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Implementation of AES-192 Algorithm to Overt Fake Keys against 

Side Channel Attacks 

Abstract— Cryptography is the study of mathematical techniques related to aspects of information security such as 

confidentiality, data integrity, entity authentication and data origin authentication. In data and telecommunications, cryptography is 

necessary when communicating over any unreliable medium, which includes any network particularly the internet. In this paper, an 

approach to overt the cryptographic key with a fake key, when there happens any counter attack so-called side-channel attack (SCAs) 

is applied to break the security of AES-192. SCAs happens based on the correlation produced by the data provided as input and 

operations performed by the device for the data provided and its actual power consumption for the operation. The proposed approach 

revealing false key introduces few modifications in the existing AES algorithm which aims at masking the true key by reinforcing the 

correlation coefficient in such a way that the attack leads to a false key which misleads the attacker. The algorithm is coded in Verilog 

and simulated using Modelsim DE6.5e. The synthesis process is done using Xilinx ISE8.1i and implemented in Xilinx Spartan 3E 

device. Experimental Matlab R2014a results show the strength of the proposed system, which is capable of successfully hiding the 

true cryptographic key. 

 

Keywords— Advanced Encryption Standard Encryption Standard, Data Side-channel attacks, Cryptography, cipher text, SubByte, 

ShiftRow, MixColumn, AddRound key 

 

I. INTRODUCTION 

In the late 1990s, Kocher et al. [1] proposed a simple methodology to obtain the key of a cryptographic algorithm which was based 

on analyzing the power consumption associated with the hardware device used in the implementation of such an algorithm. The 

information related to the revealed key through power consumption is used to perform the Side-Channel Attacks (SCAs). In addition 

to their conceptual simplicity, these attacks only need cheap instrumentation equipments used for capturing and data processing. 

Although authors implemented their proposal on a Data Encryption Standard (DES) algorithm, nowadays the process has been 

successfully applied over different cryptographic algorithms of private key [2]. However due to the high level of security, most 

publications have intended to find out the key of the popular Advanced Encryption Standard (AES) algorithm. Since its adoption by 

the NIST [13] as standard, this algorithm has significantly increased its popularity.  

Hence this forms the basis for encrypting many official documents by the National Security Agency (NSA) and by the EUA 

government itself [3]. Many techniques have been developed to protect the integrity of cryptographic systems due the advent of SCAs. 

Counter measures that has been proposed for hiding leads to design a systems where the data processed and the power consumed are 

independent[12]. Such a system is achieved either by creating systems that are featured with random power consumption or systems 

whose power consumption is constant for every clock cycle [2].Another type of countermeasures called masking techniques was 

proposed. The robustness of such techniques is based on masking the data with random values that are unknown by the hackers. These 

Masked data change the power consumption of the masked data from the original data. It is to be noted that the functionality of the 

algorithm is not changed at any point of the system execution. 

The countermeasures based on masking or hiding for Different versions of AES have been proposed and implemented in the past. 
Most of these proposals are based on implementations performed on microprocessors, ASIC or FPGAs [4] [5]. All these proposals are 
always addressed to design systems in which all the permitted keys that have been obtained upon a SCAs analysis are equally likely 
hence the concept of equiprobability is the real measure of protection is adopted. This paper presents a completely different approach 
towards masking of data that includes, instead of protecting the equiprobability of keys, the countermeasure is based on designing the 
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algorithm in such a way that a false key becomes the key with the highest probability obtained in a SCA by the attacker[6][7]. In fact, 
the system seems to behave as an unprotected system but when an attacker performs a classical SCA then the system culminates in a 
false positive [8]. 

The paper is organized in five sections. Section I describes about the evolution of AES. Section II describes the theoretical basis 

adopted in SCA and the existing work using AES-192. Section III shows proposed work of reveal false keys for AES-192. Section IV 
presents the experimental results, and finally section V shows the conclusions. 

II.  CLASSICAL STATISTICAL ATTACKS BASED ON POWER ANALYSIS 
 

A. AES algorithm 

Fig. 1 shows the general architecture of a crypto-processor system. A cryptographic algorithm is applied over a plain text in order 

to obtain a cipher text [10]. 

 

Fig.1 Crypto-processor architecture. 

The brute-force attack, which tries to obtain the plain text without knowing the actual cryptographic key, is unfeasible. AES is a 
symmetric block cipher, so that it uses the same key for encrypting and decrypting both the plain and the cipher texts, respectively. 
The Advanced Encryption Standard is a block cipher whose design principle is known as a substitution permutation network. The operation 
of AES is performed on data of a fixed block length, using a key that can either have 128, 192, or 256 bits (this paper is based on a 
version of 192 bits). The AES algorithm with 128-bit, 192-bit and 256-bits are usually referred to as AES-128,       AES-192 and   AES-256 
respectively. The key length represents the number of 32-bit words in the key, and thus is equal to 4, 6 or 8 in this standard. The input 
block, the output block and the intermediate cipher result all have the same length of 128 bits. The block size represents the number of 32-bit 
words in the block. The   number       of AES round is determined by its key size: 10 rounds for   AES-128, 12 rounds for AES-192, and    14   

rounds for AES-256[11]. 

