
International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 176

 Unprivileged Black-Box Detection of User-Space Key loggers
1
Mr.S.Jagadeesan,M.Sc, MCA., M.Phil., ME[CSE].,

2
S.Rubiya,

1
Assistant professor,

2
Final year,

Department of Computer Applications,

Nandha Engineering College/Anna University,

Erode.

--************************----------------------------------

Abstract:
 Software keyloggers are a fast growing class of invasive software often used to harvest confidential

information. One of the main reasons for this rapid growth is the possibility for unprivileged programs

running in user space to eavesdrop and record all thekeystrokes typed by the users of a system. The ability

to run in unprivileged mode facilitates their implementation and distribution, but,at the same time, allows

one to understand and model their behavior in detail. Leveraging this characteristic, we propose a new

detection technique that simulates carefully crafted keystroke sequences in input and observes the behavior

of the keylogger in output to unambiguously identify it among all the running processes. We have

prototyped our technique as an unprivileged application, hence matching the same ease of deployment of a

keylogger executing in unprivileged mode. We have successfully evaluated the underlying technique

against the most common free keyloggers. This confirms the viability of our approach in practical

scenarios. We have also devised potential evasion techniques that may be adopted to circumvent our

approach and proposed a heuristic to strengthen the effectiveness of our solution against more elaborated

attacks. Extensive experimental results confirm that our technique is robust to both false positives and

false negatives in realistic settings.

Keywords — Invasive software, keylogger, security, black-box, PCC

--************************----------------------------------

I. INTRODUCTION

KEYLOGGERS are entrenched on a machine to

deliberately monitor the user action by logging

keystrokes and finally delivering them to a third

party [1]. While they are rarely used for genuine

drives (e.g., surveillance/parental monitoring

infrastructures), key loggers are often unkindly

exploited by assailants to steal intimate information.

Many credit card numbers then passwords have

been occupied using key loggers [2], [3], which

makes them one of the most unsafe types of

spyware recognised to date.

Key loggers can be applied as tiny hardware plans

or more suitably in software. Software-based key

logger image be additional classified based on the

privileges they require to perform. Key loggers

applied by a kernel unit run with full freedoms in

kernel space. Equally, a fully poor key logger can

be applied by a simple user-space procedure. It is

significant to notice that auser-space key logger can

easily rely on recognised sets of poor APIs

commonly available on modern working systems

(OSs). This is not the case for a key logger applied

as a seed module. In seed space, the computer

operator must rely on kernel-level amenities to

interrupt all the messages posted by the console

driver, certainly needful a substantial effort then

information for an real and bug-free

implementation. Also, a key logger applied as a

user-space procedure is much calmer to deploy

since no special consent is required. A

 user can mistakenly regard the key logger as a

inoffensive part of software and being cuckolded in

performing it. On the conflicting, kernel-space key

loggers need a user with wonderful user freedoms

to deliberately install and execute unsigned code

within the kernel, a repetition often prohibited by

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 177

modern working systems such Gaps Vista or

Windows 7. In light of these comments, it is no

surprise that 95 out of a hundred of the current key

loggers run in user space [4]. Notwithstanding the

rapid development of key logger-based deceptions

(i.e., identity theft, password leakage, etc.), not

many effective and efficient solutions have been

proposed to address this problem. Old-style defense

mechanisms use Finger production plans similar to

those used to detect worms and worms.

Inappropriately, this plan is hardly real against the

vast amount of new key logger alternatives

developing every day in the wild. In this paper, we

propose a new method to detect key loggers

running as poor user-space procedures. To match

the same placement model, our method is

completely applied in an poor process. As a

consequence, our answer is portable, uninstructive,

easy to install, then yet very real. In the final part of

this paper, we further authenticate our approach

with a home full-grown key logger that efforts to

thwart our discovery method.

