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Abstract  Öz 

Design codes aim to prevent shear failure of reinforced concrete (RC) 
beams since it is a brittle failure. An accurate prediction of shear 
strength is important for a proper design of an RC beam. There exist 
various equations for predicting the shear strength of RC beams. With 
increasing computational power, it is possible to develop numerical 
models delivering more accurate predictions than those equations do. 
In this paper, an artificial neural network (ANN) model developed for 
predicting the shear strength of RC slender beams without shear 
reinforcement is presented. The comparisons of the model with five 
design code equations and fourteen equations proposed by various 
researchers are given. The model has a better performance than the 
considered equations do in predicting the shear strength of the beams 
considered in this study. A parametric study conducted for investigating 
the effects of various parameters on the shear strength of RC slender 
beams without shear reinforcement by using the ANN model is also 
presented. A significant size effect on the shear strength of RC slender 
beams without shear reinforcement is observed through the results of 
the parametric study. 

 Yönetmelikler, betonarme kirişlerin kesmeden kırılmasını gevrek bir 
kırılma olduğu için önlemeyi amaçlar. Bir betonarme kirişin tasarımı 
için kesme dayanımının doğru tahmini önemlidir. Betonarme kirişlerin 
kesme dayanımını tahmin etmek için çeşitli denklemler mevcuttur. 
Artan hesaplama gücü sayesinde, bu denklemlerin yapabileceğinden 
daha doğru tahminler verecek nümerik modeller geliştirmek 
mümkündür. Bu makalede, kesme donatısız betonarme narin kirişlerin 
kesme dayanımını tahmin etmek için geliştirilmiş bir yapay sinir ağ 
modeli sunulmuştur. Modelin, beş tane yönetmelik denklemiyle ve farklı 
araştırmacılar tarafından önerilmiş 14 denklemle karşılaştırmaları 
verilmiştir. Model, bu çalışmada kullanılan kirişlerin kesme dayanımını 
tahmin etmekte ele alınan denklemlerden daha iyi performans 
sergilemiştir. Geliştirilen model kullanılarak çeşitli parametrelerin 
kesme donatısız betonarme narin kirişlerin kesme dayanımı üzerindeki 
etkilerini incelemek için yapılan bir parametrik çalışma da 
sunulmuştur. Bu parametrik çalışma sonucunda, kesme donatısız 
betonarme narin kirişlerin kesme dayanımı üzerinde önemli bir boyut 
etkisi gözlemlenmiştir. 

Keywords: Artificial neural network, Reinforced concrete, Beam, 
Shear strength 

 Anahtar kelimeler: Yapay sinir ağı, Betonarme, Kiriş, Kesme 
Dayanımı 

1 Introduction 

Design codes require a reinforced concrete (RC) beam to have 
a shear capacity greater than its flexural capacity to prevent a 
brittle shear failure. An accurate prediction of shear strength is 
important for a proper design of an RC beam. Numerous 
researches have been conducted to understand the shear 
behavior and predict the shear strength of RC beams since the 
beginning of the last century. ACI-ASCE Committee 426 [1] 
published a state-of-the-art report focusing on shear transfer 
and failure mechanisms in RC structural members. ACI-ASCE 
Committee 445 [2] presented a detailed review of truss model 
approaches and related theories for designing RC structural 
members. 

The shear strength of RC beams without shear reinforcement is 
of interest to this research. It has been a common practice to 
focus on RC beams without shear reinforcement in order to 
acquire a better understanding of the shear behavior of RC 
beams and the contribution of concrete to the shear strength of 
RC beams. There exist many equations in the literature 
proposed for predicting the shear strength of RC beams without 
shear reinforcement. The predictions from those equations 
may not always agree with each other because various 
approaches based on different underlying theories were used 
for analytical modelling and different experimental data sets 

were considered for empirical modelling. With increasing 
computational power, alternative methods have become 
available for empirical modelling. One of those is to develop an 
artificial neural network (ANN), which is able to establish the 
relationships between the parameters involved without 
requiring any functional form. 

The shear behavior of RC beams has been studied by various 
researchers using ANNs. Oreta [3], Cladera and Mari [4],  
El-Chabib et al. [5], Seleemah [6] and Jung and Kim [7] 
developed ANN models to predict the shear strength of RC 
slender beams without shear reinforcement. Mansour et al. [8], 
Cladera and Mari [9], El-Chabib et al. [10] and Abdalla et al. [11] 
studied the shear strength of RC beams with shear 
reinforcement using ANNs. Goh [12], Sanad and Saka [13] and 
Yavuz [14] used ANNs to predict the shear strength of RC deep 
beams. Perera et al. [15] and Tanarslan et al. [16],[17] focused 
on the shear strength of RC beams strengthened by means of 
externally bonded fiber reinforced polymers (FRP). 

