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Abstract: 
 Software keyloggers are a fast growing class of invasive software often used to harvest confidential 

information. One of the main reasons for this rapid growth is the possibility for unprivileged programs 

running in user space to eavesdrop and record all thekeystrokes typed by the users of a system. The ability 

to run in unprivileged mode facilitates their implementation and distribution, but,at the same time, allows 

one to understand and model their behavior in detail. Leveraging this characteristic, we propose a new 

detection technique that simulates carefully crafted keystroke sequences in input and observes the behavior 

of the keylogger in output to unambiguously identify it among all the running processes. We have 

prototyped our technique as an unprivileged application, hence matching the same ease of deployment of a 

keylogger executing in unprivileged mode. We have successfully evaluated the underlying technique 

against the most common free keyloggers. This confirms the viability of our approach in practical 

scenarios. We have also devised potential evasion techniques that may be adopted to circumvent our 

approach and proposed a heuristic to strengthen the effectiveness of our solution against more elaborated 

attacks. Extensive experimental results confirm that our technique is robust to both false positives and 

false negatives in realistic settings. 
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I.     INTRODUCTION 

 

KEYLOGGERS are entrenched on a machine to 

deliberately monitor the user action by logging 

keystrokes and finally delivering them to a third 

party [1]. While they are rarely used for genuine 

drives (e.g., surveillance/parental monitoring 

infrastructures), key loggers are often unkindly 

exploited by assailants to steal intimate information. 

Many credit card numbers then passwords have 

been occupied using key loggers [2], [3], which 

makes them one of the most unsafe types of 

spyware recognised to date. 

Key loggers can be applied as tiny hardware plans 

or more suitably in software. Software-based key 

logger image be additional classified based on the 

privileges they require to perform. Key loggers 

applied by a kernel unit run with full freedoms in 

kernel space. Equally, a fully poor key logger can 

be applied by a simple user-space procedure. It is 

significant to notice that auser-space key logger can 

easily rely on recognised sets of poor APIs 

commonly available on modern working systems 

(OSs). This is not the case for a key logger applied 

as a seed module. In seed space, the computer 

operator must rely on kernel-level amenities to 

interrupt all the messages posted by the console 

driver, certainly needful a substantial effort then 

information for an real and bug-free 

implementation. Also, a key logger applied as a 

user-space procedure is much calmer to deploy 

since no special consent is required. A 

 user can mistakenly regard the key logger as a 

inoffensive part of software and being cuckolded in 

performing it. On the conflicting, kernel-space key 

loggers need a user with wonderful user freedoms 

to deliberately install and execute unsigned code 

within the kernel, a repetition often prohibited by 
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modern working systems such Gaps Vista or 

Windows 7. In light of these comments, it is no 

surprise that 95 out of a hundred of the current key 

loggers run in user space [4]. Notwithstanding the 

rapid development of key logger-based deceptions 

(i.e., identity theft, password leakage, etc.), not 

many effective and efficient solutions have been 

proposed to address this problem. Old-style defense 

mechanisms use Finger production plans similar to 

those used to detect worms and worms. 

Inappropriately, this plan is hardly real against the 

vast amount of new key logger alternatives 

developing every day in the wild. In this paper, we 

propose a new method to detect key loggers 

running as poor user-space procedures. To match 

the same placement model, our method is 

completely applied in an poor process. As a 

consequence, our answer is portable, uninstructive, 

easy to install, then yet very real. In the final part of 

this paper, we further authenticate our approach 

with a home full-grown key logger that efforts to 

thwart our discovery method. 

2 INTERNALS OF MODERN 

KEYLOGGERS  

Breaking the privacy of an separate by 

classification his keystrokes can be committed at 

many dissimilar levels. For example, an assailant 

with bodily access to the mechanism might bug the 

hardware of the keyboard. A lying audio releases 

produced by the user typing [6], or convenient to 

purchase a software solution, install it on all 

implemented in many different ways. Aimed at 

instance, outside keyloggers rely on approximately 

physical property, either the mechanism. 