2 INTERNALS OF MODERN

KEYLOGGERS

Breaking the privacy of an separate by

classification his keystrokes can be committed at

many dissimilar levels. For example, an assailant

with bodily access to the mechanism might bug the

hardware of the keyboard. A lying audio releases

produced by the user typing [6], or convenient to

purchase a software solution, install it on all

implemented in many different ways. Aimed at

instance, outside keyloggers rely on approximately

physical property, either the mechanism.

Contingent on the location, a keylogger can be

owner of an Internet cafe´, in turn, may find it more

the electromagnetic releases of a wireless keyboard

[7]. the stations, and have the logs released on his

own Hardware keyloggers are still outside plans,

but are applied as dongles placed in amid keyboard

and motherboard. All these plans, though, need

bodily access to the board machine.

To overwhelmed this kerb, software

approaches are additional commonly used.

Hypervisor-based keyloggers (e.g., BluePill [8]) are

the frank software development of hardware based

keyloggers, factually execution a man-in-the-

middle bout amid the hardware then the working

system. Kernel keyloggers originate instant in the

chain then are often applied as part of more

multifaceted rootkits. In difference to hypervisor-

based methods, hooks are straight used to interrupt

buffer-processing proceedings or additional seed

messages. Albeit effective, all these methods need

advantaged access to the machine. Furthermore,

script a kernel driver hypervisor-based methods

pose even more challenges requires a considerable

effort and knowledge for an effective and bug-free

implementation (smooth a single bug may lead to a

kernel fright). User-space keyloggers, on the

additional hand, do not need any special honour to

be deployed. They can be connected and performed

irrespective of the freedoms granted.

Fig. 1. The distribution stages of a keystroke, then
the mechanisms possibly undermined (we omit
hypervisor-based methods for the sake of clarity)

This is a feat unbearable for kernel keyloggers,

since they need either super user freedoms or a

susceptibility that allows random kernel code

implementation. Also, user space keylogger authors

can securely rely on well-documented sets of APIs

usually obtainable on modern working systems,

with no singular programming skills obligatory.

3.APPROACH

Our method is openly focused on scheming a

detection method for poor user-space keyloggers.

Unlike other classes of keyloggers, a user-space

keylogger is a contextual process which lists

operating-system-supported hooks to furtively

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 178

snoop (and log) every keystroke delivered by the

user into the current forefront application. Our goal

is to stop user-space keyloggers after theft intimate

data originally envisioned for a (trusted) genuine

foreground request. Hateful foreground requests

furtively classification user-issued keystrokes (e.g.,

a keylogger deceiving a right-hand word computer

application) and request-specific keyloggers (e.g.,

browser plugins furtively execution keylogging

activities) are outdoor our danger model then

cannot be recognised using our discovery

technique. Too note that a contextual keylogger

cannot brood a forefront request and steal the

current request focus on request deprived of the

user directly noticing. Our perfect is founded on

these comments and travels the option of isolating

the keylogger in a skilful setting, where its

behaviour is straight exposed to the discovery

system. Our method includes controlling the

keystroke proceedings that the keylogger obtains in

input, and continually nursing the I/O action made

by the keylogger in output. To declare discovery,

we leverage the instinct that the association amid

the input and output of the skilful setting can be

modelled for most keyloggers with very decent

estimate. Regardless of the alterations the keylogger

performs, a typical pattern observed in the

keystroke proceedings in input shall somehow be

reproduced in the I/O action in output. Once the

input then the output are skilful, we can classify

common I/O designs and flag discovery.

Our method completely disregards the gratified of

the then the output data, and emphases wholly on

their distribution. Warning the method to a

measureable analysis allows the aptitude to tool the

detection method with only poor devices, as we will

better exemplify later. The fundamental model

adopted, however, gifts extra tests. First, we must

prudently deal with possible data alterations that

may introduce measureable differences amid the

input and the production patterns.