Other computational techniques have also been used. Cevik and 
Ozturk [18] and Choi et al. [19] studied the application of neuro-
fuzzy models for predicting the shear strength of RC beams 
without stirrups. Amani and Moeini [20] developed an ANN 
model and a model based on fuzzy set theory for predicting the 
shear strength of RC beams with stirrups and compared the 
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models. Nasrollahzadeh and Basiri [21] investigated using 
fuzzy inference system for predicting the shear strength of RC 
beams strengthened with FRP bars. Mohammadhassani et al. 
[22] followed a fuzzy modeling approach for predicting the 
shear strength of RC deep beams by using the adaptive network 
based fuzzy inference system. Ashour et al. [23] used genetic 
programming to develop an empirical model predicting the 
shear strength of RC deep beams and used the model to study 
the effects of various parameters on the shear strength of RC 
deep beams. Perez et al. [24],[25] applied a genetic 
programming algorithm developed for adjusting existing 
expressions to the shear design formulation for RC beams 
without shear reinforcement given by Eurocode 2 [26]. 
Gandomi et al. developed models by using a genetic 
programming technique for predicting the shear strength of RC 
deep beams [27],[28] and the shear strength of slender RC 
beams without stirrups [29],[30]. Cheng and Cao [31] and Chou 
et al. [32] proposed an evolutionary adaptive regression model 
and a nature-inspired metaheuristic regression method, 

respectively, to estimate the shear strength of RC deep beams. 
Fiore et al. [33] used a hybrid computational technique that is a 
combination of a genetic approach and the least squares 
regression for predicting the shear strength of RC beams 
without stirrups. 

The paper presents an ANN model developed for predicting the 
shear strength of RC beams without shear reinforcement by 
using an experimental database consisting of 1082 beams. The 
model was compared with five design code equations and 
fourteen equations proposed by various researchers. A 
parametric study was conducted to study the effects of various 
parameters on the shear strength of RC beams without shear 
reinforcement using the ANN model. It is observed that the 
performance of the ANN model is better than the considered 
equations and there exists a significant size effect on the shear 
strength of RC slender beams without shear reinforcement.  

2 ANN model 

An ANN is composed of fundamental processing units referred 
to as neurons [34],[35]. A neuron processes input received 
from neighboring neuron (s) and sends output to a neighboring 
neuron. The output of a typical neuron is simply written in the 
form 

𝑞 = 𝑓(𝑛), (1) 

where 𝑓(. ) is the transfer function, which must be 
differentiable, and 𝑛 is the net input. Introducing the most 
common net input function, which is the summation of 
weighted inputs with the bias, the net input for 𝑗-th neuron 
becomes 

𝑛 = ∑ 𝑤𝑗,𝑖𝑝𝑖

𝑆

𝑖=1

+ 𝑏𝑗 , (2) 

where 𝑆 is the number of input elements, 𝑤𝑗,𝑖 , 𝑖 = 1, … , 𝑆, is the 

weight of 𝑖-th input element, 𝑝𝑖, 𝑖 = 1, … , 𝑆, is the 𝑖-th input 
element and 𝑏𝑗  is the bias that can be viewed as a weight of a 

constant input of 1. 

Networks can be constructed in the form of layers consisting of 
neurons [34],[35]. Multi-layer feed-forward network is the 
most common type used in engineering applications. It consists 
of an input layer, one or more hidden layer(s) and an output 
layer. The input layer transmits input elements received from 

outside of the network to a hidden layer which processes the 
received data and passes the processed data to either another 
hidden layer or the output layer which produces the final 
output. Multi-layer feed-forward networks are adaptive data 
driven systems developed in two stages: training and 
validation. In the training stage, weights and biases are tuned 
using input data with known output so that the trained network 
can deliver reliable predictions. The most common learning 
algorithm used for training ANNs is error back-propagation 
algorithm. Once the network is trained, its performance is 
evaluated in the validation stage. For more detailed information 
regarding to neural networks, the reader may refer to [34],[35]. 

