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Automatic Annotation of Radiographs using
Random Forest Regression Voting for Building
Statistical Models for Skeletal Maturity

Steve A. Adeshina, Claudia Lindner, and Timothy F. Cootes.

Abstract—Statistical Models of Shape and Appearance require annotation of the bones of the hand of children and
young adults. Due to very large variation in the shape and appearance of these bones, automatic annotation is
particularly challenging. Statistical Models of Shape and Appearance have been found useful in several medical image
analysis and other applications. In this work we locate sparse points on the bones of the hand with an automatic system
which uses a Constrained Local Model with Random Forest Regression Voting. These sparse points were then used as
input to a groupwise registration algorithm. The control point of the groupwise algorithm can then be used to propagate
manually annotated points to other images. The resulting propagation may be used to build Statistical models. By
analysing performance on dataset of 537 digitized images of normal children we achieved an automatic annotation
accuracy of a mean point to curve error of 0.94mm + 0.01 and a median error 0.92mm.

Index Terms—Skeletal maturity assessment, Random Forest regression voting, Constrained Local Models, Random

Forest in a Constrained Local Model framework (RV-CLM).

1 INTRODUCTION

The annotation of images is very important
in building Statistical models and in medi-
cal diagnosis. In many applications though,
these annotations are carried out manually [9].
This is indeed a very tedious exercise as it
entails putting hundreds of landmark points
across the images. With these manual points,
it is indeed almost impossible to ensure that
each manual point actually correspond to the
equivalent manual points on other images. In
addition typical annotations may take several
hundreds of man hours to achieve the desired
purpose. The annotation of images for building
statistical models and other models is usually
done off-line in a supervised manner. This def-
initely will delay the time to production and it
is indeed limiting the number of images being
used for building models thereby reducing the
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generalization ability of the models. Statisti-
cal Models have been found useful in several
medical image analysis, facial image analysis,
verification and recognition and several other
applications.

In this work, we extended [1] [3] to deal
with very large variation. We did this by di-
viding the data-set into three groups and run-
ning the algorithm for each group. In addition
we provided methods for placing as many as
2,797 landmarks on several images. We then
obtained annotations that is usable for building
models that requires corresponding points and
in others applications in classical medicine.
This work also extend our earlier work [2]
where we used a similar technique to seg-
ment the carpal area of the bones of the hand.
Whereas in that work we segmented a single
region of interest i.e the Carpal area bones, this
work applies a similar method to segment the
28 bones of the hand.

2 RELATED WORK

For many years there had been several ef-
forts to automate this process. Recently there



INTERNATIONAL JOURNAL OF COMPUTER TECHNIQUES, VOL. 4, NO. 1, JANUARY 2017 2

has been considerable research into automated
methods of achieving correspondence, such as
from boundaries (eg [10]) in 2D or surfaces
in 3D (eg [11]), or more generally by directly
registering images using non-rigid registration
methods [15] or ‘groupwise’ techniques [4],
[6], [20], [21]. Other methods employ Random
Forest regression voting [5], [8].

In our earlier work [1], we dealt with the
problem of registering images of objects with
considerable shape variation and multiple sim-
ilar sub-parts, for instance radiographs of the
human hand, such as those in Figure 1. This
was done by finding initialization points for a
groupwise registration using a semi-automatic
method. The frontiers of this work was ex-
tended further by Zhang and Cootes with a
fully automatic method [21] to locate a number
of sparse points in images of large variation.
Further work had also been done in this respect
by Cootes et al.[8], [18] using Random Forest
regression for finding optimal points with Sta-
tistical Shape models.

Random Forests (RF) [8] describe an en-
semble of decision trees trained independently
on a randomized selection of features. They
have been shown to be effective in a range
of classification and regression problems [8].
Gall and Lempitsky show in Hough Forests
[16] that objects can be accurately located using
RF regressors to predict the position of a point
relative to the sampled region, then running the
regressors over the region and accumulating
votes for the likely position. Cootes et al.[8]
show how this method (RF) can be combined
with Statistical Shape model to accurately seg-
ment a variety of complex dataset.