Contingent on the location, a keylogger can be 

owner of an Internet cafe´, in turn, may find it more 

the electromagnetic releases of a wireless keyboard 

[7]. the stations, and have the logs released on his 

own Hardware keyloggers are still outside plans, 

but are applied as dongles placed in amid keyboard 

and motherboard. All these plans, though, need 

bodily access to the board machine. 

To overwhelmed this kerb, software 

approaches are additional commonly used. 

Hypervisor-based keyloggers (e.g., BluePill [8]) are 

the frank software development of hardware based 

keyloggers, factually execution a man-in-the-

middle bout amid the hardware then the working 

system. Kernel keyloggers originate instant in the 

chain then are often applied as part of more 

multifaceted rootkits. In difference to hypervisor-

based methods, hooks are straight used to interrupt 

buffer-processing proceedings or additional seed 

messages. Albeit effective, all these methods need 

advantaged access to the machine. Furthermore, 

script a kernel driver hypervisor-based methods 

pose even more challenges requires a considerable 

effort and knowledge for an effective and bug-free 

implementation (smooth a single bug may lead to a 

kernel fright). User-space keyloggers, on the 

additional hand, do not need any special honour to 

be deployed. They can be connected and performed 

irrespective of the freedoms granted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1. The distribution stages of a keystroke, then 
the mechanisms possibly undermined (we omit 
hypervisor-based methods for the sake of clarity) 

This is a feat unbearable for kernel keyloggers, 

since they need either super user freedoms or a 

susceptibility that allows random kernel code 

implementation. Also, user space keylogger authors 

can securely rely on well-documented sets of APIs 

usually obtainable on modern working systems, 

with no singular programming skills obligatory.  

3.APPROACH  
 
 

Our method is openly focused on scheming a 

detection method for poor user-space keyloggers. 

Unlike other classes of keyloggers, a user-space 

keylogger is a contextual process which lists 

operating-system-supported hooks to furtively 
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snoop (and log) every keystroke delivered by the 

user into the current forefront application. Our goal 

is to stop user-space keyloggers after theft intimate 

data originally envisioned for a (trusted) genuine 

foreground request. Hateful foreground requests 

furtively classification user-issued keystrokes (e.g., 

a keylogger deceiving a right-hand word computer 

application) and request-specific keyloggers (e.g., 

browser plugins furtively execution keylogging 

activities) are outdoor our danger model then 

cannot be recognised using our discovery 

technique. Too note that a contextual keylogger 

cannot brood a forefront request and steal the 

current request focus on request deprived of the 

user directly noticing. Our perfect is founded on 

these comments and travels the option of isolating 

the keylogger in a skilful setting, where its 

behaviour is straight exposed to the discovery 

system. Our method includes controlling the 

keystroke proceedings that the keylogger obtains in 

input, and continually nursing the I/O action made 

by the keylogger in output. To declare discovery, 

we leverage the instinct that the association amid 

the input and output of the skilful setting can be 

modelled for most keyloggers with very decent 

estimate. Regardless of the alterations the keylogger 

performs, a typical pattern observed in the 

keystroke proceedings in input shall somehow be 

reproduced in the I/O action in output. Once the 

input then the output are skilful, we can classify 

common I/O designs and flag discovery.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our method completely disregards the gratified of 

the then the output data, and emphases wholly on 

their distribution. Warning the method to a 

measureable analysis allows the aptitude to tool the 

detection method with only poor devices, as we will 

better exemplify later. The fundamental model 

adopted, however, gifts extra tests. First, we must 

prudently deal with possible data alterations that 

may introduce measureable differences amid the 

input and the production patterns.  

 

4. ARCHITECTURE  

 

Our project is based on five dissimilar 

mechanisms as portrayed in injector, screen, pattern 

translator, sensor, design generator. The working 

system at the lowest contracts with the details of 

I/O then occasion treatment. The OS Area does not 

expose all the details to the higher levels deprived 

of using advantaged API calls. As a consequence, 

the injector and the screen operate at additional 

level of concept, the Stream Domain. At this level, 

keystroke events and the bytes production by a 

process seem as a stream produced at a specific 

rate. The task of the injector is to inject a keystroke 

stream to fake the behaviour of a user keying at the 

keyboard. Likewise, the monitor annals a stream of 

bytes to continually imprisonment the output 

behaviour of a specific process. A stream 

representation is only worried with the delivery of 

keystrokes or bytes produced over a given gap of 

observation, deprived of entailing any extra 

qualitative info. The injector obtains the input 

watercourse from the design translator, which acts 

as bond between the Watercourse Area and the 

Pattern Domain. Likewise, the screen delivers the 

output stream logged to the pattern interpreter for 

further analysis. In the Pattern Area, the input 

stream and the production stream are both 

represented in a additional abstract form, called 

Abstract Keystroke Pattern (AKP).  

