
 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                        http://www.ijctjournal.org                           Page 1192 

 

Aggregate Estimation in Hidden Databases with Checkbox Interfaces 

RNavin kumar
1
  MCA, Mohamed Faseel.VK

2
 

Assistant Professor
1
 ,Research Scholar

2
  

Department of Computer ApplicationDepartment of Computer Application 

Nandha Engineering CollegeNandha Engineering College 

Erode-52,Tamilnadu. India.

.

--------------------------------------------------************************------------------------------------- 

Abstract: 
 A large number of Ib data repositories are hidden behind restrictive Ib interfaces, making it an 

important challenge to enable data analytics over these hidden Ib databases. Most existing techniques 

assume a form-like Ib interface which consists solely of categorical attributes (or numeric ones that can 

be discretized). Nonetheless, many real-world Ib interfaces (of hidden databases) also feature checkbox 

interfaces—e.g., the specification of a set of desired features, such as A/C, navigation, etc., for a car-

search Ibsite like Yahoo! Autos. I find that, for the purpose of data analytics, such checkbox-represented 

attributes differ fundamentally from the categorical/numerical ones that Ire traditionally studied. In this 

paper, I address the problem of data analytics over hidden databases with checkbox interfaces. 

Extensive experiments on both synthetic and real datasets demonstrate the accuracy and efficiency of 

our proposed algorithms. 

--------------------------------------------------************************-------------------------------------

1. Introduction 

 Hidden databases are data repositories ”hidden 

behind”—i.e., only accessible through—a restrictive Ib 

search interface. Input capabilities provided by such a Ib 

interface range from a simple keyword-search textbox 

(e.g., Google) to a complex combination of textboxes, 

dropdown controls, checkboxes, etc. Once a user 

specifies a search query of interest through the input 

interface, the hidden database selects and returns a 

limited number (i.e., top-k) of tuples satisfying the user-

specified search conditions (often according to a 

proprietary ranking function), where k is usually a small 

integer such as 50 or 100. In fact, many Ib hidden 

databases deliver their top-k results for a query with 

several Ib pages. 

Unlike static Ibpages (connected by hyperlinks), the 

contents of a hidden database cannot be easily crawled 

by traditional Ib search engines, or by any method at all 

[1]. In fact, the restrictive Ib interface prevents users 

from performing complete queries as they would with 

the SQL language. For example, there are hardly any Ib 

interfaces providing aggregate queries such as COUNT 

and SUM functions. The loIr query capability of a 

hidden database surely reduces its usability to some 

extent. To facilitate the public’s understanding of 

contents in the hidden database, it is important to extend 

its limited query capability to handle more complex 

queries as defined in standard SQL ( i.e., aggregate 

functions) solely by issuing search queries through its 

restrictive Ib interface. In fact, such aggregate queries 

are desired by many applications which take hidden 

databases as their data sources. 

I find that many real-world hidden databases feature 

interfaces that contain a combination of form elements 

which include (sometimes numerous) checkboxes. To 

name a few, monster.com [2], one of the most popular 

job search Ibsites, has an interface that features 95 

checkbox attributes. A Food search Ibsite [3], on the 

other hand, has 51 checkboxes. Last but not the least, 

LinkedIn features more than 40 checkboxes on its search 

input interface. 

In this paper, I consider a novel problem of enabling 

aggregate queries over a hidden database with checkbox 

interface by issuing a small number of queries ( 

sampling ) through its Ib interface. 

RESEARCH ARTICLE                                     OPEN ACCESS 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 2 
 

 

1.1 A Novel Problem: Aggregate Estimation for 
the 

Hidden Database with Checkbox Interface 
 

In the hidden database with checkbox interface, a 

checkbox attribute is represented as a checkbox in the Ib 

interface. For example, in the home search Ibsite [4], 

features ( e.g., central air, basement) for a home are 

represented by checkboxes. The checkbox interface has 

its specialty. By checking the checkbox corresponding to 

a value v1, it ensures that all returned tuples contain the 

value v1. But it is impossible to enforce that no returned 

tuple contains v2—because unchecking v2 is interpreted 

as ”do-not-care” instead of ”not-containing-v2” in the 

interface. 

Although there have been several recent studies [5], 

[6] on third-party aggregate estimation over a structured 

hidden database, all existing techniques rely on (an 

often) unrealistic assumption that the hidden database 

has a form-like interface (i.e., drop-down-list interface) 

which requires a user to enter the exact desired value for 

an attribute. That is, in the hidden database with drop-

down-list interface, by entering a value v for a drop-

down-list attribute A, a user excludes all tuples t with 

t½A6¼ v from the returned result. 

The limitation placed by the checkbox interface 

prevents the traditional hidden-database aggregate-

estimation techniques from being applied. Specifically, 

if one considers a feature (e.g., basement in [4]) as a 

Boolean attribute, then the checkbox interface places a 

limitation that only TRUE, not FALSE, can be specified 

for the attribute. As a result, it is impossible to apply the 

existing techniques which require all values of an 

attribute to be specifiable through the input Ib interface. 

It is important to note that, in addition to the 

checkboxattribute-specific limitation stated above, such 

databases also have the same limitations as the 

(traditionally studied) hidden databases with drop-down-

list interfaces—i.e., (1) a top-k restriction on the number 

of returned tuples, and (2) a limit on the number of 

queries one can issue (e.g., per IP address per day) 

through the Ib interface. 

1.2 Outline of Technical Results 

In this paper, I develop three main ideas for aggregate 

estimation over the hidden databases with checkbox 

interfaces: 

UNBIASED-EST. I start by showing a unique 

challenge imposed by the hidden databases with 

checkbox interfaces. Note that a common theme of the 

existing analytic techniques for hidden Ib databases is to 

first build a many-to-one mapping from all tuples in the 

database to a set of pre-defined queries (in particular, a 

query tree [5]), and then draw sample tuples (from 

which an aggregate estimation can be made) through 

sampling the query set. For the hidden databases with 

checkbox interfaces, hoIver, it is impossible to construct 

such a query tree because, unlike the hidden databases 

with drop-down-list interfaces, it is impossible to pre-

compute a set of non-overlapping queries which 

guarantee to return all tuples in this kind of hidden 

database. As a result, one has to rely on a set of 

overlapping queries to support aggregate estimation 

(e.g., through a query-sampling process)—which may 

lead to biased results because different tuples may be 

returned by different numbers of queries (and therefore 

retrieved with different probabilities). Our first idea is to 

organize these overlapping queries in a left-deep-tree 

data structure which imposes an order of all queries. 

Based on the order, I are capable of mapping each tuple 

in the hidden database to exactly one query in the tree, 

which I refer to as the designated query. By performing 

a drill-down based sampling process over the tree and 

testing whether a sample query is the designated one for 

its returned tuple(s), I develop an aggregate estimation 

algorithm that provides completely unbiased estimates 

for COUNT and SUM queries. 

IIGHTED-EST. The error of an aggregate estimation 

consists of two components: bias and variance.
1 

Given 

that our first idea guarantees zero bias, I develop our 

second idea of Iighted sampling to minimize variance. 

Specifically, I dynamically adjust the probability of 

sampling a query based on the query ansIrs I receive so 

far, in order to “align” the sampling process to both the 

data distribution and the aggregate to be estimated, and 

thereby reduce the variance of our aggregate 

estimations. 

CRAWL. Finally, I find that certain tuples in a hidden 

database—specifically, lowly ranked tuples that can only 

be returned by queries with a large number of 

 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 3 
 

 

conjunctive predicates—can cause a significant increase 

in the variance of aggregation estimations. To address 

the problem, I develop a special-case handling procedure 

which crawls such tuples to significantly reduce our 

final estimation error. 