A multi-layer feed-forward network consisting of an input layer 
of four neurons, a hidden layer of four neurons and an output 
layer of a single neuron (4*4*1) was developed using MATLAB 
Neural Network Toolbox [35]. The network topology is shown 
in Figure 1 schematically. The input parameters are concrete 
compressive strength 𝑓𝑐 , tensile reinforcement ratio 𝜌, shear 
span-to-depth ratio 𝑎 𝑑⁄  and effective depth 𝑑. The output is an 
estimate of ultimate shear strength (𝑣𝑢). All neurons use the net 
input function given by Equation (2). The transfer functions of 
hidden and output layers are log-sigmoid and linear transfer 
functions, respectively. 

 

Figure 1: The architecture of the developed ANN model. 

The accuracy of predictions of an ANN is based on primarily the 
data provided to the network for training, which needs to be 
sufficiently large, accurate and evenly distributed. A database 
was compiled by selecting slender beams (𝑎 𝑑⁄ ≥ 2.5) failing in 
shear from the databases prepared by Reineck et al. [36] and 
Collins et al. [37], and scanning other experimental studies on 
RC slender beams without shear reinforcement [38]-[51]. The 
database includes 1082 beams, where the ranges of parameters 
are 11.2 ≤ 𝑓𝑐 ≤ 127.5 (MPa), 0.14% ≤ 𝜌 ≤ 6.64%, 2.5 ≤
𝑎 𝑑⁄ ≤ 8.52, 41 ≤ 𝑑 ≤ 1400 (mm) and 0.25 ≤ 𝑣𝑢 ≤ 3.90 (MPa). 
It is to be noted that the ANN models developed previously by 
various researchers [3]-[7] are based on smaller databases, the 
largest of which contains 523 beams [5]. Considering that the 
size of database is more than twice the size of the largest one 
used in the previous studies and the input parameters are fairly 
distributed, the resulting ANN model is more likely to exhibit a 
better performance than the ones developed previously. The 
input parameters were normalized to prevent the log-sigmoid 
function from becoming saturated which slows down the 
network training. The shear strength of each beam was also 
normalized so that a network output fell into the normalized 
range and then it was converted into the corresponding shear 
strength. 

It is possible for an ANN to memorize the training data and fail 
to generalize to new data. Early stopping technique was used to 
improve the generalization. The experimental database was 
divided into two subsets: training and validation sets. There is 
no strict rule for determining the sizes of those sets, however 
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both of them should be as representative as possible of the 
whole database. It is a common practice to divide a large part of 
the whole database as the training set to develop a well 
generalized ANN model. A similar approach was followed and 
the database was partitioned into training and validation sets 
having 974 and 108 beams, respectively. The sets were 
constructed by a random selection of beams and they were 
discarded if the constructed sets did not result in a well 
generalized ANN model. The training set was used to optimize 
the network performance by tuning the network weights and 
biases according to the Levenberg-Marquardt back-
propagation algorithm [34],[35]. The performance function is 
the mean squared error (MSE), that is, 

𝐹 =
1

𝑁
∑(𝑡𝑖 − 𝑞𝑖)2

𝑁

𝑖=1

, (3) 

where 𝑁 is the number of beams, and 𝑡𝑖 and 𝑞𝑖  are the 
experimental and predicted shear strengths of the 𝑖-th beam, 
respectively. While training an ANN, the errors on the training 
and validation sets were monitored simultaneously and the 
training process was stopped when the error on the validation 
set started to increase since it is a possible sign of overfitting. 
The optimum solution was defined at the epoch after which the 
validation set error failed to decrease for five successive 
epochs. The resulting errors on the training and validation sets 
are 0.084 and 0.031, respectively. Several ANN models 
resulting in much smaller errors were rejected due to 
overfitting issues. 

 

(a): Trainin.g set. 

 

(b): Validation set. 

Figure 2: 𝑣𝑢,𝐴𝑁𝑁 vs. 𝑣𝑢,𝑒𝑥𝑝. 

Table 1: Statistics of 𝑣𝑢,𝐴𝑁𝑁 vs. 𝑣𝑢,𝑒𝑥𝑝. 