 4.1 Injector 

  The role of the injector is to inject the input 

stream into the system, faking the behaviour of a 

operator at the console. By project, the injector 

must content several supplies. First, it must only 

rely on poor API calls. Second, it must be 

accomplished of injecting keystrokes at mutable 
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rates to competition the delivery of the input 

watercourse. Lastly, the subsequent sequence of 

keystroke events shaped should be no dissimilar 

than those made by a real user. In additional words, 

no user-space keylogger should be someway able to 

differentiate the two types of proceedings. To 

speech all these subjects, we influence the same 

method working in automatic testing. On Windows-

based working systems this functionality is if by the 

API call keybd_ occasion. In all Unix-like OSes 

secondary X11 the same functionality is obtainable 

via the API call XTestFake- KeyEvent.  

4.2 Monitor  

The monitor is accountable to best the 

output stream of all the consecutively processes. As 

done for the injector, we allow only poor API calls. 

In addition, we favour strategies to perform 

realtime monitoring with negligible above and the 

best level of resolve possible. Lastly, we are 

interested in application-level figures of I/O doings, 

to avoid dealing with filesystem-level hiding or 

other possible nuisances. In specific, the 

presentation pawns of each procedure are made 

obtainable via the class Win32_Process, which 

supports an effectual query-based border. The pawn 

Write Transmission Count covers the total number 

of bytes printed by the procedure meanwhile its 

creation.  

4.3 Pattern Translator 

 The role of the design interpreter is to alter 

an AKP into a stream and vice versa, assumed a set 

of shape parameters. A design in the AKP 

procedure can be modelled as a order of samples 

created from a stream tested with a unchanging 

time intermission. A example Pi of a design P is 

an nonconcrete picture of the amount of keystrokes 

produced throughout the period interval i. Apiece 

example is stored in a regularised procedure in the 

intermission ½0; 1_, anywhere 0 and 1 reproduce 

the predefined least and all-out number of 

keystrokes in a assumed time intermission. To alter 

an input project into a keystroke stream, the design 

interpreter reflects the next shape limits: N, the 

number of examples in the pattern; T, the 

continuous time intermission between any two 

consecutive samples; Kmin, the least amount of 

keystrokes per example allowed; then Kmax, the 

all-out number of keystrokes per example allowed.  

4.4 Detector  

The attainment of our discovery algorithm 

lies in the aptitude to infer a cause-effect 

relationship amid the keystroke watercourse 

vaccinated in the system and the I/O behavior of a 

keylogger procedure, or, more exactly, amid the 

own patterns in AKP form. Though one must 

inspect every applicant process in the scheme, the 

discovery algorithm functions on a single procedure 

at a time, classifying whether there is a robust 

resemblance between the input design and the 

output pattern got from the analysis of the I/O 

behavior of the board process. Exactly, given a 

predefined input design and an output design of a 

specific process, the goal of the discovery algorithm 

is to control whether there is a match in the designs 

and the target procedure can be recognised as a key 

logger with good likelihood. In difference to other 

association metrics, the PCC events the forte of a 

linear association between two sequence of 

samples, disregarding any nonlinear connotation. In 

our location, a linear need well approaches the 

association amid the input pattern then an output 

pattern shaped by a keylogger. The instinct is that a 

keylogger can only brand local choices on a 

perkeystroke basis with no information around the 

global delivery. Thus, in code, the subsequent 

behavior will linearly estimated the unique input 

stream injected into the system. In detail, the PCC 

is resilient to any change in location and scale, 

namely no difference can be observed in the 

correlation coefficient if every sample Pi of any of 

the two patterns is transformed into a _ Pi þ b, 

where a and b are arbitrary constants. This is 

important for a number of reasons.  

