
International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 124

–––

Molecular dynamics Parallel simulation of Carbon Nanotubes

based on GPU
Sheng Lai

1
, Xiaohua Meng

2
, Dongqin Zheng

3

1, 2
(Department of Compute Science, Jinan University, Guangzhou 510632,China)

3
(Department of Physics, Jinan University, Guangzhou 510632,China)

--************************---------------------------------

Abstract:
 Molecular dynamics simulation is in-comparably superior to both experiments method and

theoretical analysis. However, because computational effort of molecular dynamics simulation is very

large, especially, the simulation of a large number of Carbon Nano Tube (CNT) particles, general CPU

serial algorithm implementation is inefficient and slow. A Compute Unified Device Architecture (CUDA)

based parallel algorithm of CNT molecular dynamics is proposed in this paper to take advantage of the

data parallelism of Graphic Processing Unit (GPU). A CNT is divided to several blocks and processed

parallel in the GPU. Experimental results show that the algorithm can obtain a speed-up more than 10

times to the CPU serial algorithm in a low-configured graphics card that has only 16 GPU stream

processors.

Keywords —Carbon Nano Tube (CNT),Molecular dynamics, Compute Unified Device Architecture

(CUDA),Parallel computation,Time efficiency,Speed-up ratio

--************************----------------------------------

I. INTRODUCTION

Since 1957, ALDER et al. molecular dynamics

have firstly been used to study the hard-ball

systems, molecular dynamics has been widely

applied in many fields such as crystal growth,

indentation test, tribology and diamond synthesis

with low- pressure, etc. In newly emerging field of

the nanometer engineering, a macroscopic

mechanism on the basis of continuous medium can

hardly explain some particular phenomenon of

nanometer engineering. Hence, Molecular

dynamics became an important way for researches.

In 1990, LANDMAN et al. used molecular

dynamics to simulate the process of nano-

indentation on Au (001) substrate surface by Ni-tip.

The simulation results had been published on the

journal Science, and considered to be a landmark

achievement in this field. SCHIOTZd et al. took

molecular dynamics simulation algorithm to

analyze the plastic deformation of polycrystalline

copper with different crystallite dimensions, and

found that crystallite dimension and strength do not

strictly follow the Hall-Petch relation.

Molecular dynamics simulation has advantages

dramatically superior to both theoretical analysis

and experiments. However, because of the

extremely high requirements of computation and

limitation of computer’ capacity, molecular

dynamics has always been highly concerned. To

enlarge the scale of this simulation algorithm, many

experts and scholars both in the domestic and

overseas have done a great deal of research works.

The simulation algorithm has been improved from

the serial algorithm that was in order to enhancing

the scale of single machine to the parallel algorithm

by assigning the computation task to multiple CPUs

to enlarge the simulation scale. And the number of

atoms that involved in computation has also been

increased from thousands to millions, or even

hundred millions. Because CNT contains a large

number of particles and has complex structure, its

molecular dynamics simulation requires strong

computation capability. When CPU simulates the

serial algorithm, there is the disadvantage of great

RESEARCH ARTICLE OPEN ACCESS

 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 125

amount of calculation, long computing time and

great limitation of the particle number of simulation

system.

Based on the CUDA platform, this paper studied

and implemented the parallel simulation algorithm

of molecular dynamics by controlling multiple GPU

stream processing units and utilizing GUP’s

powerful parallel computation capability strong and

efficient data transmission capability. The CNT

system was divided into a parallelizable

computational unit with multiple layers to calculate.

Experimental results show that the GPU-based

parallelizable simulation algorithm of CNT

molecular dynamics implemented in CUDA

platform can speed up computation, improve the

execution efficiency and further increase the

simulation calculation scale, which has great

significance and effect to application of CNT.

II. BRIEF INTRODUCTION TO GPU AND

CUDA

GPU, with the full name of Graphic Processor

Unit, has now been widely used and becomes a

powerful parallel processing unit. What’s more,

GPU is the processors with multi-threads and multi-

cores that are very strong and efficient in parallel

computation and data transmission. GUP is

powerful in parallel computation and floating-point

arithmetic, and efficient in data transmission.