Lindner et al.[19] using the methods of [8],
applied RF regression in a Constrained Local
Model(CLM) to accurately segment the femur
in a pelvic radiograph. Following the approach
of Lindner et al.[19] we apply the method of
Cootes et al.to locate salient points in hand
radiograph by applying RF regression in a
Constrained Local Model (CLM) framework
to vote for optimal position of each model
point. This is done by running feature detectors
independently to generate a response image for
each point. A shape model is used to find the
best combination of points.

Donner et al.presented an impressive work
in [13] where they use a top-down image patch
regression to perform a fast anatomical struc-
ture localization. They obtained very impres-
sive result though they tested their model on 20
images. This work extends the work of Lindner
et al.[18] to full annotation of Radiographic
image of Children and young adults for the
purposes of determining skeletal maturity. Fig-
ure 1 shows a typical radiograph showing the
growth points and local models build from full
annotation.

Whereas most of these methods got sub-
millimeter results in locating sparse points
on images of the Radiograph of the hand
and other data-sets, they only located sparse
points for initialising groupwise registration
and whereas the algorithms were able to deal
with variation in the radiographs of the hand,
they are all limited in dealing with the very
large variation that is often required when
skeletal maturity is the goal. Most of the work
cited above did not cover the age range re-
quired for skeletal maturity, so their effective-
ness for this purpose is limited. In addition
most of the methods also stopped at finding
sparse points for dense registration.

3 METHODS
3.1 Data Set

We have access to a database of radiographs
of the non-dominant hand of normally devel-
oping children. The data is being collect for
a different Bone Ageing project at a Univer-
sity. 1. Their ages ranged between 5 years and
19 years. In the following work we used a
subset of 536 digitized radiographs of normal
children. The images were divided into three
groups of ages 5-7 (63 images), ages 7-13 (284
images) and ages 14-18 (189 images) years.

3.2 Constrained Local Models (CLM)

We segment the region around the carpal bones
using Constrained Local Models (CLMs) of
[12]. We follow the method of Cootes et al.[8].
CLM combines global constraints with local

1. Bone ageing program at the University of Manchester
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Fig. 1. (a) Radiograph with manually anno-
tated points. (b) Skeletal maturity growth points
based on TW method. RUS bones: Radius(1),

Ulna(2), Metacarpal I, lll, V, Proximal phalanges
[, lll, V (10,15,16) , Middle phalanges Ill, V
(14,17), Distal phalanges I, lll, V (12,13,18);

Carpal bones: Capitate(4), Hamate(5), Trique-
tral(8), Lunate(83), Scaphoid (6), Trapezium(7)
and Trapezoid(9). (c) The first mode appear-
ance variation of models from three joint com-
plexes (Metacarpal lll, Radius and Capitate)
from manual markup(left) and after automatic
registration (right).

models to segment an object form an image.
This it does by considering the pattern of inten-
sities. Based on a number of landmark points
outlining the contour of the object in a set of
images, we train a statistical shape model by
applying PCA to the aligned shapes [9]. This
yields a linear model model of shape variation
which represent the position of each landmark
point using x; = T,(x; + P;b + r) where x;
gives the mean in the reference frame, P; is
a set of modes of variation, b are the shape
model parameters, r allows small deviation
from the model, and 7, apply a global trans-
formation with parameters 0. To match a CLM

to a new image we seek the shape and pose
parameters p = {b, 6}, which optimize the fit
to the model. These parameters seek optimize
>, Ri(Tp(x,+P;b+r)) where at every position
i, R; is the stored value of the quality of fit at
every position representing the similarity be-
tween template texture at this landmark leaned
from the model and the texture at the same
position.