5. KEYLOGGER DETECTION  

To evaluate the ability to detect real-world 

keyloggers, we experimented with all the 

keyloggers from the top monitoring free software 

list [5], an online repository continuously updated 

with reviews and latest developments in the area. In 

addition, some of the keyloggers examined included 

support for encryption and most of them used 

variable-length encoding to store manually installed 

each keylogger, launched our detection system for 

N _ T ms, and recorded the results; we asserted 

successful.  



International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016 

ISSN :2394-2231                                        http://www.ijctjournal.org                           Page 180 

Another potential issue rises from 

keyloggers removal a fixed-format shot on the disk 

every time a change of focus is noticed. The header 

typically covers the date and the name of the target 

application. However, as we intended our discovery 

system to change focus at every sample, the header 

is red-faced out to disk at each time intermission 

along by all the keystrokes injected. As a 

consequence, the output pattern checked is just a 

location alteration of the sole, with the shift 

assumed by size of the header itself. Thanks to the 

location invariance stuff, our detection algorithm is 

naturally resilient to this alteration.  

 

5.1 False Negatives 

 In our approach our method, false positives 

output design of a keylogger wounds an 

unpredictably low PCC value. To test the 

robustness of our method against untrue rejections, 

we made 

numerous trials with our own artificial keylogger. 

Our evaluation starts by analyzing the impact of the 

amount of examples N and the time interval T on 

the final PCC value. For each design generation 

algorithm, we plot the PCC slow with our prototype 

keylogger which we arranged so that no cushioning 

or data alteration was taking place. Figs. 3a and 3b 

portray our answers with Kmin ¼ 1 and Kmax ¼ 

1;000. We detect that once the keylogger logs each 

keystroke without presenting delay or extra noise, 

the number of examples N does not affect the PCC 

value. This behaviour should not propose that N has 

no effect on the production of false rejections. Once 

noise in the output watercourse is to be predictable, 

advanced values of N are indeed wanted to produce 

more stable PCC values and evade false rejections. 

In difference, Fig. 3b shows that the PCC is 

sensitive to low values of the time interval T. The 

effect observed is due to the incapability of the 

system to absorb all the injected keystrokes for time 

intermissions smaller than 450 ms. Fig. 3c, in turn, 

shows the influence of Kmin on the PCC (with 

Kmax still constant). The consequences settle our 

observations in Section 4.4, i.e., that patterns 

branded by a low variance hinder the PCC, and thus 

a high variability in the inoculation design is 

desirable. We now analyze the impact of the all-out 

number of keystrokes per time intermission Kmax. 

High Kmax values are predictable to increase the 

level of erraticism, reduce the quantity of noise, and 

induce a more distinct delivery in the output 

watercourse of the keylogger. The keystroke 

degree, though, is clearly bound by the length of the 

time interval T. Fig. 4 portrays the PCC slow with 

our example keylogger for N ¼ 30, Kmin ¼ 1, and 

RND pattern cohort algorithm. The number reports 

very high PCC values for Kmax < 20,480 and T ¼ 

1;000 ms. This behaviour reflects the incapability 

of the system to engross more than Kmax _ 20,480 

in the given time intermission. Increasing T is, 

however, adequate to allow advanced Kmax values 

without significantly impacting the PCC. For 

example, with T ¼ 3,500 ms we can dual Kmax 

without level-headedly degrading the final PCC 

value.  

 

 

Transformations. First, we tested with a keylogger 

using a nontrivial fixed-length indoctrination for 

keystrokes. Fig. 5a portrays the consequences for 

dissimilar values of padding p with N ¼ 30, Kmin 

¼ 1, and Kmax ¼ 1,024. A value of p ¼ 1,024 

simulates a keylogger writing 1,024 bytes on the 

disk for each eavesdropped keystroke. As discussed 

in Section 4.4, the PCC should be unaffected in this 

case and presumably exhibit a constant behavior. 