I combine the three ideas to develop Algorithm 

UNBIASED-IIGHTED-CRAWL, which produces 

unbiased ( for COUNT and SUM) aggregate estimations 

with small variances. Our experiments on both synthetic 

and realworld data sets confirm the effectiveness of 

UNBIASEDIIGHTED-CRAWL over various data 

distributions, the number of tuples and top-k restrictions. 

The main contributions of this paper can be 

summarized as follows: 

I introduce a novel problem of aggregate estimations 

over the hidden Ib databases with checkbox 

interfaces, and outline the unique challenges it 

presents, which prevent the traditional hidden-

database-sampling techniques from being applied. 

To produce unbiased aggregate estimations over the 

hidden databases with checkbox interfaces, I 

develop the data structure of left-deep-tree and 

define the concept of designated query to form an 

injective mapping from tuples to queries 

supported by the Ib interface. 

To reduce the variance of aggregate estimations, I 

develop the ideas of Iighted sampling and 

specialtuple-crawling. 

Our contributions also include a comprehensive set of 

experiments which demonstrate the effectiveness 

of our UNBIASED-IIGHTED-CRAWL 

algorithm on aggregate estimation over real world 

hidden databases with checkbox interface, as Ill 

as the effectiveness of each of our three ideas on 

improving the performance of UNBIASED-

IIGHTED-CRAWL. 

2 PRELIMINARIES 

2.1 Model of Hidden Databases with Checkboxes 

In most parts of the paper, we focus on the case where a 

hidden database consists solely of checkbox attributes. 

We shall show an easy extension of our results to the 

general hidden databases (i.e., with both drop-down-list 

attributes and checkbox  attributes). 

 

Let  D be a hidden database  with m checkbox attributes 

A1;...;Am 

and n tuples. Each checkbox attributes has two values 0 

and 1,but only predicates of the form Ai ¼ 1 are allowed 

because of the restriction of the checkbox interface. The 

typical interface where users can query is by specifying 

values of a subset of attributes. Now suppose a user 

selects checkboxes Ai1;...;Aij from the interface. 

 

 

 

 

TABLE 1 

Running Example 

 
t1      0             0             1 
t2      0             1       0 

t3                1              0             1 

t4                1              1             0 
t5                 1               1              1 

 

values 0 and 1, but only predicates of the form Ai ¼ 1 

are allowed because of the restriction of the checkbox 

interface. 

The typical interface where users can query is by 

specifying values of a subset of attributes. Now suppose 

a user selects checkboxes Ai1;...;Aij from the interface. 

With such selections, the user constructs a query with 

Ai1 ¼ 1;...; Aij ¼ 1. We present the query q by the 

following SQL statement: 

SELECT FROM D WHERE Ai1 ¼ 1 AND AND 

Aij ¼ 1, 

which we denote 
as 

fAi1 & ... & Aijgq or directly 

fAi1;...;Aijgq in the later part of the paper for the sake of 

simplicity. Notation fgq represents a query with no 

attribute being checked. 

The hidden database will search for all tuples, which 

we refer to as SelðqÞ, satisfying the user-specified 

query. There are in total jSelðqÞj tuples satisfying q, but 

only min fjSelðqÞj;kg tuples can be returned to the user, 

where k is as in the top-k restriction. We assume that 

these tuples are returned according to static ranking 

functions [6] which ensure that the order of any two 

returned tuples ti and tj won’t change by issuing different 

queries. 

We classify queries into the following three 

categories, depending upon the number of tuples a query 

q matches and the top-k restriction: 

tid A B C  



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 4 
 

 

 jSelðqÞj¼ 0, this query is underflow. There is no 

results returned. 

 0 < jSelðqÞj k, this query is valid. All results are 

returned within top-k. 

 jSelðqÞj > k, this query is overflow. Only the top-k 

tuples can be returned together with an overflow 

flag. 

2.2 A Running Example 

We use a running example to show the previously 

defined model of the hidden database with checkbox 

interfaces. Consider a simple hidden database D with 

three checkbox attributes A;B;C and 5 tuples t1;...;t5. The 

hidden database is shown in Table 1, where tid is the 

tuple’s id other than an attribute in the application level. 

We assume that the top-k restriction is k ¼ 2. The static 

ranking function is according to the subscript of tid from 

small to large order. Suppose a user, in this running 

example, selects the attribute A as his/her query. The 

corresponding SQL statement is, 

SELECT FROM D WHERE A ¼ 1 

We can see that tuples t3;t4;t5 match this query in the 

hidden database. But with the top-k restriction, only 2 

tuples, t3 and t4, can be returned to the user with an 

overflow flag. 

 

2.3 Problem Definition 

Any query of a hidden database with a checkbox 

interface can be represented into a SQL statement as: 

SELECT * FROM D WHERE Ai1 ¼ 1 AND AND 

Aij ¼ 1, where D is a hidden database. Ai1 ¼ 1;...;Aij ¼ 1 

indicate that the user has checked attributes Ai1;...;Aij 

through its checkbox interface. However, many 

applications may need to perform aggregate queries 

which are not provided by the hidden database. For 

example, a user may want to know the total number of 

cars with navigation systems, or the total prices of all 

cars in a car database. The formal definition of the 

problem is as follows. 

Given a query budget G and an aggregate query Q: 

SELECT AGGRðÞ FROM D WHERE Ai1 ¼ Vi1 AND 

AND Aij ¼ Vij, where AGGRðÞ is COUNT, SUM or 

AVG, and V i1;...;Vij 2f0;1g are values specified for 

checkboxes, minimize the mean square error 

MSEð
Q
^Þ¼ E½ð

Q
^  QÞ

2
of for estimating Q while 

issuing at most G queries. 

One brute force solution to the problem is to compute 

the aggregate values over all returned tuples which are 

gathered by exhausting all possible checkbox queries 

provided by the hidden database. However, it is 

impossible in many situations due to the huge query cost 

required. In this paper, we are going to solve the 

problem by estimating aggregate values (COUNT, 

SUM) through sampling techniques. 

In this paper, we use COUNT(*) as the thread to 

address our technical solution and the extension to other 

types of aggregate queries can be found in Appendix J, 

which can be found on the Computer Society Digital 

Library at http:// 

doi.ieeecomputersociety.org/10.1109/TKDE.2014.23658

00. 

2.4 Performance Measures 

We consider the following two performance measures. 

The accuracy of generated estimations. We use the 

relative error to indicate the estimation accuracy. 

Consider an estimator   ^u used to estimate an aggregate 

query with real answer u, the relative error of ^u is 

defined as 

relErrð^uÞ¼ðj^uujÞ=u: (1) 

The number of queries issued through the web search 

interface. To measure the efficiency of the aggregate 

estimation, we count the total number of distinct queries 

issued for aggregate estimation as the query cost. The 

reason for using such an efficiency measure is because 

many real-word hidden databases may have Per-IP/user 

limitation such that the system may not allow one user to 

access the system too many times in a given period. We 

aim to achieve less relative error using less query cost. 

2.5 Tables of Notations 

The notations used in the paper are shown in Table 2. 

3 ESTIMATION ALGORITHM 

In this section, we develop our first idea, an unbiased 

COUNT estimator for the hidden databases with 

checkbox interfaces. We first start by bringing the idea 

of hidden database sampling. 