However, GPU also has its flaws. For example, the

programming of GPU can be made only through

graphics API (Application Program Interface),

which is not convenient for programmers; GPU

programming has large limitation and is not so

flexible; What’s more, because of the bottleneck of

bandwidth (a transfer of data volume between GPU

and video memory), GUP’s computation capability

cannot be fully played. Recent years, the

performance of GPU has developed rapidly, and its

memory bandwidth and floating- point arithmetic

capability also have gotten great development.

CUDA (Compute Unified Device Architecture) is

a computing platform developed by NVIDIA.

CUDA is an infrastructure, which takes C language

as the programming language and provides a great

deal of high-performance computing instructions

for development. In this way, we can establish a

more efficient intensive data computation solution

based on the powerful computing capability of the

GPU. Generally, CUDA consists of two parts: host

(operated in CPU) and device (operated in GPU).

The birth of CUDA make GPU programming more

convenient, and let GUP plays its powerful

computing capability in many other fields rather

than just limited in field of graphic processing.

Computation process of CUDA model can be

split into 4 steps, as shown in Fig. 1.

Fig. 1: Computation process of a CUDA

i) Copy the data that need to be processed from

internal memory to video memory;

ii) CPU sends program instructions to GPU.

iii) Multiprocessor in GPU executes relevant

instructions to the data in video memory.

During computation, there may need frequent

data exchange between GPU and video

memory, and the final computation results are

stored in video memory;

iv) Copy the computation results from video

memory to internal memory;

III. VERLET SIMULATION ALGORITHM

OF MOLECULAR DYNAMICS

Molecular dynamics is a set of molecule

simulation methods, and is an important and

effective method of computer-based atomic scale

simulation. This method uses Newton mechanics to

simulate the molecular motion. It samples from the

moleculesystem in different status to calculate the

system’s configurations integrals. Based on the

configuration integrals, we can calculate the

thermodynamic quantities and other macroscopic

properties. Thus, it is an important approach to

simulate CNT with molecular dynamics.

Computations involved in Verlet algorithm

mainly include following:

i) Do Taylor Expansion to)(x tt ∆+ and)-(x tt ∆ ,

Internal memory

Video memory

GPU

CPU

 International Journal of Computer Techniques

ISSN: 2394-2231

as:

2

)(b

2

)(a
)()(x)(x

2

tttt
ttttt

∆
+

∆
+∆+=∆+ ν

2

)(b
-

2

)(a
)(-)(x)-(x

32

tttt
ttttt

∆∆
+∆=∆ ν

ii) Add Eq. (1) and Eq. (2) to obtain following

position expression:

()(a)(x-)(x2)(x
2

ttttttt +∆+∆−=∆+ ο

iii) Make subtraction between Eq. (1) and

(2), and divide both sides by 2∆

following velocity expression:

iv) According to Eq. (1)~(4), and

conditions that the positions at time

and tt ∆− and the acceleration at time

tt ∆− , useVerlet algorithm

integral: according to the positions at time

tt ∆− 2 and tt ∆− and the acceleration at

time tt ∆− , the position at t (current time)

can be obtained by putting t

Eq. (3); according to the position at t

(current time), the acceleration at t

renewed by certain potential function;

meanwhile, according to the positions at

time t and tt ∆− 2 , the acceleration at

tt ∆− can be renewed by putting

into Eq. (4). By now the positions at t and

tt ∆− 2 and the accelerations at

are all obtained. Repeat above steps.

In accordance with above description, us

tabulation method to designthe serial simulation

algorithm:

i) Construct a CNT structure model as shown

in Fig. 2-4, and set the parameter values;

ii) Design the front-end and rear

caldarium;

iii) Construct and call the structure function

that uses to calculate the internal

CNT, and the function that uses to figure

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

2231 http://www.ijctjournal.org

)(4

3

t∆+ο
(1)

)(4

3

t∆+ο
(2)

Eq. (2) to obtain following

)(
4

t∆ (3)

Make subtraction between Eq. (1) and Eq.