Set Min. Max. Mean SD COV 

Train. 0.364 2.961 1.030 0.191 0.185 
Valid. 0.718 1.648 1.040 0.141 0.136 

All 0.364 2.961 1.031 0.186 0.181 

Figure 2 plots the ANN model outputs (𝑣𝑢,𝐴𝑁𝑁) against the 
experimental values (𝑣𝑢,𝑒𝑥𝑝) for both the training and 

validation sets. The correlation coefficients are 0.839 and 
0.914, respectively. Table 1 summarizes the statistics of the 
ratio of the ANN model outputs to the experimental values. The 
mean, standard deviation (SD) and coefficient of variation 
(COV) of 𝑣𝑢,𝐴𝑁𝑁 𝑣𝑢,𝑒𝑥𝑝⁄  for the training set are 1.030, 0.191 and 

0.185, respectively. For the validation set, they are 1.040, 0.141 
and 0.136, respectively. A good agreement between the 
experimental data and the ANN model outputs is observed 
through Figure 2 and Table 1.  

3 Comparison with the existing equations 

The model was compared with nineteen equations in total. Five 
design code equations given by ACI 318 [52], CEB-FIP Model 
Code [53], Eurocode 2 [26] and TS 500 [54] were considered, 
where ACI 318 [52] offers a simplified equation as well as a 
detailed one (Table 2). In addition to the design code equations, 
fourteen equations proposed by various researchers were 
considered (Table 3). These are an equation obtained through 
a multiple regression analysis by Zsutty [55], an empirical 
equation by Okamura and Higai [56], an equation based on non-
linear fractures mechanics by Bazant and Sun [57], an equation 
based on basic shear transfer mechanisms, a modified version 
of Bazant’s size effect law and experimental data by Kim and 
Park [58], an equation resulting from an enhancement of the 
modified compression field theory by Collins and Kuchma [59], 
an equation derived through a multiple regression analysis by 
Rebeiz [60], an equation based on basic principles of mechanics 
and experimental data by Khuntia and Stojadinovic [61], an 
equation based on a theory assuming that diagonal tension 
failure results from a type of splitting of concrete occurring in a 
certain region of the shear span by Zararis and Papadakis [62], 
an equation simplified for design purposes by Tureyen and 
Frosch [63], an equation based on the principal shear strength 
carried in the compression zone by Arslan [64] and four 
equations obtained through a genetic programming algorithm 
adjusting the shear design formulation of Eurocode 2 [26] by 
Perez et al. [25]. 

The predictions (𝑣𝑢,𝑒𝑞) obtained through the equations given in 

Table 2 and Table 3 against the experimental values are plotted 
in Figure 3. The statistics of the ratio of the predictions to the 
experimental values for each equation are given in Table 4. 
Also, the correlation coefficients (𝑅), the mean squared errors, 
the normalized mean squared errors (NMSE) and the mean 
absolute percentage errors (MAPE) for the ANN model and the 
considered equations are presented in Table 4. 

Table 2: Design code equations. 

Design code Equation 

ACI 318 [52] 𝑣𝑐 = 0.16√𝑓𝑐 + 17𝜌 (
𝑉𝑢𝑑

𝑀𝑢
) ≤ 0.29√𝑓𝑐, 

where 𝑉𝑢 and 𝑀𝑢 are the external 
factored shear load and bending 
moment at the section considered, 
respectively, and 𝑉𝑢𝑑 𝑀𝑢⁄ ≤ 1.0. 

ACI 318 [52] 𝑣𝑐 = 0.17√𝑓𝑐. 

CEB-FIP MC [53] 𝑣𝑅𝑑,𝑐 = 𝑘𝑣√𝑓𝑐 (
𝑧

𝑑
), 𝑘𝑣 =

200

1000+1.3𝑧
≤ 0.15, 

where 𝑧 is the internal moment arm 
which can be taken as 0.9𝑑. 

Eurocode 2 [26] 𝑣𝑟𝑑,𝑐 = 0.18𝑘(100𝜌𝑓𝑐)
1

3 ≥ 0.035𝑘
3

2√𝑓𝑐, 

where 𝑘 = 1 + √200/𝑑 ≤ 2.0, 𝜌 ≤ 0.02. 

TS 500 [54] 𝑣𝑐 = 0.2275√𝑓𝑐 . 
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Table 3: Equations proposed by various researchers. 

Design code Equation 

Zsutty [55] 𝑣𝑢 = 2.2 (𝑓𝑐𝜌
𝑑

𝑎
)

1/3
, where 𝑎 𝑑⁄ ≥ 2.5. 

Okamura and Higai [56] 𝑣𝑐 = 0.2
(100𝜌𝑓𝑐)1/3

𝑑1/4
(0.75 +

1.40

𝑎/𝑑
). 