4. ARCHITECTURE

Our project is based on five dissimilar

mechanisms as portrayed in injector, screen, pattern

translator, sensor, design generator. The working

system at the lowest contracts with the details of

I/O then occasion treatment. The OS Area does not

expose all the details to the higher levels deprived

of using advantaged API calls. As a consequence,

the injector and the screen operate at additional

level of concept, the Stream Domain. At this level,

keystroke events and the bytes production by a

process seem as a stream produced at a specific

rate. The task of the injector is to inject a keystroke

stream to fake the behaviour of a user keying at the

keyboard. Likewise, the monitor annals a stream of

bytes to continually imprisonment the output

behaviour of a specific process. A stream

representation is only worried with the delivery of

keystrokes or bytes produced over a given gap of

observation, deprived of entailing any extra

qualitative info. The injector obtains the input

watercourse from the design translator, which acts

as bond between the Watercourse Area and the

Pattern Domain. Likewise, the screen delivers the

output stream logged to the pattern interpreter for

further analysis. In the Pattern Area, the input

stream and the production stream are both

represented in a additional abstract form, called

Abstract Keystroke Pattern (AKP).

 4.1 Injector

 The role of the injector is to inject the input

stream into the system, faking the behaviour of a

operator at the console. By project, the injector

must content several supplies. First, it must only

rely on poor API calls. Second, it must be

accomplished of injecting keystrokes at mutable

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 179

rates to competition the delivery of the input

watercourse. Lastly, the subsequent sequence of

keystroke events shaped should be no dissimilar

than those made by a real user. In additional words,

no user-space keylogger should be someway able to

differentiate the two types of proceedings. To

speech all these subjects, we influence the same

method working in automatic testing. On Windows-

based working systems this functionality is if by the

API call keybd_ occasion. In all Unix-like OSes

secondary X11 the same functionality is obtainable

via the API call XTestFake- KeyEvent.

4.2 Monitor

The monitor is accountable to best the

output stream of all the consecutively processes. As

done for the injector, we allow only poor API calls.

In addition, we favour strategies to perform

realtime monitoring with negligible above and the

best level of resolve possible. Lastly, we are

interested in application-level figures of I/O doings,

to avoid dealing with filesystem-level hiding or

other possible nuisances. In specific, the

presentation pawns of each procedure are made

obtainable via the class Win32_Process, which

supports an effectual query-based border. The pawn

Write Transmission Count covers the total number

of bytes printed by the procedure meanwhile its

creation.

4.3 Pattern Translator

 The role of the design interpreter is to alter

an AKP into a stream and vice versa, assumed a set

of shape parameters. A design in the AKP

procedure can be modelled as a order of samples

created from a stream tested with a unchanging

time intermission. A example Pi of a design P is

an nonconcrete picture of the amount of keystrokes

produced throughout the period interval i. Apiece

example is stored in a regularised procedure in the

intermission ½0; 1_, anywhere 0 and 1 reproduce

the predefined least and all-out number of

keystrokes in a assumed time intermission. To alter

an input project into a keystroke stream, the design

interpreter reflects the next shape limits: N, the

number of examples in the pattern; T, the

continuous time intermission between any two

consecutive samples; Kmin, the least amount of

keystrokes per example allowed; then Kmax, the

all-out number of keystrokes per example allowed.