(2), and divide both sides by 2∆t to obtain

 (4)

According to Eq. (1)~(4), and with the

conditions that the positions at time tt ∆− 2

and the acceleration at time

 to calculate

integral: according to the positions at time

and the acceleration at

, the position at t (current time)

tt ∆−= into

Eq. (3); according to the position at t

(current time), the acceleration at t can be

renewed by certain potential function;

meanwhile, according to the positions at

, the acceleration at

can be renewed by putting tt ∆−=t

into Eq. (4). By now the positions at t and

and the accelerations at tt ∆− and t

are all obtained. Repeat above steps.

In accordance with above description, useVerlet

designthe serial simulation

Construct a CNT structure model as shown

, and set the parameter values;

end and rear-end of

Construct and call the structure function

calculate the internal forces of

uses to figure

out Van der Waals force between CNS

(Carbon Nano Sphere) C60 and CNT;

iv) Figure out all forces, solve Newton's

equation of motion, calculate

do integration (the core of the algorithm);

v) Simulate the trajectory of CNS C60 that

changesby the time of

the calculation results to draw up the curve

of temperature that changes

transformation inside the CNT.

IV. VERLET SIMULATION

OF MOLECULAR DYNAMICS

A. Establish Model Of CNT System

Read the database files for CNT system’s

parameters, such as initial temperature, number of

particles, density and time, etc. Construct the CNT

system model MOD1 and parameter model MOD2,

of which the parameters can be used by MOD1,

shown in Fig.2~Fig.4. MOD1 consists of CNT and

a football-shaped C60 (a molecule contains 60

carbon atoms, looks like a football, thus is also

called fullerene) that set inside the CNT. This CNT,

which has lamellar hollow structure and a quasi

circular structure body, consists of many hexagonal

carbonic rings (composed by carbon atoms).

Generally the diameter of the body ranges from one

to dozens nanometers, and its length is far larger

than the diameter. Initialize this model and read the

speed and position coordinates of all particles of the

model.

Fig.2 CNT (Carbon Nano Tube)Fig.3

Fig.4 CNT system model

In CNT, the rest particles form hexagonal except

the nozzle layer particles. In Fig.5, Non nozzle

particles have 3 nearest neighbor (ip, jp and kp are

the nearest neighbor of idx).

Apr 2016

Page 126

Van der Waals force between CNS

(Carbon Nano Sphere) C60 and CNT;

Figure out all forces, solve Newton's

equation of motion, calculate in layers and

do integration (the core of the algorithm);

Simulate the trajectory of CNS C60 that

of caldarium, and use

the calculation results to draw up the curve

of temperature that changes by the energy

transformation inside the CNT.

SIMULATION ALGORITHM

DYNAMICS

Read the database files for CNT system’s

parameters, such as initial temperature, number of

particles, density and time, etc. Construct the CNT

system model MOD1 and parameter model MOD2,

of which the parameters can be used by MOD1, as

Fig.4. MOD1 consists of CNT and

shaped C60 (a molecule contains 60

carbon atoms, looks like a football, thus is also

called fullerene) that set inside the CNT. This CNT,

which has lamellar hollow structure and a quasi-

structure body, consists of many hexagonal

carbonic rings (composed by carbon atoms).

Generally the diameter of the body ranges from one

to dozens nanometers, and its length is far larger

than the diameter. Initialize this model and read the

ition coordinates of all particles of the

Fig.3Molecule C60

CNT system model

In CNT, the rest particles form hexagonal except

the nozzle layer particles. In Fig.5, Non nozzle

neighbor (ip, jp and kp are

 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 127

Fig. 5Carbon nanostructures

In CNT, the rest particles form hexagonal except

the nozzle layer particles. In Fig.5, Non nozzle

particles have 3 nearest neighbor (ip, jp and kp are

the nearest neighbor of idx).