 

 

 

 



 International Journal of Computer Techniques 

ISSN: 2394-2231                                      
 

 

 

 

 

 

 

 

TABLE 2 

Table of Notations 

D the hidden database   

A1 Am      attribute set in D  

t1 ….tn tuple set in D 

m the number of attributes  

n the actual number of tuples in D 

ni the number of tuples with designated 

 queries at level i in the left-deep tree 

n~ the estimated number of tuples in D 

 

 

problem is that a tuple may also be returned by other queries. 

Only taking the sampling probability of one query as the 

sampling probability of a returned tuple will bring bias to the 

estimation. 

To solve this bias, it is critical to build a proper mapping

between queries and tuples such that we can derive the 

probability for a tuple to be sampled from the probability we 

used to sample the query which returns the tuple. We assign a 

tuple to exactly one query, called designated query, which is 

essentially a one-to-many mapping from queries to tuples, i.e., 

a tuple can be designated to one and only one query, while a 

query may designate multiple tuples. With such a mapping, 

one can see that the probability for sampling a tuple can be 

easily derived from the sampling probability for the query that 

returns it—specifically, if jdðqÞj is the total number of the 

tuples designated by q, then the probability for sampling a 

tuple t returned by q is pðqÞ=jdðqÞj, where pðqÞ 

probability to sample query q. Nevertheless, in order for this 

idea to work, one has to address two problems: (1) how to 

define a rule which can assign a multiply returned tuple to 

only one query? and (2) how to check whether a given query 

Notation Meaning  

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr

    http://www.ijctjournal.org                           

 

k the maximum number of tuples returned
  in a query 

V path the path space 

q a query 

jqj the number of tuples returned in the

query q 

dðqÞ tuples with designated queries being 

nðqÞ                       tuples with designated queries being 

nodes in the subtree under q 

nðAi;AjÞ tuples containing both Ai and Aj 

 
problem is that a tuple may also be returned by other queries. 

Only taking the sampling probability of one query as the 

sampling probability of a returned tuple will bring bias to the 

To solve this bias, it is critical to build a proper mapping 

between queries and tuples such that we can derive the 

probability for a tuple to be sampled from the probability we 

used to sample the query which returns the tuple. We assign a 

tuple to exactly one query, called designated query, which is 

many mapping from queries to tuples, i.e., 

a tuple can be designated to one and only one query, while a 

query may designate multiple tuples. With such a mapping, 

one can see that the probability for sampling a tuple can be 

mpling probability for the query that 

is the total number of the 

, then the probability for sampling a 

pðqÞ is the 

Nevertheless, in order for this 

idea to work, one has to address two problems: (1) how to 

define a rule which can assign a multiply returned tuple to 

only one query? and (2) how to check whether a given query 

is the designated one for a tuple using less or

query cost? Keeping this in mind, we address our solutions in 

the next section. 

3.2 Designated Queries 

To simplify our discussions, without loss of generality, we 

require that attributes in each query fAi1 

put in alphabetic order according to the index of attributes, 

such that i1 < i2 << ih. Then we define the order of 

the order of subscript i: 

orderðqÞ¼ alphabeticðAi1Ai2 ...AihÞ; 

where function alphabeticðstringÞ outputs 

order. Thus, under this definition, any query is transformed 

into the corresponding string of its attributes ordered 

alphabetically. Then, we have 

Definition 1. For any two queries q1 and q

orderðq1Þ orderðq2Þ. We call that q

succeeds q 1. 

The above definition gives a complete order over the query 

set of our hidden database. For example, queries 

¼fA2gq, and q
1
¼fA1 & A2gq, are ordered as 

                                                             
1
.1 Hidden Database Sampling and Left-Deep Tree 

the size of a hidden database, one intuitive idea is to perform 

tuple sampling. Assume that we sample a tuple 

pðtÞ, we can easily estimate the size of the hidden database as 

¼ 1=pðtÞ. However, tuples cannot be directly sampled, because 

they can only be accessed through the queries provided by the 

fAi & Ajgq A query, constructed by the 

specified attributes Ai and 

q
0 

¼ q & Ai A query q
0 

containing all attributes 

in q and an additional attribute 

q
0 

¼ q  Ai A query q
0 

containing all attributes 

in q except the attribute 

Selt½A 

ð
i
qÞ¼ 1 

the value of Ai in tuple 

tuples satisfy the query condition of 

q 

Apr 2016 

 Page 5 

 

the maximum number of tuples returned 

the number of tuples returned in the 

tuples with designated queries being q 

tuples with designated queries being  

 

 

is the designated one for a tuple using less or no additional 

query cost? Keeping this in mind, we address our solutions in 

To simplify our discussions, without loss of generality, we 

i1 & Ai2 && Aihgq be 

order according to the index of attributes, 

. Then we define the order of q following 

(2) 

outputs string in alphabetic 

er this definition, any query is transformed 

into the corresponding string of its attributes ordered 

q2, q1  q2 if and only if 

q1 precedes q2 or q2 

The above definition gives a complete order over the query 

set of our hidden database. For example, queries q1 ¼fA1gq, q2 

, are ordered as q1  q3  q2. With 

Deep Tree To estimate 

the size of a hidden database, one intuitive idea is to perform 

tuple sampling. Assume that we sample a tuple t with probability 

, we can easily estimate the size of the hidden database as n~ 

. However, tuples cannot be directly sampled, because 

they can only be accessed through the queries provided by the 

A query, constructed by the 

and Aj 

containing all attributes 

and an additional attribute Ai 

containing all attributes 

except the attribute Ai 

in tuple t equals to 1 

satisfy the query condition of 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 6 
 

 

this definition, we can define a rule to solve the problem 

caused by multiply returned tuples in the hidden database. 

1
.1 Hidden Database Sampling and Left-Deep Tree To estimate 

the size of a hidden database, one intuitive idea is to perform 

tuple sampling. Assume that we sample a tuple t with probability 

pðtÞ, we can easily estimate the size of the hidden database as n~ 

¼ 1=pðtÞ. However, tuples cannot be directly sampled, because 

they can only be accessed through the queries provided by the 

hidden database. Therefore, we transform the tuple sampling to 

query sampling.  

Definition 2 [Designated query]. Suppose a tuple t can be 

returned by queries q1;q2;...;qk, which are in the order q1  q2  

qk, then we define q1 as the designated query of t. 

With this definition we uniquely assign a tuple which can 

be returned in multiple queries into one and only one query 

among those potential queries. Thus, we have solved the first 

problem caused by the resulting overlap of different queries. 

Nonetheless, the other problem remains—i.e., when getting to 

a query in the sampling procedure, how can we determine 

whether the query that returns a tuple is indeed its designated 

query. 

A baseline solution is to check all queries which precede 

the current query to see if some of them in the most prior 

position also return this tuple. That will make the sampling 

extremely inefficient. Fortunately, with the assumption that 

tuples in D are returned with a static ranking function (which 

is mentioned in Section 2), we do not need to actually perform 

such heavy testing. Rather, only one additional query testing is 

necessary. 

                                                                                                          

hidden database. Therefore, we transform the tuple sampling to 

query sampling.  

Recall that D has m checkbox attributes as its query interface, 

one can enumerate that there are in total 2
m 

possible queries, from 

fgq to fA1 && Amgq which are all possible combinations of the m 

attributes. All of these 2
m 

queries are in the query space. Because 

if we discard any query from them, we may not be able to access 

to some tuples which are only returned by the discarding queries. 

We organize all these queries in the query space with a left-deep 

tree structure as shown in Fig. 1, where every node is 

corresponding to a query and a directed edge from a node to a 

child node indicates that the query corresponding to this child 

node includes all attributes in the parent query and one additional 

attribute. The root node represents query fgq, while the bottom 

leaf A 1 && Am represents a query with all attributes being 

checked.  