4.4 Detector

The attainment of our discovery algorithm

lies in the aptitude to infer a cause-effect

relationship amid the keystroke watercourse

vaccinated in the system and the I/O behavior of a

keylogger procedure, or, more exactly, amid the

own patterns in AKP form. Though one must

inspect every applicant process in the scheme, the

discovery algorithm functions on a single procedure

at a time, classifying whether there is a robust

resemblance between the input design and the

output pattern got from the analysis of the I/O

behavior of the board process. Exactly, given a

predefined input design and an output design of a

specific process, the goal of the discovery algorithm

is to control whether there is a match in the designs

and the target procedure can be recognised as a key

logger with good likelihood. In difference to other

association metrics, the PCC events the forte of a

linear association between two sequence of

samples, disregarding any nonlinear connotation. In

our location, a linear need well approaches the

association amid the input pattern then an output

pattern shaped by a keylogger. The instinct is that a

keylogger can only brand local choices on a

perkeystroke basis with no information around the

global delivery. Thus, in code, the subsequent

behavior will linearly estimated the unique input

stream injected into the system. In detail, the PCC

is resilient to any change in location and scale,

namely no difference can be observed in the

correlation coefficient if every sample Pi of any of

the two patterns is transformed into a _ Pi þ b,

where a and b are arbitrary constants. This is

important for a number of reasons.

5. KEYLOGGER DETECTION

To evaluate the ability to detect real-world

keyloggers, we experimented with all the

keyloggers from the top monitoring free software

list [5], an online repository continuously updated

with reviews and latest developments in the area. In

addition, some of the keyloggers examined included

support for encryption and most of them used

variable-length encoding to store manually installed

each keylogger, launched our detection system for

N _ T ms, and recorded the results; we asserted

successful.

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 180

Another potential issue rises from

keyloggers removal a fixed-format shot on the disk

every time a change of focus is noticed. The header

typically covers the date and the name of the target

application. However, as we intended our discovery

system to change focus at every sample, the header

is red-faced out to disk at each time intermission

along by all the keystrokes injected. As a

consequence, the output pattern checked is just a

location alteration of the sole, with the shift

assumed by size of the header itself. Thanks to the

location invariance stuff, our detection algorithm is

naturally resilient to this alteration.

5.1 False Negatives

 In our approach our method, false positives

output design of a keylogger wounds an

unpredictably low PCC value. To test the

robustness of our method against untrue rejections,

we made

numerous trials with our own artificial keylogger.

Our evaluation starts by analyzing the impact of the

amount of examples N and the time interval T on

the final PCC value. For each design generation

algorithm, we plot the PCC slow with our prototype

keylogger which we arranged so that no cushioning

or data alteration was taking place. Figs. 3a and 3b

portray our answers with Kmin ¼ 1 and Kmax ¼

1;000. We detect that once the keylogger logs each

keystroke without presenting delay or extra noise,

the number of examples N does not affect the PCC

value. This behaviour should not propose that N has

no effect on the production of false rejections. Once

noise in the output watercourse is to be predictable,

advanced values of N are indeed wanted to produce

more stable PCC values and evade false rejections.

In difference, Fig. 3b shows that the PCC is

sensitive to low values of the time interval T. The

effect observed is due to the incapability of the

system to absorb all the injected keystrokes for time

intermissions smaller than 450 ms. Fig. 3c, in turn,

shows the influence of Kmin on the PCC (with

Kmax still constant). The consequences settle our

observations in Section 4.4, i.e., that patterns

branded by a low variance hinder the PCC, and thus

a high variability in the inoculation design is

desirable. We now analyze the impact of the all-out

number of keystrokes per time intermission Kmax.

High Kmax values are predictable to increase the

level of erraticism, reduce the quantity of noise, and

induce a more distinct delivery in the output

watercourse of the keylogger. The keystroke

degree, though, is clearly bound by the length of the

time interval T. Fig. 4 portrays the PCC slow with

our example keylogger for N ¼ 30, Kmin ¼ 1, and

RND pattern cohort algorithm. The number reports

very high PCC values for Kmax < 20,480 and T ¼

1;000 ms. This behaviour reflects the incapability

of the system to engross more than Kmax _ 20,480

in the given time intermission. Increasing T is,

however, adequate to allow advanced Kmax values

without significantly impacting the PCC. For

example, with T ¼ 3,500 ms we can dual Kmax

without level-headedly degrading the final PCC

value.