In CNT, the rest particles form hexagonal except

the nozzle layer particles. In Fig.5, Non nozzle

particles have 3 nearest neighbor (ip, jp and kp are

the nearest neighbor of idx).

2

ii

iii

vm

vf

Σ

Σ
=ξ

B. Study The Parallel Simulation Algorithm In CUDA

Platform

Divide the CNT on CUDA platform into

independent computational units with appropriate

sizes. Such division is to improve the degree of

parallel under the precondition of avoiding too

much repetitive computation. The divided

computational units must be of reasonable

dimensions and thicknesses, for, too large

computational units will result in unapparent

parallel, while too small will result in unnecessary

repetitive computation. (Due to the large influence

of the distances between particles’ forces, a

distance threshold must be set to judge the

positional relationship. When distances smaller than

the threshold, particles can be considered as nearest

particles; when distances larger than the threshold,

they can be considered as next-nearest particles,

and the molecular forces between them can be

ignored.)

It can be expected that each of the central particle

will apply a force to its up to 3 nearest neighbors

and 2 neighbors of this 3 neighbors, that is, 6 next-

nearest neighbors. Think of it this way, dividing

each of central particle and its 3 nearest neighbors

and 6 next-nearest neighbors into a group to

calculate. And parallel computing in batches. In a

computing batch, a particle, which was not

considered as the central particle, can be took into

the parallelizable computing queue, however,

because of competitive relation, its 3 nearest and 6

next-nearest particles can not be took into

computing queue in this batch. Similarly, the other

particles without calculation, which applied a force

to this 9 particles, can not be took into the queue. In

this way, the particles in the same batch will be able

to parallel computing without producing a

competitive relationship.

Design split algorithm, using CUP traversal

computation units to get n parallelizable computing

queues:

i) If all particles are computed as central

particles, then jump to step h);

ii) Find the first non-competitive particle,

which was not be computed as central

particle, add it to the parallelizable

computing queues;

iii) Mark all nearest neighbors of this particle

as the first-degree unparallelizable particles;

if a neighbor has already been regarded as

second-degree unparallelizable particle,

change it to the first-degree uncomputable

particle;

iv) Mark all next-nearest neighbors of the same

particle as the second-degree unparalleliz-

able particles; if a neighbor has already

been regarded as a first-degree unparalleli-

zable particle, then its degree will not be

modified;

v) Regard this particle as the central particle

that has been computed;

vi) Whether has traversed to the end of particle

queue? If yes, continue; otherwise jump to

step a);

vii) Start the next parallel queue, come back to

step b);

viii) End.

The split algorithm completes in the stage of

CPU preprocessing. The parallelizable queues,

which were computed once, can be used in later

ip

ip
ip

idx
kp

jp

 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 128

circular computing. When the number of circular

time is large, the proportion of time that the split

algorithm cost will be greatly reduced and its affect

to the program performance can also be reduced to

a low degree.

As shown in Fig.6 and Fig.7, use GPU stream

processing units and Verlet algorithm to make

computation and treatment, as follows:

i) According to positions of all particles of

the CNT system model, calculate the bond

and angel relationship between nearest

neighbor particles and between next-nearest

neighbors;

ii) Control GPU stream processing units to

calculate particles in the different divided

computational units, and compute the

interaction forces between each particle of

C60 and each particle of CNT wall;

Fig.6 Dispatching mode of CPU and GPU in CNT molecular

dynamics parallel simulation

Fig. 7 Flowchart of parallel simulation algorithm of GPU-based

CNT molecular dynamics

iii) According to the area that C60 is located,

calculate interaction forces (Van der Waals

force) between each C60 particle and each

CNT particle;

iv) Renew particle position in accordance with

the force and velocity of the particle, then

implement steps b) and c);

v) Calculate the velocity of the particle in

accordance with the force of particle, and

compute the thermal flux values at front-

end and rear-end of the CNT; and,

vi) If reach the loop frequency, then end the

computation; otherwise, save particle data

in end-interval of CPU, and return to step

d).