In the later part, we will introduce our query sampling 

algorithm which will be performed on this left-deep tree. Before 

doing so, we need to consider how we transform the probability 

of a query to the probability of a tuple. A straightforward way is 

to assign the probability of a query to the tuples which are 

returned by this query.  

Theorem 3.1. Given a tuple t and a query q which can return 

the tuple t, it only takes one query to test whether q is the 

designated query for t. 

Proof. Here we give the main ideas of the proof. If q is the 

designated query for t, then both of the following 

conditions should be satisfied. 1). For any attribute Ai, 

t½Ai¼ 1 and Ai 2= q, Ai cannot precede any attribute of q, 

otherwise q
0 

¼ q & Ai (q
0 

 q) returns t; 2). Queries, whose 

attribute sets are truncated from attribute set of q in terms 

of alphabetic order, should not return t. The first condition 

can be easily checked from t’s value (without issuing 

queries), while the second condition only requires to check 

if q fAihg (here Aih is the last attribute of q) does not return 

t. Details can be found in Appendix A, available in the 

online supplemental material. tu 

So, for each query, we need one additional query for 

designated query testing of returned tuples. 

We can further save this one additional query cost for 

designated test, if we perform a drill-down sampling on the 

left-deep tree. 

4 VARIANCE REDUCTION 

In this section, we analyze how weight allocation affects the 

estimation variance. We first motivate the effectiveness of 

variance reduction by describing an ideal weight assignment 

algorithm that achieves zero variance (and therefore zero 

estimation error) for COUNT(*) query but is impossible to 

apply in practice. Then, we briefly review the struc- 

ture-based weight allocation method used in the UNBIASED 

algorithm, and discuss how to further reduce estimation 

variance. Specifically, we shall introduce two novel 

techniques, weight adjustment and low probability crawl 

technique, which significantly reduce the estimation variance 

and thereby the final estimation error for aggregate queries. 

First, to ensure an unbiased estimation, a fundamental 

requirement is for the weight of each edge to obey the 

following rules: 

The sum of weights of edges under one node should equal 

to 1; 

Every edge has a non-zero weight whenever there exists a 

tuple with designated query being a node in the subtree 

under this edge. 

The ideal weight allocation algorithm requires that the 

weights p 1;p2;...;pk of edges, from q to its children nodes q 

1;q2;...;qk, are exactly proportional to the number of tuples 

with designated queries being nodes in the corresponding 

subtrees under q 1;q2;...;qk. Theorem 4.1 shows that the ideal 

weight allocation scheme leads to zero estimation variance 

(and error). 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 7 
 

 

Theorem 4.1. The ideal weight allocation leads to zero 

estimation variance (and error). 

Proof. The proof includes two steps. First, with the ideal 

weight allocation, we calculate the estimated value of the 

number of tuples for an arbitrary random drill-down path. 

Then, we derive that the estimated value just equals to the 

true value. The complete proof is shown in Appendix B, 

available in the online supplemental material. tu 

The ideal weight allocation algorithm is impractical, 

because the underlying data distribution used for computing 

the probabilities cannot be known beforehand in the hidden 

database. 

4.1 Structure-Based Weight Allocation  

Since one does not have knowledge of the underlying data 

distribution in practice, the UNBIASED algorithm uses a 

(over-)simplified assumption that all attributes are mutually 

independent, and having uniform distribution (over {0, 1}). 

Then the number of tuples that have been designated by nodes 

in a subtree is proportional to the number of nodes in this 

subtree. With the above assumption and Theorem 4.1 , we 

assign the weights of edges corresponding to the number of 

nodes in their pointed subtrees. With the left-deep tree 

structure, suppose a node q has j children q1;q2;...;qj from left 

to right. Then the proportion of edge weights under q from left 

to right should be pðq1jqÞ : pðq2jqÞ :  : pðqjjqÞ¼ 1=2 : 1=4 :  

: 1=2j : (6) 

After normalization, we can determine the probability of 

each edge of the left-deep tree. This weight allocation is used 

in the UNBIASED algorithm. 

Unfortunately, the independence-and-uniform assumption 

rarely fits in practice. As a result, UNBIASED estimation 

algorithm often leads to an extremely large estimation 

variance (and therefor, estimation error). Recall that in 

Example 1, the variance is mainly caused by the difference 

between the fixed probability allocation and the exact 

probability distribution. We shall propose an automatic weight 

adjustment algorithm to significantly reduce the estimation 

variance in next section. 

4.2 Automatic Weight Adjustment 

From Theorem 4.1, we know the variance of the estimator can 

be significantly improved if weight allocation of edges in the 

left-deep tree is proportional to the data distribution of 

subtrees linked by those edges. When conducting drill-down 

sampling, an increasing number of tuples are gathered. 

Therefore, it is intuitive to use those valuable tuples to learn 

the data distribution in the hidden database. More specifically, 

using q as a query, we want to make an estimation of the total 

number of tuples, denoted as nðqÞ, having nodes in the 

subtree under node q as theirs designated queries. 

For a query q, let nðqÞ and dðqÞ be the set of tuples with 

designated queries being nodes of the whole subtree under q 

(including q itself) and the set of tuples with designated 

queries being the only node q respectively, then, jnðqÞjjdðqÞj 

is the number of tuples with designated queries being all node 

in the subtrees under the children nodes of q. Now, let q ¼fAi1 

&& Aikgq (attributes in alphabetic order), according to the 

definition of the leftdeep tree, q should have l ¼ m  k children 

as q1 ¼ q & Aj1;q2 ¼ q & Aj2;...;ql ¼ q & Ajl where Aj1ð¼ 

Aikþ1Þ; 

Aj2;...;Ajlð¼ AmÞ are all those attributes succeeding Aik 

(the last attribute of q). Then, we have:  

l 

XjnðqiÞj¼jnðqÞjjdðqÞj; (7)

i¼1 

where qi, i ¼ 1;2;...l, are children of q, jnðqiÞj is the number of 

tuples having nodes in the subtree under qi as theirs designated 

queries. 

For the ith branch qi under node q, qi ¼ q & Aji ¼ fAi1 && 

A ik & Ajigq. One can see that any tuple t 2 nðqiÞ has the 

following properties according to the definition of designated 

query. 

The values of those attributes which appear in query qi 

should be equal to 1, otherwise it cannot be returned in 

qi. So we have t½Ai1¼ 1;...;t½Aik¼ 1, and t½Aji¼ 1. 

For any attribute A  Aji and A 2= q, t½A¼ 0 (or else t 

should not be designated by nðqiÞ). Let fAs1; 

As2;...;Asvg be all such attributes. 

Based on the above properties, for any tuple t 2 

ðnðqÞndðqÞÞ, the probability that t 2 nðqiÞ satisfies: 

pji / pðAs1 ...AsvAi1 ...AikAjiÞ; (8) 

where pji is the weight for the edge from q to qi, 
A

k is for Ak ¼ 

0, and Ak is for Ak ¼ 1. To save our notations, we use 

Ak to represent either Ak or 
A

k, then we have 

pji / pA1 ...Aji: (9) 

For each branch q i ¼ q & Aji, we have jnðqiÞj¼ pji 

ðjnðqÞjjdðqÞjÞ, where Pli¼1 pji ¼ 1. 

After normalizing pj1;...;pjl, we get the weights 

(probabilities) of all edges under node q. This allocation is 

derived from gathered tuples along our sampling, which can 

well approximate the real data distribution of the hidden 

database. 