3.3 Voting with Random Forest (RF) Re-
gressors

We applied RF similar to the Hough Forest
approach of [16],but we did not require voting
to be dependent on a class labels. We adopted
the method used in [8] and [19] where votes
are gathered from regions around every point.
During training a set of decision trees (a Ran-
dom Forest) is trained so that each predicts
the displacement from a given image patch to
the target point. When searching, each tree is
scanned over nearby patches in a grid, and
produces a vote for where the target point is.
All votes for point i are combined in an array,
R;. For further details see [8] and [19] [18]

3.4 Construction of Statistical Appearance
Models

Statistical appearance models (SAM) [7] were
generated by combining a model of shape vari-
ation with a model of texture variation. Each
radiograph was automatically annotated with
points around important structures. Statistical
models of shape and texture (intensities in the
reference frame) were constructed by applying
Principal Component Analysis (PCA) to the
resulting annotations, leading to linear models
of the form

x =X+ P,b,

g=g+ Pgbg (1)

where X is the mean shape, g is the mean
texture, P, P, are the main modes of shape and
texture variation and b,b, are the shape and
texture model parameter vectors. Combining
the shape and texture models gives a combined
appearance model of the form

x=Xx+Qsc g=g+ Qe (2)
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where Q,, Qg are matrices describing the
modes of variation derived from the training
set and c is a combined vector of appearance
parameters controlling both shape and texture.

3.5 Dense Correspondence

At convergence we obtain a model of parts and
geometry, together with a sparse annotation of
every image in the training set. The centres
of each part region define correspondences.We
use these to initialise a groupwise registration.
We Place a dense mesh of control points on
the first image, use a thin-plate spline based
on the sparse annotation to propogate these
points to all other images. We then compute
the mean shape and warp each example into
the mean. Furthermore we perform non-rigid
registration [6] to modify the control points on
each image to best match to the mean. Finally
we re-compute the mean and iterate

4 EXPERIMENTS AND RESULTS

4.1 Finding the initial 37 points using RV-
CLM

In order to locate 37 sparse points automat-
ically the model was initialized by automat-
ically detecting nine points (four around the
palm and one at the base of each finger). This
was achieved by first detecting the object in
the image and initialising two reference points
within the detected bounding box as in [18].
We used these two points to initialise the mean
shape of a 9- point RFRV-CLM and ran a
single iteration to locate the nine points. The
37-point RFRV-CLM was then initialised using
these nine points. Note that the positions of
the points used for initialisation were refined
during model matching. We simply applied the
method used in [18].

The system combined a Hough Forest-like
global search with local refinement (as in [19]).
To evaluate the system we trained two models,
one on the males, one on the females, and ap-
plied each model to the images from the other
sex. The images were also manually annotated
and the annotation was compared with the
automatic points resulting into mean point to
point errors of 0.87mm. This is slightly higher

(b)

Fig. 2. Annotation example of a radiograph
and 37 found points from REFV — CLM shape
models.

than what was reported in [18] whose method
we adopted.

4.2 Groupwise Registration Experiments
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Fig. 8. Final mean images after groupwise
registration. a) agegroup 1, b) agegroup 2 and
c) agegroup 3.

4.3 Dense annotation experiments

We divided the dataset into three age-groups.
Agegroupl -63 images (5 - 7 yrs), Agegroup?2
-284 images (8-13 yrs) and Agegroup 3-189
images (14 -18 years)

Groupwise registration algorithm was initial-
ized with the 37 found points from RFRV —
CLM

The found points in each of the groups were
used to initialise a groupwise algorithm as
described above. Qualitative results of the reg-
istration is shown in Figures 3. The crispness
of the images indicate a good alignment.

We evaluated the accuracy of the points lo-
cation by comparing with manual annotations.
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This is the same approach adopted in [2]. In
order to evaluate the accuracy of the point
correspondences we manually annotated every
image with 37 landmarks at the major joints.
The sets of points found by the model were
mapped using a thin-plate spline (TPS) into a
reference frame defined by the aligned mean of
the manual landmarks. The mean position for
each part was calculated, then mapped back
into the original image using the TPS. The
absolute difference between each found point
and the estimate of the mean position was
calculated. The mean distance errors for sparse
point errors was found to be 1.08 & 0.18mm,
0.91 £ 0.15mm, 0.75 £+ 0.09mm for agegroup 1,
agegroup2, agegroup 3 respectively. The result
of agegroup 3 14 -19, a very difficult group,
is comparable to the original result obtained in
[1]. Table 1 show the Statistics of mean distance