Transformations. First, we tested with a keylogger

using a nontrivial fixed-length indoctrination for

keystrokes. Fig. 5a portrays the consequences for

dissimilar values of padding p with N ¼ 30, Kmin

¼ 1, and Kmax ¼ 1,024. A value of p ¼ 1,024

simulates a keylogger writing 1,024 bytes on the

disk for each eavesdropped keystroke. As discussed

in Section 4.4, the PCC should be unaffected in this

case and presumably exhibit a constant behavior.

The figure confirms this intuition, but displays the

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 181

PCC lessening linearly after p _ 10;000 bytes. This

behavior is due to the limited I/O throughput that

can be achieved within a single time interval.

The behavior observed is very evaluation,

our technique can still handle this class of

keyloggers correctly for reasonable buffer sizes.

Fig. 6 depicts our discovery consequences in

contradiction of a keylogger buffering its output

through a fixed-size buffer. The amount shows the

impact of numerous likely choices of the bumper

size on the final PCC value. We can notice the

pivotal role of Kmax in definitely stating discovery.

For instance, cumulative Kmax to 10,240 is

necessary to achieve sufficiently high PCC values

for the largest plentiful size future. This trial

demonstrates once again that the key to discovery is

persuading the pattern to definitely emerge in the

output distribution, a feat that can be easily

obtained by choosing a highly mutable

immunisation design with low standards for Kmin

and high values for Kmax. We believe these

consequences are hopeful to admit the robustness of

our detection technique in contradiction of false

negatives, even in presence of multifaceted data

transformations.

5.3 False Positives

 In our method, false positives may occur

when the output pattern of some kind procedure

unintentionally scores a important PCC value. If the

value happens to be better than the designated

threshold, a false discovery is highlighted.

6 .EVASION AND COUNTERMEASURES

 In this section, we speculate on the possible

evasion techniques a keylogger may employment

once our detection plan is prearranged on real

systems.

6.1 Aggressive Buffering

A keylogger may rely on around forms of

violent buffering, for example flushing a very large

buffer every time intermission t, with t being

possibly hours. While our model can possibly

address this scenario, the very large gap of

observation required to collect a drivable amount of

examples would make the following detection

technique irrational. It is important to point out that

such a kerb stems from the appeal of the method

and not from a project flaw in our detection model.

For instance, our model could be practical to

memory access designs instead of I/O designs to

make the resulting discovery technique resistant to

aggressive cushioning. This plan, however, would

require a hardwearing substructure (e.g., virtualized

environment) to monitor thememory accesses, thus

hindering the welfares of a fully poor solution.

6.2 Trigger-Based Behavior

A keylogger may activate the keylogging

activity only in face of specific events, for example

when the user launches a specific request.

Inappropriately, this trigger-based behavior may

successfully evade our detection method. This is

not, however, a shortcoming exact to our method,

but rather a more fundamental kerb common to all

the existing detection techniques based on lively

analysis [17]. While we trust that the problematic of

activating a specific behaviour is orthogonal to our

work and already focus of much ongoing

investigation, we point out that the user can still

mitigate this threat by occasionally re-releasing

detection runs when essential (e.g., every time a

new particularly subtle context is accessed). Since

our technique can vet all the procedures in a single

detection run, we believe this plan can be

realistically used in real-world situations.

6.3 Discrimination Attacks

Imitating the user’s behaviour may

depiction our method to keyloggers talented to tell

artificial then real keystrokes apart. A keylogger

may, for example, ignore any contribution failing to

show known arithmetical properties— e.g., not akin

to the English language. Though, since we switch

the input design, we can prudently make keystroke

scancode sequences displaying the same statistical

properties (e.g., English text) predictable by the

keylogger, and therewith do a separate detection

run thwarting this evasion method. Around the case

of a keylogger disregarding keystrokes when

detecting a high (nonhuman) inoculation rate. This

plan, though, would make the keylogger disposed to

to denial of service: a system obstinately generating

and exfiltrating bogus keystrokes would persuade

this type of keylogger to enduringly disable the

keylogging activity. Recent work proves that

building such a system is feasible in repetition (with

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 182

reasonable overhead) using normal two facilities

[18].