Given the scheme in Equation (9), one still has to estimate 

the joint distribution of pðA1 ...AjiÞ. In this paper, we consider 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 8 
 

 

two estimation methods, attribute independent model and 

attribute dependent model, respectively. 

4.2.1 Attribute Independent Model 

We start with a (somewhat cruel) approximation of the joint 

distribution by the simple multiplication of the marginal 

probability of each attribute (i.e., following the 

attributeindependent assumption). Then, Equation (9) can be 

decomposed as 

ji 

pA1 ...Aji¼YpAk: (10) 

k¼1 

For those Ak ¼ 
A

k, pð
A

kÞ¼ 1  pðAkÞ. 

Recall the working principles of UNBIASED algorithm for 

the count estimation of D. The number of tuples for Ak ¼ 1 

can also be estimated in the similar way at the same 

time. 

n
e
ðAofkÞ¼designatedP

h
i¼0ðjdðqi;jtuplesÞjAk=pcontainingðqi;j

ÞÞ, whereAjkdðinqi;jÞjnodeAk is qthe i;j. 

number 

Now we denote the currently estimated number of tuples in D 

and the estimated number of tuples with Ak ¼ 1 as n and 

nðAkÞ respectively. Then, we can approximate the probabile 

itye pðAiÞ as, e 

pðAkÞ¼ nðAkÞ=n: (11) e e e 

Our algorithm UNBIASED-INDEPENDENT conducts the 

aggregate estimation using two phases. In the first phase, 

UNBIASED algorithm is executed to perform drilldown 

sampling with structure-based weight allocation scheme on 

the left-deep tree. At the same time, visited tuples are gathered 

into a set T. In the second phase, we use T to compute pðA iÞ, 

for i ¼ 1 to m, and call INDEPENDENT weight allocatione to 

adjust weights of edges. Then, drill-down sampling algorithm 

is performed with the updated weight allocation of edges, and 

T is also updated with newly gathered tuples. 

Actually, the second phase will be recursively executed 

until the query cost exceeds the query budget. There is a pre-

determined pilot budget w to separate the above two phases, 

where w is the number of queries. When the number of 

queries exceeds w, the algorithm estimates pðAiÞ and adjusts 

weight allocation accordingly, then performse new drill-down 

sampling. 

In Example 1, we add weight adjustment to the estimation 

algorithm. When weight adjustment begins, suppose we 

estimate p~ðAiÞ as 0.01. If a drill-down path happens to go 

through the path from the root node to node A1, then the 

estimated number of tuples by this path is 210 (i.e., 10+2/ 

0.01) which is much closer to the exact number of tuples 

(=200). 

4.2.2 Attribute Dependent Model 

UNBIASED-INDEPENDENT algorithm is based on the 

assumption that attributes are mutually independent. In the 

real world, attributes of a hidden database are often correlated 

with each other. Take the hidden database Car Finder as an 

example, if a car contains leather seats, it usually contains 

A/C. One can leverage such correlation to improve the 

performance of drill-down sampling algorithm. 

In this section, we study a more general case where 

correlations among attributes may exist. Therefore, we cannot 

simply decompose Equation (9) into individual attribute 

distributions. Rather, it should be computed with 

consideration of the correlations between attributes. To 

compute the joint probability of attributes pðAi1 ...AijÞ, a 

simple method is pðAi1 ...AijÞ¼ nðAi1 ...AijÞ=n, where nðAi1 

...AijÞ is the 
e e e e

 

estimated number of tuples satisfying t½Ai1¼ Ai1;...; t½Aij¼ 

Aij. 

With m attributes, there are as many as 2
m 

joint 

probabilities which need to be estimated. It is extremely hard, 

if not impossible, to estimate all those joint probabilities along 

our sampling estimations. In fact, this problem has been well 

studied in the past work and some general solutions can be 

found in reference [7]. In practice, with our close study and 

preliminary experiment, considering of correlations among 

multiple (more than two) attributes may not have significant 

improvement of the estimation performance in most of real-

world applications. To save the cost and simplify the 

computation, in this paper we only check and make use of 

correlations between two attributes in the joint probability 

estimations. 

To see which two attributes may have potential 

correlations, we apply x
2
-test [7] on tuples gathered 

previously. The value x
2 

of the test statistic is thus calculated. 

The bigger the value of x
2 

is, the stronger evidence is against 

the independence hypothesis between the two attributes. A p-

value is used for measuring how much we have against the 

independence hypothesis. The smaller the p-value is, the more 

evidence we have against independence hypothesis. A pair of 

attributes are correlated if p-value is under a threshold which 

we use 0.01 in our experiment. 

To compute pij in Equation (9), we use the correlations 

between two attributes as below: 

pA1 ...Aji¼YpAuAvYpAt ; (12) 

where Au and Av are a correlated pair of attributes, and At 

represents independent attributes. In our algorithm, pðAt Þ is 

computed the same as in Equation (11), and pðAuAvÞ can be 

estimated as pðAuAvÞ¼ nðAuAvÞ=n. 

To find whiche pairwise ecombinationse are correlated, we 

perform the x
2
-test on all possible pairwise combinations of 

attributes once at the time weight adjustment begins. We also 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 9 
 

 

can perform it after each drill-down sampling when the 

number of gathered tuples increases, and nðAuAvÞ is 

estimated together with n at the same time. Wee only consider 

pairwise correlations ein the computation of probability for 

multi-attribute combinations. Thus if one attribute (e.g., Ai) is 

correlated to many other attributes (e.g., Aj1;Aj2;...;Ajk) , then 

we only take one pair of them which has the smallest p-value 

into account. An example is considering the following 

correlated pairs of attributes: (A1;A2), (A1;A3), (A2;A3) , 

(A4;A5), then pðA1A2A3A4A5Þ¼ 

pðA1A2ÞpðA3ÞpðA4A5Þ. 

We are now ready to combine the weight assignment 

algorithm with our drill-down method to produce 

UNBIASED-WEIGHTED. One can see the difference 

between UNBIASED-WEIGHTED and UNBIASED-

INDEPENDENT lies in the second phase (i.e., probability 

computation). Specifically, at the beginning of the second 

phase, the x
2
-test is used to find the pairs Au and Av which are 

correlated. Besides estimating pðAiÞ, we also need to estimate 

pðAuAvÞ using the gathered tuplee set T. This estimation is 

alsoe   recursively conducted. 

Recall that in Example 1, there is an assumption that all 

attributes are independent. Now suppose attributes A2 and A3 

are correlated. The relationship between them is that for each 

tuple, the value of A3 equals to the value of A2. With the 

attribute independent model, the expected value for pðA2A3Þ 

is E½pðA2A3Þ¼ E½ð1  pðA2ÞÞ pðA3Þ¼ð1  1=2Þ 1e=2 ¼ 

1=4. Whilee with attributee dependente model, the expected 

value for pð
A

2A3Þ is 0 which equals to the exact probability. 

The moree accurate of the estimated probability, the much 

closer of the weight allocation to the ideal weight allocation, 

which leads to less estimation variance. 

4.3 Low Probability Crawl 

From the above discussion, our weight adjustment algorithms 

can effectively reduce the variance in many cases such as in 

Example 1, but there are still cases where the drill-down 

sampling may produce high estimation variance, as illustrated 

by the following example. 

Example 2. Consider the hidden database D with 10 attributes, 

and 11 tuples. The top-k restriction is k ¼ 10. These tuples 

are returned with the order t1;...;t11. Tuple t11 is 

ð
A

1;...;
A

9;A10Þ¼ð0;...;0;1Þ, which only contains the last 

attribute A10. For tuples t1 ...t10, all attributes are 

independent and have uniform distributions (over {0, 1}). 