Bazant and Sun [57] 𝑣𝑢 = 0.54√𝜌3 (√𝑓𝑐 + 249√
𝜌

(𝑎/𝑑)5) (
1+√5.08/𝑑𝑎

√1+𝑑/(25𝑑𝑎)
), where 𝑑𝑎  is the maximum aggregate size in mm. 

Kim and Park [58] 
𝑣𝑢 = 3.5𝑓𝑐

𝛼/3𝜌3/8 (0.4 +
𝑑

𝑎
) (

1

√1+0.008𝑑
+ 0.18), where 𝛼 = 2 − (𝑎 𝑑⁄ ) 3⁄  for 1.0 ≤ 𝑎 𝑑⁄ < 3.0 and 

𝛼 = 1 for 𝑎 𝑑⁄ ≥ 3.0. 

Collins and Kuchma [59] 𝑣𝑐 =
245

1275+(
25𝑆𝑋

𝑑𝑎+16
)

√𝑓𝑐 , where 𝑆𝑋 ≈ 0.9𝑑. 

Rebeiz [60] 𝑣𝑐 = 0.4 + √𝑓𝑐𝜌
𝑑

𝑎
(2.7 − 0.4𝐴𝑑), where 𝐴𝑑 = 𝑎 𝑑⁄  for 𝑎 𝑑⁄ < 2.5 and 𝐴𝑑 = 2.5 for 𝑎 𝑑⁄ ≥ 2.5. 

Khuntia and Stojadinovic [61] 𝑣𝑐 = 0.54√𝜌 (𝑓𝑐
𝑉𝑐𝑑

𝑀𝑢
)

0.53

, where 
𝑀𝑢

𝑉𝑐𝑑
=

𝑎

𝑑
− 1. 

Zararis and Papadakis [62] 
𝑣𝑢 = (1.2 − 0.2

𝑎

𝑑
𝑑)

𝑐

𝑑
𝑓𝑐𝑡 , where 𝑐 is the neutral axis depth, 𝑓𝑐𝑡 = 0.30𝑓𝑐

2 3⁄
 is the splitting tensile 

strength of concrete, (𝑐 𝑑⁄ )2 + 600(𝜌 𝑓𝑐⁄ )(𝑐 𝑑⁄ ) − 600(𝜌 𝑓𝑐⁄ ) = 0 and (1.2 − 0.2(𝑎 𝑑⁄ )𝑑) ≥ 0.65. 

Tureyen and Frosch [63] 𝑣𝑐 =
5

12
𝑘√𝑓𝑐 , where 𝑘 = √2𝜌𝑛 + (𝜌𝑛)2 − 𝜌𝑛, 𝑛 =

𝐸𝑠

𝐸𝑐
, 𝐸𝑠 = 2 × 105 MPa, 𝐸𝑐 = 4700√𝑓𝑐 (MPa). 

Arslan [64] 𝑣𝑐 = 0.2𝑓𝑐

2

3 (
𝑐

𝑑
) (1 + 0.032𝑓𝑐

1

6) (
4

𝑎/𝑑
)

0.15
(

400

𝑑
)

1

4
, where 𝑎 𝑑⁄ ≥ 2.5 and 

(𝑐 𝑑⁄ )2 + 600(𝜌 𝑓𝑐⁄ )(𝑐 𝑑⁄ ) − 600(𝜌 𝑓𝑐⁄ ) = 0. 

Perez et al. [25] (Eq. 7F1) 𝑣𝑐 = 0.1235 (1 + (
1600

𝑑
)

0.40+
𝑓𝑐

1000
) (100𝜌)0.37𝑓𝑐

1

4. 

Perez et al. [25] (Eq. 7G1) 𝑣𝑐 = 0.094 (1 + (
1600

𝑑
)

0.42
) (100𝜌)0.37𝑓𝑐

1

3. 

Perez et al. [25] (Eq. 8H1) 𝑣𝑐 = 0.114 (1 + (
1600

𝑑
)

0.42
) (100𝜌)0.37𝑓𝑐

1

3 (
𝑉𝑑

𝑀
)

0.21
. 

Perez et al. [25] (Eq. 8I1) 𝑣𝑐 = 0.114 (1 + (
1600

𝑑
)

0.42
) (100𝜌)0.37𝑓𝑐

1

3 (
𝑉𝑑

𝑀
)

0.21
. 