V. OPTIMIZATION OF GPU PARALLEL

ALGORITHM

Verlet simulation program is a cyclical process of

“calculate force, calculate position and calculate

speed”. Each particle runs in a separate thread and

then circulates thousands of times or more. Thus,

optimizing a fraction of program will make whole

program have great improvement of performance.

 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 129

For the CUDA program, optimization mainly

focuses on instruction, memory access, grid

optimization and resource balance.

A. Instruction Optimization

At present, GPU single precision computation

performance is much better than double precision

computation performance, therefore, the part of

program which less demands on the accuracy can

be used in single precision arithmetic instead of

double precision arithmetic.

As can be seen, the instruction throughput is

limited in integer multiplication, division and

modulo operation of GPU, and it is expensive to

interrupt instruction stream because control flow

instructions effect the parallel transmission of

instruction transmitter. Here, we use 24-bit integer

arithmetic __mul24 and __umul24 in the optimized

library to replace 32-bit integer arithmetic and use

__sinf (x), __fdivide (x, y) etc. to replace the

corresponding operation. As far as possible to avoid

integer division and modular arithmetic, or use i&(n

− 1) to replace i%n and use shift operations to

replace division when the divisor is power of 2.

B. Memory Access Optimization

CUDA memory is the storage modelcomposed of

a variety of storage hierarchy and is significantly

different from CPU memory. Corresponding

memory hierarchy of the various threads structure

is shown in Fig.8.

Fig. 8 Sketch map of storage thread structure

Register, share memory and constant memoryare

chip high speed buffer on the GPU, and also scarce

resource.So we must be reasonable to use share

memory resources in the program, to

reduceunnecessary temporary variables, and use the

reduc-ed function to reduce the use of register. At

the same time, the constant in the program

andcombin-ed constant in the calculationstored in

constan-t memory.

Global memory is the storage with maximum

capacity in video memory, which can be to read or

written to storage at any position by arbitrarily

GPU thread. It can provide hide, bandwidth but also

has high memorylatency because of no global

memory cache. A single memory access delay

reaches a 400~600 clock cycle.Therefore, the

program reducesunnecessary accesses to global

memory, and dramatically increase the processor

utilization rate, namely when one block is accessing

the memory, another can be scheduled for

computations to hide the access latency.In

addition, we can change the storage structure of

video memory and try to meet combined access

memory.

C. CPU + GPU Processing

Grid

Block(1,0)

Grid

Block(1,1)

Grid

Global memory,
Constant

memory,

Texture

memory

Per-block

share memory

 Per-thread

local memory,

register

Per-thread

 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 130

To develop its powerful parallel computing

ability, GPU parallel processing need tohave

enough threads in parallel operation. Therefore

CPU implements the part of smaller calculation

amount. For example, because C60 has only 60

particles and small parallelism degree, put the

calculation of Van Der Waals Force between C60

and CNT into CPU. Because the kernel boot is

asynchronous, the CPU function is below the

kernelfunction. It implements parallel processing

for CPU and GPU that CPU starts the kernel and

performs a GPU operation and then returns

immediately to execute a CPU program.

VI. ANALYSISOFEXPERIMENTALRESU

LTS

This test is performed on the platform of Widows

7. GPU1 and GPU2 are different types of graphics

card. Only one card is selectedeach experiment.

For recording the running time and providing the

convenience of the CPU and GPU

parallel operation, test time adopts the CPU time.

The following is hardware parameters:

TABLE1. PARTIAL HARDWARE PARAMETERS OF TEST PLATFORM

 CPU GPU 1 GPU 2

Processor Intel Xeon

W3550

NVIDIA

GeForce GT

430

NVIDIA Quadro

2000

Clock Speed 3066MHz 1400MHz 1251MHz

Cores 4×8 2×48 4×48

Internal /Video

memory

8GB 2GB 1GB

A. Parallel Algorithm Performance Comparison Between

Different GPU

Using GeForce GT 430 graphics card and Quadro

2000 graphics card, we can calculate the two time

with different particle number.