In this hidden database, tuples t 1;...;t10 are returned and 

designated by the root node. Tuple t 11 is returned and 

designated by the right-most node fA 10gq. The probabilities 

of edges under the root node are 1=2, 1=2
2
, 1=2

3
, ..., 1=2

10
. 

For the right-most drill-down path, the estimated number of 

tuples is 1,034 (i.e., 10 þ 2
10

). For other drill-down paths, each 

estimated number of tuples is 10. Then the estimation variance 

is Oð2
10

Þ which is mainly caused by the right-most drill-down 

path. 

In Example 2, if we crawl the whole tree which means we 

issue all nodes that may designate a tuple, then we can get the 

exact number of tuples with only nine more queries comparing 

to a random drill down. 

In a general case, we crawl the whole subtree under node q 

(e.g., the root node in Example 2) and assign all tuples with 

designated queries being nodes in the subtree of q to node q. 

This method is called the Low Probability Crawl. It not only 

avoids estimation variance caused by a tuple designated by a 

deep node, but also obtain the exact number of tuples with 

designated queries being nodes in the subtree of q with a few 

queries. A crawling threshold c is used to trigger this 

processing. 

The detail procedure of the Low Probability Crawl is as 

follows. For each drill-down path, if the probability of an 

overflow node q is less than the crawling threshold c, then we 

issue all queries under this node. There are in total jnðqÞj 

tuples being designated to node q. Then for the drill-down 

path with low probability crawl, Equation (3) is changed to 

¼ h ¼ h1 jdððqiÞÞjþjnððqhÞÞj 

n~ Xi¼0 n~i Xi¼0   p qi p qh : (13) 

Theorem 4.2. Equation (13) is an unbiased estimator for the 

number of tuples in D. 

Proof. The proof is similar to the proof of Theorem 3.2. See 

Proof of Theorem 4.2 in Appendix I, available in the online 

supplemental material. tu 

We embed Low Probability Crawl to every drill-down path 

in the UNBIASED-WEIGHTED algorithm to get a new 

algorithm called UNBIASED-WEIGHTED-CRAWL. It not 

only keeps the unbiasedness of the algorithm, but also reduces 

the risk of reaching a low level node with extremely small 

probability for the estimation, thereby significantly reduces 

the variance and final estimation error. 

5 EXPERIMENT 

In this section, we describe our experimental setup and 

conduct evaluations of our proposed algorithms UNBIASED, 

UNBIASED-INDEPENDENT, UNBIASED-WEIGHTED, 

and UNBIASED-WEIGHTED-CRAWL. We also compare 

the performance of the algorithms with different parameter 

settings. 

5.1 Experiment Setup 

1) Hardware and platform. All experiments were 

conducted on an Intel Xeon E5620 2.40 GHz CPU machine 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 10 
 

 

with 18 GB memory. All algorithms were implemented in 

Java. 

2) Data sets. To evaluate the performances of our 

algorithms on different data distributions, we generated three 

kinds of synthetic data sets, each of which was with 20 

attributes and contained in total 10,000 tuples as the default 

count, but with different attribute distributions. Further, we 

also performed our algorithms on a real data set which was 

crawled from a publicly available commercial hidden 

database. 

i.i.d synthetic data set. This data set was generated as 

independent and identical distribution of attributes. Let Ai, i ¼ 

1...m are attributes of the data set, pðAiÞ is the probability for 

Ai ¼ 1. Here we set pðAiÞ¼ 0:1 for i ¼ 1 to m in our 

experiments. 

Skew-independent synthetic data set. The second data set 

was generated as skewed, but still independent. In other 

words, for different Ai, pðAiÞ had much different values. But 

they were still generated independently. In this paper, for 

attributes A1 and A2, we set pðA1Þ¼ pðA2Þ¼ 0:1. For A3 to 

Am, we set pðA3Þ¼ 1=90;pðA4Þ¼ 2=90;...;pðAmÞ¼ m=90 

with a step of 1=90, where m is the number of attributes. 

Skew-dependent synthetic data set. The third data set was 

generated as skewed and dependent. Some of the attributes 

had correlations. That is, in our experiments, in order to make 

A1 and A2 have correlations, we enforced pðA1 ¼ A2Þ¼ 80% 

in generating the data set. Therefore the only difference 

between skew-dependent and skew-independent data set is 

that A2 has 80 percent probability to have the same value as A1 

in skew-dependent. 

Real data set. The real data set was called job-search, which 

was crawled from the website [2]. It took more than one week 

to crawl the data from 28th March to 6th April in 2011. There 

are 95 attributes and in total 109,487 tuples in this dataset. 

Attributes are various kinds of industries ( e.g., ”Banking”), 

job type (e,g,. “Full Time”), education levels (e.g., from 

”Student (High School)” to ”Senior Executive (President, 

CFO, etc)”), categories (e.g., “Creative/Design”) etc. The 

most frequent attribute is “Full Time” which is contained in 

81,766 tuples. While the least frequent attribute is 

“Performing and Fine Arts” which is contained in 95 tuples. 

We should notice that, for some hidden databases including 

website [2], if no or a very few tuples satisfying the query 

condition, instead of returning empty or a very few answers, 

they relaxes the search condition to return some tuples which 

satisfy some of the attributes. But with a local filter, we can 

still extract the tuples exactly satisfying the query condition. 

3) Aggregate estimation algorithms. We tested the four 

proposed algorithms: 

UNBIASED. This algorithm is the baseline estimation 

method under the assumption that designated tuples are well 

distributed among all query nodes. 

UNBIASED-INDEPENDENT. This algorithm 

incrementally adjusts the drill-down weights after w queries. 

The weight assignment follows an assumption that the 

attributes are independent. 

UNBIASED-WEIGHTED. This algorithm assumes 

attributes may be dependent, and perform weight adjustment 

in consideration of correlations. 

UNBIASED-WEIGHTED-CRAWL. This algorithm is the 

same with UNBIASED-WEIGHTED except crawling the 

whole subtree of a node if the probability of the node is lower 

than a given threshold. 

We evaluated the scalability of the algorithms and the 

impacts of the parameters with various parameter settings. 

4) Performance measures. We measure the performance of 

our algorithm in terms of their query costs and estimation 

accuracies. For the query cost, we counted the number of 

queries issued to the hidden database. The relative error was 

used to indicate the accuracy of the estimation. 

5.2 Experiment Results 

Skew-dependent was the default synthetic data set used for 

evaluating the main algorithm UNBIASED-

WEIGHTEDCRAWL, with k ¼ 50 for the top-k restriction. 

For the real data set, we set k ¼ 100. For all algorithms, the 

default pilot budget for weight adjustment was w ¼ 100. The 

default crawling threshold was c ¼ 10
6 

unless otherwise 

specified. 

1) Performance of UNBIASED-WEIGHTED-

CRAWL. UNBIASED-WEIGHTED-CRAWL is the 

most advanced algorithm proposed in this paper. 

Specifically, we evaluated 

 

 

 

 

 

 

 

 



 International Journal of Computer Techniques 

ISSN: 2394-2231                                      
 

its scalability over different data distributions and parameter 

settings. 

Different Counts of D. We first tested the algorithm 

UNBIASED-WEIGHTED-CRAWL with different number of 

tuples n. For this purpose, we generated four skew

data sets with 10,000, 20 000, 50 000, and 100 000 tuples 

respectively. Because of the query capability and t

restrictions, the database cannot return all generated tuples. 