 

The equations of ACI 318 [52] and CEB-FIP Model Code [53] 
have a tendency to underestimate the shear strength of the 
beams in the database while the predictions obtained through 
the equations of Eurocode 2 [26] and TS 500 [54] are scattered 
below and above the experimental values. The correlation 
coefficients between the experimental values and the 
predictions from the detailed and simplified equations of ACI 
318 [52], CEB-FIP Model Code [53], Eurocode 2 [26] and TS 500 
[54] are 0.514, 0.407, 0.538, 0.768 and 0.407, respectively. The 
predictions from the considered design code  equations except 
those from the equation of Eurocode 2 [26] are poorly 
correlated with the experimental values. Among the considered 
design codes, Eurocode 2 [26] has the best performance in 
predicting the shear strength of the beams in the database. On 
the other hand, it is to be noted that the predictions from the 
equations of ACI 318 [52] and CEB-FIP Model Code [53] are 
mostly on the safe side. 

The predictions obtained through the equations proposed by 
Collins and Kuchma [59], Rebeiz [60], Khuntia and Stojadinovic 
[61], Tureyen and Frosch [63] and Arslan [64] are mostly less 
than the experimental values, where the correlation 
coefficients are 0.545, 0.721, 0.734, 0.701 and 0.826, 
respectively. On the other hand, the predictions obtained 
through the equations proposed by Zsutty [55], Okamura and 
Higai [56], Bazant and Sun [57], Kim and Park [58], and Zararis 
and Papadakis [62] are scattered below and above the 
experimental values, where the correlation coefficients are 
0.723, 0.830, 0.824, 0.818 and 0.818, respectively. The 
equations 7F1, 7G1, 8H1 and 8I1 obtained through a genetic 
programming algorithm by Perez et al. [25] delivers 

satisfactory predictions with correlation coefficients of 0.791, 
0.794, 0.821 and 0.833, respectively. 

It is observed that the equations proposed by Okamura and 
Higai [56], Bazant and Sun [57], Kim and Park [58], Zararis and 
Papadakis [62], Arslan [64] and Perez et al. [25] have better 
performances in predicting the shear strength of the beams in 
the database than the other equations do. Compared to the 
predictions from the considered equations, the ones generated 
by the ANN model result in smaller errors as can be seen in 
Table 4. The mean, standard deviation and coefficient of 
variation of 𝑣𝑢,𝐴𝑁𝑁 𝑣𝑢,𝑒𝑥𝑝⁄  are 1.031, 0.186 and 0.181, 

respectively. The correlation coefficient between the ANN 
model outputs and the experimental values are 0.844.  

4 Parametric study 
A parametric study was conducted to study the effects of 
various parameters on the shear strength of RC slender beams 
without shear reinforcement using the ANN model. The ranges 
of parameters were determined in accordance with the ranges 
available in the database. Figure 4 plots the change in shear 
strength against effective depth for various values of concrete 
compressive strength, where tensile reinforcement ratio is 
1.0% and shear span-to-depth-ratio is 3 and 5. Similarly, Figure 
5 plots the change in shear strength against effective depth for 
various values of tensile reinforcement ratio, where concrete 
compressive strength is 60 MPa and shear span-to-depth-ratio 
is equal to 3 and 5. 
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(a): ACI 318 [52].  (b): ACI 318 [52] (simplified). (c): CEB-FIP MC [53]. (d): Eurocode 2 [26]. 

 

            (e): TS 500 [54].                  (f): Zsutty [55].            (g): Okamura and Higai [56].     (h): Bazant and Sun [57]. 

 

 (i): Kim and Park [58]. (j): Collins and Kuchma [59]. (k): Rebeiz [60].        (l): Khuntia and Stojadinovic [61]. 

 

        (m): Zararis and Papadakis [62].       (n): Tureyen and Frosch [63].    (o): Arslan [64].  (p): Perez et al. [25] Eq. (7F1). 

                                                      
                                 (q): Perez et al. [25] Eq. (7G1). (r): Perez et al. [25] Eq. (8H1).               (s): Perez et al. [25] Eq. (8I1). 

Figure 3:  𝑣𝑢,𝑒𝑞  vs. 𝑣𝑢,𝑒𝑥𝑝 . 
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Table 4: Statistics of 𝑣𝑢,𝑒𝑞 𝑣𝑢,𝑒𝑥𝑝⁄ , correlation coefficients and errors for 𝑣𝑢,𝑒𝑞 𝑣𝑢,𝑒𝑥𝑝⁄ . 