6.4 Decorrelation Attacks

 Decor relation attacks effort at breaking the

correlation metric our method relies on. Meanwhile

of all the attacks this is exactly custom-made to

thwarting our method, we hereby suggest a

experiential envisioned to vet the system in case of

negative discovery results. This is the case, for

example, of a keylogger trying to generate I/O noise

in the contextual and lowering the association that

is bound to exist between the pattern of keystrokes

injected I and its own output pattern O. In the

attacker’s ideal case, this interprets to PCCðI;OÞ _

0. To approximate this result in the general case,

however, the attacker must adapt its disbursement

strategy to the pattern cohort algorithm in use, i.e.,

once switching to a new inoculation I0 6¼ I, the

output design should reflect a new delivery O0 6¼

O. The assailant could, for instance, enforce this

property by adapting the noise generation to some

input distributionspecific variable (e.g., the present

keystroke rate). Failure to do so will result in

random noise uncorrelated with the injection, a

scenario which is already touched by our PCCbased

detection technique.

This method, often used to liken time series,

warps sequences in the time measurement to

determine a measure of similarity independent of

nonlinear variations in the time dimensions. To

evaluate our heuristic, we applied two different

keyloggers trying to evade our detection technique.

The first one, K-EXP, uses a similar thread to write

a random amount of bytes which increases

exponentially with the number of keystrokes

already logged to the disk. Since the alteration is

nonlinear, we expect heavily disconcerted PCC

values.

7. RELATED WORK

While ours is the first method to solely rely

on unprivileged mechanisms, several methods have

been recently future to detect privacy-breaching

malware, counting keyloggers. Behaviour-based

spyware detection has been first presented by Kirda

et al. Their approach is custom-made to malicious

Internet Explorer loadable modules. In particular,

modules nursing the user’s activity and disclosing

private data to third parties are highlighted as

malware. Their examination models hateful

behavior in footings of API calls invoked in

response to browser events. Those used by

keyloggers, though, are also usually used by

legitimate programs. Their approach is therefore

prone to false positives, which can only be

mitigated with continuously efficient whitelists.

Other keylogger-specific methods have optional

detecting the use of well-known keystroke

interception APIs. Aslam suggest binary static

analysis to locate the envisioned API calls.

Unfortunately, all these calls are also used by

legitimate requests (e.g., shortcutmanagers) and this

approach is again prone to false positives. push this

method further, specifically targeting Windows-

based working systems.

Earlier to our method is the answer

proposed by Al-Hammadi. Their plan is to model

the keylogging behavior in footings of the number

of API calls issued in the gap of observation. To be

more exact, they observe the frequency of API calls

invoked to 1) intercept keystrokes, 2) script to a

file, and 3) delivery bytes over the network. A

keylogger is detected once two of these incidences

are found to be highly correlated. Since no bogus

proceedings are issued to the system (no injection

of crafted input), the correlation may not be as

strong as predictable. The resulting value would be

even more reduced in case of any delay presented

by the keylogger. Furthermore, since their

inspection is eavesdropped. This evaluates the

impact of numerous conditions. First, the

experiment fakes a keylogger randomly dropping

keystrokes with a certain likelihood.

8. CONCLUSIONS

In this paper, we obtainable an poor black-

box approach for precise discovery of the most

common keyloggers, i.e., user-space keyloggers.

We modeled the behavior of a keylogger by

surgically correlating the input (i.e., the keystrokes)

with the output (i.e., the I/O patterns produced by

the keylogger). Impact of N on the DTW. keystroke

patterns. We then deliberated the problem of

choosing the best input pattern to recover our

detection rate. Then, we presented an

implementation of our detection technique on

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 183

Windows, arguably the most susceptible OS to the

danger of keyloggers. To found an OS-independent

architecture, we also gave application details for

other operating systems. We positively evaluated

our prototype scheme against the most communal

free keyloggers [5], with no false positives and no

untrue negatives reported. Other new results with a

homegrown keylogger demonstrated the

effectiveness of our technique in the general case.