We only cared about the number of returned tuples, and the 

number of returned tuples from the above four data sets are 

7;100, 24;000, 39;000, and 62;000 respectively. Fig. 3a shows 

the tradeoff between relative error and query cost when 

varies from 7;100 to 62;000. With fixed cost, the larger the 

data sets, the more the relative error. The reason is easy to 

understand that more tuples may lead to a high possibility of a 

tuple having a deep node as its designated query. If the end 

 

 

 

 

 

thetic data set; (d) Impact of data distribution on synthetic data set; (

data set; (g) Impact of algorithms on synthetic data set, and (h) Impact of algorithms on real data set.

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr

    http://www.ijctjournal.org                           

its scalability over different data distributions and parameter 

of D. We first tested the algorithm 

CRAWL with different number of 

. For this purpose, we generated four skew-dependent 

data sets with 10,000, 20 000, 50 000, and 100 000 tuples 

respectively. Because of the query capability and the top-k 

restrictions, the database cannot return all generated tuples. 

We only cared about the number of returned tuples, and the 

number of returned tuples from the above four data sets are 

respectively. Fig. 3a shows 

tradeoff between relative error and query cost when n 

. With fixed cost, the larger the 

data sets, the more the relative error. The reason is easy to 

understand that more tuples may lead to a high possibility of a 

deep node as its designated query. If the end 

node is deep in the drill-down path, which means there are 

more nodes used in a single drill-down path, then the total 

number of drill-down paths will be reduced since the fixed 

cost. Each drill-down path can be taken as a sample in 

computing the final results. The smaller of the sample count, 

the bigger of the variance. Another possible reason is that 

variance of each node in the drill-down path will be 

accumulated, the probability of a deep node is likely far

from the real probability. 

Different number of attributes. To know the impact of the 

number of attributes on the UNBIASED

WEIGHTEDCRAWL, we generated four skew

synthetic data sets with 20;30;40 

respectively. Fig. 3 b illustrates the relationship between 

relative error and query cost for different number of attributes. 

One can see that the relative error decreases dramatically 

thetic data set; (d) Impact of data distribution on synthetic data set; (e) Impact of size on real data set; (f) Impact of k on real 

data set; (g) Impact of algorithms on synthetic data set, and (h) Impact of algorithms on real data set. 

Apr 2016 

 Page 11 

 

down path, which means there are 

down path, then the total 

down paths will be reduced since the fixed 

be taken as a sample in 

computing the final results. The smaller of the sample count, 

the bigger of the variance. Another possible reason is that 

down path will be 

accumulated, the probability of a deep node is likely far away 

Different number of attributes. To know the impact of the 

number of attributes on the UNBIASED-

WEIGHTEDCRAWL, we generated four skew-dependent 

20;30;40 and 50 attributes 

trates the relationship between 

relative error and query cost for different number of attributes. 

One can see that the relative error decreases dramatically 

 
e) Impact of size on real data set; (f) Impact of k on real 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 12 
 

 

when the number of attributes decreases. It is reasonable 

because more attributes lead to more complicated correlations 

between them. In our algorithm, the probabilities of edges are 

simply reduced to only consider correlations between two 

attributes, while the real correlations may be much more 

complicated. The limitation of our algorithm in finding the 

complicated correlations leads to more variance. 

Different Top-k. Another parameter is the value of k in the 

top-k restriction. We tested UNBIASED-

WEIGHTEDCRAWL with k ¼ 10;30;50, respectively. The 

relative error plotting query cost is shown in Fig. 3c. Larger k 

can lead to a better estimation, because a drill-down path can 

stop earlier, thus saves the cost. Given the fact that the cost is 

fixed, the number of queries used in one drill-down path 

become less. Therefore, it increases the total number of drill-

down path with fixed cost, so the variance can be reduced 

accordingly. 

Various data distributions. To know the performance of the 

algorithm on different data distributions, we performed 

UNBIASED-WEIGHTED-CRAWL on i.i.d, skew-

independent, and skew-dependent respectively. Fig. 3d shows 

the tradeoff between relative error and query cost. For i.i.d 

data set, there is no correlation between attributes. In such a 

situation, UNBIASED-WEIGHTED-CRAWL is shrunken 

into UNBIASED-INDEPENDENT-CRAWL. For skew-

dependent data set, there is a correlation between attribute A1 

and A2. From the result we know that the performance of the 

algorithm on different data distributions is much similar, 

which means our proposed algorithm can work adaptively on 

different hidden databases. 

Count sensitiveness on real data set. After testing on 

synthetic data sets, we tested our proposed algorithm 

UNBIASED-WEIGHTED-CRAWL on the real data set with 

different number of tuples. In order to obtain a group of real 

data sets with different number of tuples, we performed 

uniform sampling on the real data set. Besides the original real 

data set, we obtained two additional data sets from the original 

one such that one of the two was the half tuples of the original 

set, and another one was just a quarter of the original one. Fig. 

3e shows the performance difference of the algorithm over the 

three real data sets. It also shows that small databases need 

less cost for estimation. 

Top-k sensitiveness on real data set. We also tested 

UNBIASED-WEIGHTED-CRAWL on the real data set with 

different k, k ¼ 100, 300 and 500, for top-k restriction. Fig. 3f 

gives the relationship between the relative error and the query 

cost with different k. Once again, it reveals the fact that larger 

k can allow less cost for the estimation. 

2) Performance of different algorithms. Besides evaluating 

the scalability of UNBIASED-WEIGHTED-CRAWL on 

different parameters, we also compared it with other 

algorithms UNBIASED, UNBIASED-INDEPENDENT, 

UNBIASED- 

WEIGHTED, which were proposed in this paper. 

On synthetic data sets. We compared the above algorithms 

on the default synthetic data set. Fig. 3g depicts the tradeoff 

between relative error and query cost using different 

estimation algorithms. The UNBIASED algorithm has the 

worst performance among all. With weight adjustment, the 

estimation accuracy can be improved dramatically. With 

taking into consideration of correlations in the data set, 

UNBIASED-WEIGHTED shows better performance over 

UNBIASED-INDEPENDENT which simply assumes that 

attributes were independent. For the algorithm UNBIASED-

WEIGHTED-CRAWL, at the very beginning of the sampling 

process, the drill-down algorithm is unlikely to encounter 

many rarely-hit tuples. As a result, we are unlikely to observe 

any substantial benefit of CRAWL (especially given that it 

also costs more queries). Nonetheless, with more queries 

being issued, it becomes more and more likely for 

UNBIASED-WEIGHTED to encounter some rarely-hit 

queries. As a result, the effect of CRAWL becomes more 

evident. Finally, when the query cost (and the number of 

samples obtained) becomes extremely large, both CRAWL 

and the baseline algorithms converge to the ground truth, 

leading to the non-distinguishability at the end of the curve. 

On real data sets. The above algorithms had also been 

performed on the real dataset. Although correlations in the 

real dataset are not as significant as we did on the synthetic 

dataset, we can see that the relative error decreases when 

correlations are taken onto account. Fig. 3h shows that, in the 

very beginning, UNBIASED-INDEPENDENT performs 

better than UNBIASED-WEIGHTED. This is due to the 

inaccurate estimation of joint probabilities of attribute pairs 

when there are only a few sample tuples. With more and more 

tuples being collected by drill-down sampling, the joint-

probability estimation becomes more accurate, leading to 

better performance of UNBIASED-WEIGHTED than 

UNBIASED-INDEPENDENT. For example, when the query 

cost exceeds 5,000, UNBIASED-WEIGHTED performs better 

than UNBIASED-INDEPENDENT. If we added low 

probability crawl to UNBIASED-WEIGHTED, then the 

estimation accuracy will be improved further. For example, 

when the query cost is 5,000, the relative error of 

UNBIASED-WEIGHTED-CRAWL is 0.0721 which is much 

smaller than the relative error 0.0804 of 

UNBIASEDWEIGHTED. Because in this real dataset, there 

exists one or two tuples designated by queries with extremely 

low sampling probabilities. Therefore, with Low Probability 

Crawl, we can decrease the estimation error. 