TABLE 2. THE DATA OF PARALLEL PROGRAM THAT RUN ON DIFFERENT

HARDWARE PLATFORMS.

Number of

particles layer

Number

of

particles

Time of

GPU1 (ms)

Time of GPU2

(ms)

50 1000 4462 4134

100 2000 6412 5632

200 4000 9625 7379

300 6000 12168 9282

600 12000 21656 14352

900 18000 30919 19828

1200 24000 40763 25178

1500 30000 50552 30420

3000 60000 98155 56855

6000 120000 194038 109996

Fig.9 Two types of graphics program time-consuming comparison

From Fig.9, when the number of particles is

small, two types of graphicstime little difference.

But with the increasing of particle number, GeFor-

ce GT 430 graphics card timeincreases faster than

Quadro 2000 graphics card. When the particle

number increased to 120000, the time of former is

almost 2 times of the latter.

Through horizontal comparison in Table 1 and

Fig.9, the number of CUDA Cores (i.e. stream

processor) in Quadro 2000 graphics card is the

double of in GeForce GT 430graphics card.

Combined with running way of GPU threads,

running thread will increase accordingly accomp-

any processing unit of GPU increasing. Therefore,

when no other hardware limitations, GPU parallel

computing performance will increase with increase-

ing of GPU processor. It can bring more performan-

ce improvement for Verletalgorit-hm to use the

GPU with more processors.

B. Serial And Parallel Algorithms Performance

Comparison

In order to compare the performance of

GPU parallel program with CPU serial program, we

start the corresponding program, and calculate the

time of different particle numbers. We choose

Quadro 2000 as GPU, Get Table 3 data:

TABLE 3. TIME OF GPU PARALLEL PROGRAM COMPARED WITH CPU SERIAL

PROGRAM.

The layers of

particle

The

number

of

particles

Serial time

(ms)

Parallel time

(ms)

50 1000 15912 4134

 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 131

100 2000 29172 5632

200 4000 55210 7379

300 6000 85172 9282

600 12000 163544 14352

900 18000 238150 19828

1200 24000 322000 25178

1500 30000 400878 30420

3000 60000 835889 56855

6000 120000 1675152 109996

Tabular data are plotted into the serial and

parallel program execution time comparison chart:

Fig.10. Time of GPU parallel program compared with CPU serial program.

We can clearly see that, when the number of

calculated particles increasing, the speed-up ratio of

parallel program increases compared to the serial

program. When the number of particles in the

1000~4000, GPU load time of the program, data

transmission time and access time are not very well

hidden because the thread is too little. The speed-up

effect is better and better with increasing the

number of particles.

C. The Parallel Algorithm Performance Analysis

To analyze the speed-up ratio of parallel

algorithm, we calculate serial and parallel program

computing time in table 3 according to the

following formula:

%100×
−

=−
timeParallel

timeParalleltimeSerial
ratioupspeed

And then draw into GPU parallel computing

speed-up ratio (Fig. 11):

Fig.11 speed-up ratio of GPU parallel calculation

As can be seen, the speed-up ratio of parallel

algorithm is increasing compared to the serial

algorithm with increasing the number of particle.

When the particle number reaches 12000, speed-up

ratio reaches 1400%, i.e. speed-up effect is 14 times.

For the analysis the factors affecting GPU

parallel program performance, we analyze program

with the performance evaluation tool NVIDIA

Visual Profiler. There are 12000 particles of 600

layers calculated in the target program and 128

threads in each block. We calculate each function

running time accounted for the total operation time

ratio through several arithmetic average

calculations, and draw the map 12.