While attacks to our detection method are possible

and have been discussed at length in Section 6, we

believe our approach considerably raises the bar for

protecting the user in contradiction of the danger of

keyloggers.

REFERENCES

[1] T. Holz, M. Engelberth, and F. Freiling, “Learning More About the

Underground Economy: A Case-Study of Keyloggers and Dropzones,”
Proc. 14th European Symp. Research in Computer Security, pp. 1-18,
2009.

[2] San Jose Mercury News, “Kinkois Spyware Case Highlights Risk of
Public Internet Terminals,” http://www.siliconvalley.com/
mld/siliconvalley/news/6359407.htm, 2012.

[3] N. Strahija, “Student Charged After College Computers Hacked,”
http://www.xatrix.org/article2641.html, 2012.

[4] N. Grebennikov, “Keyloggers: How They Work and How to Detect

Them,” http://www.viruslist.com/en/analysis? pubid=204791931, 2012.

[5] Security Technology Ltd., “Testing and Reviews of Keyloggers,

Monitoring Products and Spyware,” http://www.keylogger. org, 2012.

[6] L. Zhuang, F. Zhou, and J.D. Tygar, “Keyboard Acoustic Emanations

Revisited,” ACM Trans. Information and System Security, vol. 13, no.
1, pp. 1-26, 2009.

[7] M. Vuagnoux and S. Pasini, “Compromising Electromagnetic
Emanations of Wired and Wireless Keyboards,” Proc. 18th USENIX
Security Symp., pp. 1-16, 2009.

[8] J. Rutkowska, “Subverting Vista Kernel for Fun and Profit,” Black Hat
Briefings, vol. 5, 2007.

[9] J.L. Rodgers and W.A. Nicewander, “Thirteen Ways to Look at the
Correlation Coefficient,” The Am. Statistician, vol. 42, no. 1, pp. 59-66,
Feb. 1988.

[10] J. Benesty, J. Chen, and Y. Huang, “On the Importance of the Pearson
Correlation Coefficient in Noise Reduction,” IEEE Trans. Audio,
Speech, and Language Processing, vol. 16, no. 4, pp. 757-765, May
2008.

[11] L. Goodwin and N. Leech, “Understanding Correlation: Factors that
Affect the Size of r,” Experimental Education, vol. 74, no. 3,
pp. 249-266, 2006.

[12] J. Aldrich, “Correlations Genuine and Spurious in Pearson and Yule,”
Statistical Science, vol. 10, no. 4, pp. 364-376, 1995.

[13] W. Hsu and A. Smith, “Characteristics of I/O Traffic in Personal
Computer and Server Workloads,” IBM System J., vol. 42, no. 2,
pp. 347-372, 2003.

[14] H.W. Kuhn, “The Hungarian Method for the Assignment Problem,”

Naval Research Logistics Quarterly, vol. 2, pp. 83-9, 1955.

[15] G. Kochenberger, F. Glover, and B. Alidaee, “An Effective Approach

for Solving the Binary Assignment Problem with Side Constraints,”
Information Technology and Decision Making, vol. 1,
pp. 121-129, May 2002.

[16] BAPCO, “SYSmark 2004 SE,” http://www.bapco.com, 2012.
[17] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution

Paths for Malware Analysis,” Proc. IEEE 28th Symp. Security and
Privacy, pp. 231-245, May 2007.

[18] S. Ortolani and B. Crispo, “Noisykey: Tolerating Keyloggers via
Keystrokes Hiding,” Proc. Seventh USENIX Workshop Hot Topics in
Security, 2012.