The figure confirms this intuition, but displays the 
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PCC lessening linearly after p _ 10;000 bytes. This 

behavior is due to the limited I/O throughput that 

can be achieved within a single time interval. 

The behavior observed is very evaluation, 

our technique can still handle this class of 

keyloggers correctly for reasonable buffer sizes. 

Fig. 6 depicts our discovery consequences in 

contradiction of a keylogger buffering its output 

through a fixed-size buffer. The amount shows the 

impact of numerous likely choices of the bumper 

size on the final PCC value. We can notice the 

pivotal role of Kmax in definitely stating discovery. 

For instance, cumulative Kmax to 10,240 is 

necessary to achieve sufficiently high PCC values 

for the largest plentiful size future. This trial 

demonstrates once again that the key to discovery is 

persuading the pattern to definitely emerge in the 

output distribution, a feat that can be easily 

obtained by choosing a highly mutable 

immunisation design with low standards for Kmin 

and high values for Kmax. We believe these 

consequences are hopeful to admit the robustness of 

our detection technique in contradiction of false 

negatives, even in presence of multifaceted data 

transformations.  

5.3 False Positives 

 In our method, false positives may occur 

when the output pattern of some kind procedure 

unintentionally scores a important PCC value. If the 

value happens to be better than the designated 

threshold, a false discovery is highlighted. 
 

6 .EVASION AND COUNTERMEASURES 

 In this section, we speculate on the possible 

evasion techniques a keylogger may employment 

once our detection plan is prearranged on real 

systems. 

  

6.1 Aggressive Buffering  

A keylogger may rely on around forms of 

violent buffering, for example flushing a very large 

buffer every time intermission t, with t being 

possibly hours. While our model can possibly 

address this scenario, the very large gap of 

observation required to collect a drivable amount of 

examples would make the following detection 

technique irrational. It is important to point out that 

such a kerb stems from the appeal of the method 

and not from a project flaw in our detection model. 

For instance, our model could be practical to 

memory access designs instead of I/O designs to 

make the resulting discovery technique resistant to 

aggressive cushioning. This plan, however, would 

require a hardwearing substructure (e.g., virtualized 

environment) to monitor thememory accesses, thus 

hindering the welfares of a fully poor solution.  

 

6.2 Trigger-Based Behavior  

A keylogger may activate the keylogging 

activity only in face of specific events, for example 

when the user launches a specific request. 

Inappropriately, this trigger-based behavior may 

successfully evade our detection method. This is 

not, however, a shortcoming exact to our method, 

but rather a more fundamental kerb common to all 

the existing detection techniques based on lively 

analysis [17]. While we trust that the problematic of 

activating a specific behaviour is orthogonal to our 

work and already focus of much ongoing 

investigation, we point out that the user can still 

mitigate this threat by occasionally re-releasing 

detection runs when essential (e.g., every time a 

new particularly subtle context is accessed). Since 

our technique can vet all the procedures in a single 

detection run, we believe this plan can be 

realistically used in real-world situations.  

 

6.3 Discrimination Attacks  

Imitating the user’s behaviour may 

depiction our method to keyloggers talented to tell 

artificial then real keystrokes apart. A keylogger 

may, for example, ignore any contribution failing to 

show known arithmetical properties— e.g., not akin 

to the English language. Though, since we switch 

the input design, we can prudently make keystroke 

scancode sequences displaying the same statistical 

properties (e.g., English text) predictable by the 

keylogger, and therewith do a separate detection 

run thwarting this evasion method. Around the case 

of a keylogger disregarding keystrokes when 

detecting a high (nonhuman) inoculation rate. This 

plan, though, would make the keylogger disposed to 

to denial of service: a system obstinately generating 

and exfiltrating bogus keystrokes would persuade 

this type of keylogger to enduringly disable the 

keylogging activity. Recent work proves that 

building such a system is feasible in repetition (with 
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reasonable overhead) using normal two facilities 

[18].  