Fig.12 proportion chart of function

VII. CONCLUSION

In the simulation of CNT molecular dynami-

cs, originalmolecular dynamics simulation has good

effect. But because of the scale of number of

CNT system’s particles is too large, it lacks

practicality due to the huge computation and long

operation time.Molecular dynamics simulation

algorithm with using Verlet algorithm has the

46.46

26.47

0.12

2.4

2.39

22.16

Force_Par2par_GPU

Force_ParticleF_GPU

F_C60_COUNT_GPU

UpdatePV_Pos_GPU

UpdatePV_V_GPU

CPU Functions

 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 132

advantages of easy parallelism, and can be parallel

processed in the GPU, which has powerful image

processing, and floating-point computation ability,

which greatly improves the efficiency of CNT

molecular dynamics simulation algorithm.

Experimental results show that for small-scale

CNT systems with only 12000 particles, when the

algorithm is implemented through parallel GPU-

based simulation algorithm running on NVIDIA

Quadro 2000 with 192 stream processors, the

speed-up ratio can reach much more than 10 times

compared to the serial CPU-based algorithm

implemented on the 4-core-8-thread Intel Xeon

W3550. Thus it can efficiently overcome the defect

of the algorithm on processing speed.

However, the CNT system scale, which can be

computed, is limited due to limited test hardware,

so it cannot deeply dig the ability of CUDA.

Experimental results shown in (Fig. 11), may wish

to speculate, particle number scale of CNT system

is larger, the speed-up effect of GPU parallel

algorithm is more obvious compare serial algorithm.

In practice, the particle number of CNT system is in

a big scale, more than 10 million and one billion. It

is estimated that parallel simulation algorithm of

GPU-based CNT molecular dynamics will play a

role of imagination in research on CNT.

REFERENCES

[1] Alder B J, Wainwright T E. “Phase transition for a hard sphere system”.

The Journal of Chemical Physics, 1957, 27(5): 1208.
[2] Landman U,Luedtke WD, Burnham NA, et al. “Atomistic mechanisms

and dynamics of adhesion, nanoindentation and fracture”. Science, 248,

pp.454-461, 1990.

[3] Schiøtz J, Jacobsen K W. “A maximum in the strength of

nanocrystalline copper”. Science, 2003, 301(5638): 1357-1359.

[4] Verlet L. “Computer‘experiments’ on classical fluids. I.

Thermodynamical properties of Lennard-Jones molecules”. Physical

review, 1967, 159(1): 98-103.

[5] Tamayo P, Mesirov J P, Boghosian B M. “Parallel approaches to short
range molecular dynamics simulations”. Proceedings of the 1991

ACM/IEEE conference on Supercomputing. ACM, 1991: 462-470.

[6] Meng X H, Liu J Q, Ou Y X, et al. “Laplacian Edge Detection
Algorithm Based on CUDA”. JisuanjiGongcheng/ Computer

Engineering, 2012, 38(18).

[7] Proctor A J, Lipscomb T J, Zou A, et al. “Performance Analyses of a
Parallel Verlet Neighbor List Algorithm for GPU-Optimized MD

Simulations”. Biomedical Computing (BioMedCom), 2012 ASE/IEEE

International Conference on. IEEE, 2012: 14-19.

[8] Zhang Y, Zhao J, Yuan Z, et al. “CUDA Based GPU Programming to

Simulate 3D Tissue Deformation”. Biomedical Engineering and

Computer Science (ICBECS), 2010 International Conference on. IEEE,

2010: 1-5.

[9] Alder B J, Wainwright T E. “Studies in Molecular Dynamics. I.

General Method”. Journal of Chemical Physics, 1959, 31: 459-466.
[10] Fei H, Zhang Y Q, Wang K, et al. “Parallel Algorithm and

Implementation for Molecular Dynamics Simulation Based on GPU”.

Computer Science, 2011, 38(9): 275-278.
[11] Anderson J A, Lorenz C D, Travesset A. “General purpose molecular

dynamics simulations fully implemented on graphics processing unit”.

Journal of Computational Physics, 2008, 227(10): 5342-5359.
[12] NVIDIA_CUDA_ProgrammingGuide_3.0.

http://developer.nvidia.com/object/cuda_3_0_downloads.html.