Model/Design code/Author Min. Max. Mean SD COV 𝑅 MSE NMSE MAPE 

The ANN Model 0.364 2.961 1.031 0.186 0.181 0.844 0.079 0.288 0.133 
ACI 318 [52] 0.616 1.957 0.840 0.348 0.415 0.514 0.315 1.151 0.299 
ACI 318 [52] (simplified) 0.569 1.920 0.817 0.374 0.458 0.407 0.371 1.356 0.329 
CEB-FIP Model Code [53] 0.362 1.524 0.610 0.246 0.403 0.538 0.584 2.135 0.425 
Eurocode 2 [26] 0.393 2.795 1.033 0.239 0.232 0.768 0.114 0.417 0.167 
TS 500 [54] 0.761 2.569 1.093 0.501 0.458 0.407 0.246 0.900 0.297 
Zsutty [55] 0.496 2.611 0.966 0.261 0.270 0.723 0.149 0.546 0.186 
Okamura and Higai [56] 0.368 2.917 1.008 0.196 0.194 0.830 0.087 0.319 0.134 
Bazant and Sun [57] 0.302 3.798 1.002 0.209 0.208 0.824 0.094 0.344 0.150 
Kim and Park [58] 0.326 4.008 1.040 0.208 0.200 0.818 0.093 0.340 0.148 
Collins and Kuchma [59] 0.541 2.017 0.790 0.316 0.399 0.545 0.346 1.265 0.307 
Rebeiz [60] 0.582 2.598 0.888 0.244 0.275 0.721 0.192 0.700 0.210 
Khuntia and Stojadinovic [61] 0.426 1.860 0.796 0.203 0.254 0.734 0.293 1.069 0.250 
Zararis and Papadakis [62] 0.278 2.841 1.019 0.192 0.188 0.818 0.092 0.336 0.136 
Tureyen and Frosch [63] 0.296 1.921 0.754 0.195 0.258 0.701 0.319 1.166 0.277 
Arslan [64] 0.250 2.406 0.837 0.155 0.186 0.826 0.168 0.612 0.190 
Perez et al. [25] (Eq. 7F1) 0.295 3.003 0.956 0.198 0.207 0.791 0.114 0.417 0.148 
Perez et al. [25] (Eq. 7G1) 0.293 2.872 0.954 0.200 0.210 0.794 0.114 0.416 0.148 
Perez et al. [25] (Eq. 8H1) 0.282 2.618 0.884 0.170 0.192 0.821 0.131 0.479 0.164 
Perez et al. [25] (Eq. 8I1) 0.269 2.597 0.869 0.158 0.182 0.833 0.140 0.510 0.167 

 

Figure 6 depicts the change in shear strength with respect to 
concrete compressive strength considering shear span-to-
depth-ratios of 3 and 5, and tensile reinforcement ratios of 
0.5%, 1.0% and 1.5% for an effective depth of 400 mm. Figure 
7 presents the change in shear strength against concrete 
compressive strength considering a tensile reinforcement ratio 
of 1.0% and shear span-to-depth-ratios of 3 and 5 for various 
values of effective depth as 300, 500, 800 and 1200 mm. 

Figures 4 and 5 demonstrate the size effect on the shear 
strength clearly. The reduction in the shear strength ranges 
from 57% to 68% for a tensile reinforcement ratio of 1.0% as 
effective depth increases from 41 mm to 1400 mm, depending 
on concrete compressive strength and shear span-to-depth-
ratio. It is observed in Figure 4 that the effect of concrete 
compressive strength diminishes as effective depth gets larger 
for given tensile reinforcement ratio and shear span-to-depth-
ratio. It should be noted that ACI 318 [52] and TS 500 [54] do 
not consider size effect in the shear design of RC beams. 

It is observed in Figure 6 that shear strength increases with 
concrete compressive strength for an effective depth of 400 mm 
and a shear span-to-depth ratio of 3 and 5. It can be deduced 
from Figures 5 and 6 that shear strength increases with tensile 
reinforcement ratio for given concrete compressive strength, 
shear span-to-depth-ratio and effective depth. 