Age-group Mean distance +se (mm) | % d > 2mm
Age-group 1(63) 0.83 +0.02 6%
Age-group 2(284) 0.98 +0.01 6%
Age-group 3(189) 1.05 +0.01 10%

TABLE 2

Statistics of mean distance errors of models for
the three age-groups after dense registration

with 2,797 points. One image was selected
from each of the three groups. Figure 4 shows
representative annotation for each of the three
groups. These dense points are then propa-
gated to other images using the parameters
of the groupwise registration for the 37 auto-
matically found points. Essentially 2,797 points
are propagated to all images in the three age
groups.

errors of models for the three age-groups from [Age Groups | Mean Zse (mm) | Median (mm) | 90%-ile
the RFRV — CLM Models. Age-group 1 0.88 £0.01 0.87 1.04
Age-group 2 1.19 £0.01 1.16 149
Age-group Mean distance +se (mm) | % d > 2mm || Age-group 3 0.75 £0.01 0.72 0.96
Age-group 1(63) 1.08 £0.18 6%
Age-group 2(284) 0.91 £0.15 7% o . TABLE 3
Age-group 3(189) 0.75 £0.09 4% Statistics of point to curve error after dense
TABLE 1 propagation for Age-group 1,2 3 (mm)

Statistics of mean distance errors of models for
the three age-groups from the Part Based
Models RFRV — CLM

However, we wish to use these points to
initialise a dense annotation. This can be done
by using the found points as control points
in a TPS warp. To evaluate the accuracy of
the resulting deformation field, we measure the
distance between the manual points and the
estimate of their mean warped to each image
(reversing the roles of the found points and
manual points compared to the previous exper-
iment). Table 2 show the mean distance errors
of models for the three age-groups after dense
registration Please note that in both cases errors
are highest for agegroupl. The few number of
images and very large variation may be respon-
sible. Sometimes there is no correspondence
amongst the bones.

In order to accurately locate the boundaries
of more than 28 bones of the hand, we man-
ually annotated the borders of three images

We measure the errors by comparing how
well a correspondence defined by control
points and mesh in the densely propagated
set agrees with a set of dense manual anno-
tations with 330 points in equivalent positions.
We compute the mean distance to curve error
between warped version of manual points and
the manual annotations for each image. The
result of this evaluation is shown in Table 3,
for the three age groups.

Quantitative result of annotating the 28
bones of the hand is shown in Figure 5 for two
images in Age-group 3, while further results of
enlarged version of an area, typical success and
failure annotated images are shown in Figure

6

5 DiIscuUsSION AND CONCLUSIONS

We have proposed an approach for automat-
ically locating sparse correspondences across
a set of images, by constructing a parts and
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Fig. 4. (a) A dense manual markup with 2,797
points on a group 1 image (b) A dense manual
markup with 2,797 points on a group 2 image
(c)A dense manual markup with 2,797 points on
a group 3 image

a) Imagel

b) Image2

Fig. 5. Quantitative results of propagation of
2,797 points based on the Part based mod-
els’ automatic initialization for two examples in
group 3

geometry model with an extended dataset. We
achieve an accuracy of 0.80mm on the position-
ing of the chosen parts. This work compares
favourably with what obtains in the literature
[14] [8] [1], [17]. The closest work to this is that
of Zhang et al.[21] though a fully automatic
method, the algorithm was run for a limited

Fig. 6. Quantitative results of point annotations
(a)Points annotations zoomed in (b) Successful
example (c) Enlarged typical failure

age range(10-13years). Most of the cited work
are often dealing with model matching for
sparse points placement but rarely proceeds
to the point of annotating data-set in a way
to accurately separate the different bones. This
is indeed a requirement for skeletal maturity
where global and local model of bone com-
plexes are often required. This work therefore
extends our earlier work [1] in a way to provide
a tool for annotating hand radiograph for use
in skeletal maturity. We have achieved a point
to curve error of approximately 1mm for a
dense annotation of close to 3000 points. This
is one of the best results for this application.
It is envisaged that this work will be useful to
professional who have need for accurate bone
annotations.
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