision

Precision is the ability of the system to get the same
result with repeated X-ray exposure. Precision can also
be estimated by re-digitizing radiographs and estimating
ages. We derived precision from longitudinal series of
X-rays taken at intervals. This allows us to estimate
precision from the smoothness of the bone age curve.
We assume that bone age grows linearly over a 2 year
period. Given three consecutive measures of bone ages
say A, B, C taken at 1 year intervals, interpolation
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Fig. 6. (a) Consolidated predictions plot (for the 3 groups)
from Chronological Age for male and (b) for female. This
figure corresponds to table 4

residual (observations) r can be defined as

r=B—(A+C)/2 (19)

The precision error e can then be estimated from a set
of observations of r

e =rms(r)/V1.5

where rms is the root of the mean of the squares. The
derivation of this formula can be found in [28]. We find
these values to be similar to the mean absolute difference
of the interpolation residuals. These residuals are the
difference in years between a set of predicted skeletal
ages and the equivalent difference in real ages. The
assumption is that the change in Predicted Age is linear
with changes in actual actual age. This is not always
true especially when the time interval is long. When the
increase is non linear, the residual is correspondingly
increased. The precision is an upper estimate.

(20)

4.8 Precision experiments

We performed precision experiments by computing In-
trinsic Skeletal age for five series of longitudinal images
shown in Figures 9a and 9b.

We have 33 observations from the 5 longitudinal se-
ries. We derived precision using longitudinal series taken

Predicted age (years)
®

0 2 4 6 8 10 12 14 16
Expert TW3 reading (years)

(@)

Predicted age (years)
(==} S
* e
-
L]
a
‘oi
.

T T T T T T T T
0 2 4 6 8 10 12 14 16 18

Expert TW3 reading (years)

Fig. 7. (a) Consolidated predictions plot (for the 3 groups)
from Expert TW3 readings for female and (b) for male.
This figure corresponds to table 4

at intervals. We estimated precision using the method
described in section 4.7. The precision is estimated to be
0.44 years. We compared these values with equivalent
manual TW3 Values and obtained a precision of 0.41
years. The precision value is higher than expected. We
think this is attributable to the inconsistencies of the
time intervals during which the X-rays of the series were
taken. We also think that the non-linearity is introduced
as a result of long time intervals. We hope to further
study the precision of new longitudinal series.

5 DiscuSsSION AND CONCLUSIONS

In this work we have constructed a system which uses
Statistical Models of Shape and Appearance to locate
bones in a radiograph and to predict skeletal maturity.
We showed that different variants of Part+Geometry
(P+G) models are sufficient to initialise an automatic
registration algorithm. We built global models of whole
hand and local models of individual bones. We used the
same P+G models to locate salient bones of the hand to
initialise an Active Appearance Model (AAM) to match
all the bones of the hand in a radiograph. Our accuracy
of 0.75mm and 0.70mm on sparse points placement for
initialization of automatic registrations and Active Ap-
pearance models fitting respectively are amongst the best
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Fig. 8. (a) Consolidated predictions plot (for the 3 groups)
from Consensus Skeletal Age for female and (b) for male.
This figure corresponds to table 4

in the literature. By achieving a sub-millimeter accuracy
for automatic model annotation and for locating the
bones in a new radiograph, we can confirm that we
revolutionized automatic model building [2]. This use
to be tedious and time consuming.

The results from consolidation show mean absolute
prediction errors of 0.57 £0.02 years and 0.58 £0.03 for
female and male respectively. These values are equiv-
alent to RMS error of 0.70 and 0.72 years respectively.
This result is comparable to that of Thodberg et al.[28]
who achieved an RMS error of 0.8 years. This is with
respect to predictions based on chronological age. This
is the closest work to our work.

Whereas Thodberg et al.built their models manually,
an exercise that may have taken several man years, we
built ours automatically.

Our precision result of 0.44 years is unsatisfactory
for reasons already given, we hope to get new sets
of longitudinal data with reasonable time intervals to
compute precision. The precision of our manual rater
was 0.41 years. Thodberg et al.[28] recorded a precision
error of 0.24 years for the optimized validation on TW3
methods. We are constrained not to do this for reasons
already stated. However we are concerned about the
high level of precision recorded.
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Fig. 9. (a) Five longitudinal series to determine precision
with our system’s Intrinsic Skeletal Age. (b) The same
series using TW3 manual readings. Value in section 4.7

Finally Thodberg et al.[28] introduced the concept
of Consensus skeletal age which we adopted in [1].
We however now believe that there is no reason why
we cannot use the expert readings to estimate Skeletal
maturity. The thinking in [28] is that intra- and inter-rater
variability is incorporated into the design. Additionally
that the limit of about 16.5 years is a limitation. We how-
ever believe that a model can generalize to examples that
it has not seen and where necessary GP readings should
be used to complement the available TW readings at the
upper extremes. The work is limited by the age range of
5 to 18 years.
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