Figure 7 shows that the rate of increase in shear strength with 
respect to concrete compressive strength decreases as effective 
depth or shear span-to-depth ratio increases. For instance, 
shear strength increases by 33% with an increase of concrete 
compressive strength from 12 MPa to 127 MPa in case of an 
effective depth of 800 mm whereas the increase is 24% in case 
of an effective depth of 1200 mm, where tensile reinforcement 
ratio is 1.0% and shear span-to-depth ratio is 3. The increase in 
shear strength decreases from 24% to 13% with an increase in 
concrete compressive strength from 12 MPa to 127 MPa when 
shear span-to-depth ratio increases from 3 to 5 for an effective 
depth of 1200 mm and a tensile reinforcement ratio of 1.0%. It 
is observed in Figures 4-7 that shear strength decreases with 
an increase in shear span-to-depth ratio from 3 to 5. 

A common issue in training an ANN network is the 
memorization of training data by the network. It is not always 
possible to detect whether there occurs overfitting or not 
during training stage, however a network with a poor 
generalization capability is likely to deliver meaningless 
solutions during a parametric study, like largely oscillating 
curves. Since the trends obtained in the parametric study are 
consistent with the general trends observed in experimental 
studies, it can be concluded that the developed ANN network is 
able to generalize to new data within the ranges considered for 
training the network. 

 

(a): 𝑎 𝑑⁄ = 3. 

 

(b): 𝑎 𝑑⁄ = 5. 

Figure 4: Shear strength vs. effective depth (𝜌 = 1.0%). 
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(a): 𝑎 𝑑⁄ = 3. 

 

(b): 𝑎 𝑑⁄ = 5. 

Figure 5: Shear strength vs. effective depth (𝑓𝑐 = 60 MPa). 

 

(a): 𝑎 𝑑⁄ = 3. 

 

(b): 𝑎 𝑑⁄ = 5. 

Figure 6: Shear strength vs. concrete compressive strength  
(𝑑 = 400 mm). 

 

(a): 𝑎 𝑑⁄ = 3. 

 

(b): 𝑎 𝑑⁄ = 5. 

Figure 7: Shear strength vs. concrete compressive strength    
(𝜌 = 1.0%). 

5 Conclusion 

Predicting the shear strength of RC beams is of utmost 
importance for design purposes since it is required for an RC 
beam to have shear capacity greater than its flexural capacity in 
order to avoid a brittle shear failure. An ANN model was 
developed to predict the shear strength of RC slender beams 
without shear reinforcement. A database including 1082 beams 
was used for developing the model consisting of an input layer 
of four neurons, a hidden layer of four neurons and an output 
layer of a single neuron. The database is much larger than the 
ones previously used [3]-[7] for developing ANN models to 
predict the shear strength of RC slender beams. The input 
parameters are concrete compressive strength, tensile 
reinforcement ratio, shear span-to-depth ratio and effective 
depth. The output is an estimate of shear strength. The mean, 
standard deviation and coefficient of variation of the ratio of the 
ANN model outputs to the experimental values are 1.031, 0.186 
and 0.181, respectively. The correlation coefficient between the 
ANN model outputs and the experimental values is 0.844. 
Compared to five design code equations [26],[52]-[54] and 
fourteen equations [25],[55]-[64] proposed by various 
researchers, the ANN model has a better performance in 
predicting the shear strength of the beams in the database. 
Considering the superior performance of the model over 
nineteen equations [25],[26],[52]-[64] available in the 
literature and the size of database more than twice the size of 
the largest one [5] used for developing ANN models in the 
previous studies together with fairly distributed input 
parameters, the ANN model developed in this study can be 
considered more reliable than the ANN models developed 
previously. 
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A parametric study was performed to investigate the effects of 
various parameters on the shear strength of RC slender beams 
without shear reinforcement using the ANN model. It is 
observed through the parametric study that:  

(i) There exists a significant size effect on the shear 
strength, 

(ii) Shear strength increases with tensile 
reinforcement ratio and concrete compressive 
strength, however the effect of concrete 
compressive strength diminishes with increasing 
effective depth, and  

(iii) An increase in shear span-to-depth ratio from 3 
to 5 attenuates the effects of effective depth, 
concrete compressive strength and tensile 
reinforcement ratio on the shear strength. Both 
the performance curves obtained while training 
the ANN network and the resulting trends 
observed in the parametric study show that the 
ANN model is able to generalize to new data. 
Based on the results of the parametric study, it is 
recommended to revise the shear design 
equations of ACI 318 [52] and TS 500 [54] since 
they do not consider the size effect. 

As new data becomes available, the ANN model will be updated 
to improve its ability of predicting the shear strength of RC 
slender beams without shear reinforcement. 
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