 

6.4 Decorrelation Attacks 

 Decor relation attacks effort at breaking the 

correlation metric our method relies on. Meanwhile 

of all the attacks this is exactly custom-made to 

thwarting our method, we hereby suggest a 

experiential envisioned to vet the system in case of 

negative discovery results. This is the case, for 

example, of a keylogger trying to generate I/O noise 

in the contextual and lowering the association that 

is bound to exist between the pattern of keystrokes 

injected I and its own output pattern O. In the 

attacker’s ideal case, this interprets to PCCðI;OÞ _ 

0. To approximate this result in the general case, 

however, the attacker must adapt its disbursement 

strategy to the pattern cohort algorithm in use, i.e., 

once switching to a new inoculation I0 6¼ I, the 

output design should reflect a new delivery O0 6¼ 

O. The assailant could, for instance, enforce this 

property by adapting the noise generation to some 

input distributionspecific variable (e.g., the present 

keystroke rate). Failure to do so will result in 

random noise uncorrelated with the injection, a 

scenario which is already touched by our PCCbased 

detection technique.  

This method, often used to liken time series, 

warps sequences in the time measurement to 

determine a measure of similarity independent of 

nonlinear variations in the time dimensions. To 

evaluate our heuristic, we applied two different 

keyloggers trying to evade our detection technique. 

The first one, K-EXP, uses a similar thread to write 

a random amount of bytes which increases 

exponentially with the number of keystrokes 

already logged to the disk. Since the alteration is 

nonlinear, we expect heavily disconcerted PCC 

values.  

 

7. RELATED WORK  

While ours is the first method to solely rely 

on unprivileged mechanisms, several methods have 

been recently future to detect privacy-breaching 

malware, counting keyloggers. Behaviour-based 

spyware detection has been first presented by Kirda 

et al. Their approach is custom-made to malicious 

Internet Explorer loadable modules. In particular, 

modules nursing the user’s activity and disclosing 

private data to third parties are highlighted as 

malware. Their examination models hateful 

behavior in footings of API calls invoked in 

response to browser events. Those used by 

keyloggers, though, are also usually used by 

legitimate programs. Their approach is therefore 

prone to false positives, which can only be 

mitigated with continuously efficient whitelists. 

Other keylogger-specific methods have optional 

detecting the use of well-known keystroke 

interception APIs. Aslam suggest binary static 

analysis to locate the envisioned API calls. 

Unfortunately, all these calls are also used by 

legitimate requests (e.g., shortcutmanagers) and this 

approach is again prone to false positives. push this 

method further, specifically targeting Windows-

based working systems.  

Earlier to our method is the answer 

proposed by Al-Hammadi. Their plan is to model 

the keylogging behavior in footings of the number 

of API calls issued in the gap of observation. To be 

more exact, they observe the frequency of API calls 

invoked to 1) intercept keystrokes, 2) script to a 

file, and 3) delivery bytes over the network. A 

keylogger is detected once two of these incidences 

are found to be highly correlated. Since no bogus 

proceedings are issued to the system (no injection 

of crafted input), the correlation may not be as 

strong as predictable. The resulting value would be 

even more reduced in case of any delay presented 

by the keylogger. Furthermore, since their 

inspection is eavesdropped. This evaluates the 

impact of numerous conditions. First, the 

experiment fakes a keylogger randomly dropping 

keystrokes with a certain likelihood. 

8. CONCLUSIONS  

In this paper, we obtainable an poor black-

box approach for precise discovery of the most 

common keyloggers, i.e., user-space keyloggers. 

We modeled the behavior of a keylogger by 

surgically correlating the input (i.e., the keystrokes) 

with the output (i.e., the I/O patterns produced by 

the keylogger). Impact of N on the DTW. keystroke 

patterns. We then deliberated the problem of 

choosing the best input pattern to recover our 

detection rate. Then, we presented an 

implementation of our detection technique on 
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Windows, arguably the most susceptible OS to the 

danger of keyloggers. To found an OS-independent 

architecture, we also gave application details for 

other operating systems. We positively evaluated 

our prototype scheme against the most communal 

free keyloggers [5], with no false positives and no 

untrue negatives reported. Other new results with a 

homegrown keylogger demonstrated the 

effectiveness of our technique in the general case. 

While attacks to our detection method are possible 

and have been discussed at length in Section 6, we 

believe our approach considerably raises the bar for 

protecting the user in contradiction of the danger of 

keyloggers. 
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