6 RELATED WORK 

Hidden databases have drawn much attention in [8], [9] , [10] 

recently. We now compare our work with the existing works 

related to querying under access limitations, cardinality 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 13 
 

 

estimation in database query optimization, and probing the 

hidden database. 

Querying under access limitations.In the area related to 

querying under access limitations, there are a lot of works 

[11], [12], [13], [14] that focus on how to answer queries with 

binding values on some input attributes. For example, [11], 

[12], [13] deal with recursive query plans. Benedikt et al. [14] 

designs formal languages for describing the access paths that 

are allowed by the querying schema. All of them focus on 

retrieving all (or an arbitrary subset of) tuples satisfying a 

query under some general access restrictions. When applying 

these methods to answer aggregate queries in our problem, we 

have to retrieve all matching tuples inside the database. But it 

is infeasible to efficiently retrieve all tuples matching the 

query through a top-k interface. We recognize that the existing 

techniques on overcoming access limitations might be 

combined with the prior work on aggregate estimations over 

form-like interfaces (e.g., [5]) to address the problem of 

aggregate estimations over a checkbox interface. Specifically, 

since the major distinction of a checkbox interface is its 

disallowance of certain attribute values in query predicates 

(e.g., while A1 ¼ 1 can be specified, A1 ¼ 0 cannot), one might 

use the techniques for overcoming access limitations to 

translate a disallowed query ( e.g., SELECT FROM D 

WHERE A1 ¼ 0) to queries supported by the checkbox 

interface. With such a translation service as a middleware, the 

aggregate estimation techniques designed for form-like 

interfaces can be then used over checkbox interfaces as well. 

Nonetheless, while such a translation is theoretically feasible, 

it is often unrealistic for practical purposes, because of the 

large number of queries one has to translate one disallowed 

query into. For example, to translate the above mentioned 

disallowed query (A1 ¼ 0), one has to crawl about half of all 

tuples if data distribution is i.i.d with uniform distribution. 

Thus, instead of using the translation service, we studied a 

novel technique in this paper to address the aggregate 

estimation problem over checkbox interfaces directly. 

Cardinality estimations in database query optimization. In 

the subarea of cardinality estimation for query optimization, 

there are two common methods. One is to maintain certain 

statistics of the underlying database (e.g., [15]) for the purpose 

of cardinality estimation, while the other is to enable 

cardinality estimation through sampling (e.g, [16], [17]).  

7 CONCLUSIONS 

Enabling analytics on hidden web database is a problem that 

has drawn much attention in recent years. In this paper, we 

address a novel problem where checkboxes exist in the web 

interface of a hidden database. To enable the approximation 

processing of aggregate queries, we develop algorithm 

UNBIASED-WEIGHTED-CRAWL which performs random 

drill-downs on a novel structure of queries which we refer to 

as a left-deep tree. We also propose weight adjustment and 

low probability crawl to improve estimation accuracy. We 

performed a comprehensive set of experiments on synthetic 

and real-world datasets with varying database sizes (from

 5;000 to 100;000), number of attributes (from 20 to 

50) and top-k restriction (from k = 10 to 30). We found that, 

as predicted by the theoretical analysis, the relative error 

decreases when the number of queries issued increases. In 

addition, for the same query budget, the relative error is lower 

with a smaller number of attributes and/or a large k. In the 

worst-case scenario, we achieve around 15 percent relative 

error with 500 queries issued for the synthetic dataset, and less 

than 10 percent relative error with about 3,500 queries issued 

for the real-world dataset. The experimental results 

demonstrate the effectiveness of our proposed algorithms. 

REFERENCES 

[1] C. Sheng, N. Zhang, Y. Tao, and X. Jin, “Optimal 
algorithms for crawling a hidden database in the web,” 
Proc. VLDB Endowment, vol. 5, no. 11, pp. 1112–1123, 
2012. 

[2] Monster, Job search page [Online]. Available: 
http://jobsearch. monster.com/ AdvancedSearch.aspx, 
2011. 

[3] Epicurious, Food search page [Online]. Available: 
http://www. epicurious.com/ 
recipesmenus/advancedsearch, 2013. 

[4] Homefinder, Home finder page [Online]. Available: 
http://www. homefinder.com/search, 2013. 

[5] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das, 
“Unbiased estimation of size and other aggregates over 
hidden web databases,” in Proc. Int. Conf. Manage. Data, 
2010, pp. 855–866. 

[6] A. Dasgupta, N. Zhang, and G. Das, “Turbo-charging 
hidden database samplers with overflowing queries and 
skew reduction,” in Proc. 13th Int. Conf. Extending 
Database Technol., 2010, pp. 51–62. 

[7] A. Agresti, Categorical Data Analysis, vol. 359. 
Hoboken, NJ, USA: Wiley, 2002. 

[8] S. Raghavan and H. Garcia-Molina, “Crawling the hidden 
web,” in Proc. 27th Int. Conf. Very Large Data Bases, 
2001, pp. 129–138. 

[9] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang, 
“Accessing the deep web,” Commun. ACM, vol. 50, no. 
5, pp. 94–101, 2007. 

[10] J. Madhavan, L. Afanasiev, L. Antova, and A. Halevy, 
“Harnessing the deep web: Present and future,” CoRR, 
vol. abs/ 0909.1785, 2009. 

[11] D. Florescu, A. Levy, I. Manolescu, and D. Suciu, 
“Query optimization in the presence of limited access 
patterns,” ACM SIGMOD Rec., vol. 28, no. 2, pp. 311–
322, 1999. 

[12] A. Calı and D. Martinenghi, “Querying data under access 
limitations,” in Proc. IEEE 24th Int. Conf. Data Eng., 
2008, pp. 50–59. 

[13] M. Benedikt, G. Gottlob, and P. Senellart, “Determining 
relevance of accesses at runtime,” in Proc. 30th ACM 
SIGMOD-SIGACTSIGART Symp. Principles Database 
Syst., 2011, pp. 211–222. 



 International Journal of Computer Techniques -– Volume 3 Issue 2, Mar- Apr 2016 

ISSN: 2394-2231                                      http://www.ijctjournal.org                           Page 14 
 

 

[14] M. Benedikt, P. Bourhis, and C. Ley, “Querying schemas 
with access restrictions,” Proc. VLDB Endowment, vol. 
5, no. 7 , pp. 634–645, 2012. 

[15] Y. Ioannidis, “The history of histograms (abridged),” in 
Proc. 29 th Int. Conf. Very large data bases-Volume 29, 
2003, pp. 19–30. 

[16] R. J. Lipton and J. F. Naughton, “Query size estimation 
by adaptive sampling,” in Proc. 9th ACM SIGACT-
SIGMOD-SIGART 

Symp. Principles Database Syst., 1990, pp. 40–46. 
[17] R. J. Lipton, J. F. Naughton, and D. A. Schneider, 

“Practical selectivity estimation through adaptive 
sampling,” Sigmod Rec., vol. 19 , pp. 1–11, 1990. 

 

 