 

Fig.2. AES Encryption and Decryption 

 

The algorithm applies several substitutions and permutations on a block of 128 bits, called the state, which initially is obtained by 

combining the plain text and the key by an exclusive-or operation [11]. Thus, the state is represented by an array of 16 bytes with four 

rows and four columns. Such functions are repetitively applied on the state during several iterations calls rounds. For both its Cipher 
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and Inverse Cipher, the AES algorithm uses a round function that is composed of four different byte-oriented transformations as 

shown in fig 2:  

 

 Byte substitution using a substitution table (S-box),  

 Shifting rows of the State array by different offsets,  

 Mixing the data within each column of the State array, and  

 Adding a Round Key to the State.  

In each round, the state is again combined with a new key, called round key, which is created by the key scheduling algorithm (key 

expansion). A detailed description of the AES algorithm can be found in [3]. According to the theory of SCAs, the most vulnerable 

blocks that can be attacked are AddRoundKey and SubBytes. The AddRoundKey block is a simple bitwise XOR operator, whereas the 

SubBytes block is a non-linear function that is applied to each individual byte of the state.TheSubBytes function can be implemented 

by means of a look-up table of 256 elements, which is called 16 times (one time for each byte of the state) per round.  

B. AES Encryption 

In encryption mode, the initial key is added to the input value at the very beginning, which is called an initial round. This is 

followed by 11 iterations of a normal round and ends with a slightly modified final round. During one normal round the following 

operations are performed in the following order: Sub Bytes, Shift Rows, Mix Columns, and Add Round key [11]. The final round is a 

normal round without the Mix Columns stage. 

Steps in AES Encryption  

 Sub Bytes—a non-linear substitution step where each byte is replaced with another according to a lookup table.  

 Shift Rows—a transposition step where each row of the state is shifted cyclically a certain number of steps.  

 Mix Columns—a mixing operation which operates on the columns of the state, combining the four bytes in each column  

 Add Round Key—each byte of the state is combined with the round key; each round key is derived from the cipher key using 

a key schedule  

 

The Sub Bytes transformation is a non-linear byte substitution that operates independently on each byte of the State using a 

substitution table (S-box). This S-box which is invertible is constructed by composing two transformations which include an inverse 

function GF(2
8
) and an invertible affine transformation. Conventionally, the coefficients of the SBox and inverse S-Box are stored in 

the lookup tables, or a hard wired multiplicative inverter over GF(2
8
) can be used, together with an affine transformation circuit as in 

Fig.3. 

In the Shift Rows transformation, the bytes in the last three rows of the State are cyclically shifted over different numbers of bytes 

(offsets). The first row is not shifted at all, the second row is shifted by one the third row by two, and the fourth row by three bytes to 

the left. This has the effect of moving bytes to lower positions in the row (i.e., lower values of c in a given row), while the lowest 

bytes wrap around into the top of the row (i.e., higher values of c in a given row)[11]. The MixColumns function applies a linear 

transformation to the state, and it operates on the matrix column by column. Each column is treated as a polynomial over GF(2
8
) and 

multiplied modulo x
4
+1 with a fixed polynomial. The AddRoundKey transformation adds a round key to the state by using a 

simple bitwise XOR operation. Each round key used is derived from the secret key by employing the key schedule. 

C. AES Decryption 

In decryption mode, the operations are in reverse order compared to their order in encryption mode. Thus it starts with an initial 

round, followed by 11 iterations of an inverse normal round and ends with an AddRoundKey. An inverse normal round consists of the 

following operations in this order: AddRoundKey, InvMixColumns, InvShiftRows, and InvSubBytes. An initial round is an inverse 

normal round without the InvMixColumns. The Inverse Sub Bytes (InvSubByte) function applies the inverse S-box to each byte of the 

state. The operation is carried out by inverting the affine transformation and then taking the multiplicative inverse in GF(2
8
). The 

Inverse Shift Rows Transformation (InvShiftRows) operation, the first row is unchanged, and row I is shifted to the right i byte(s) 

cyclically, where i=1, 2, or 3. The InvMixColumns is the inverse of MixColumn operation. Each column of the state is multiplied 

modulo x
4
+1 with a fixed polynomial. The AddRoundKey transformation is its own inverse as it only involves the xor operation 

[11]. 
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D. Fundamentals of statistical attacks 

SCAs exploit the existing correlation between the power consumption of the electronic device and the data and operations 
performed during the execution of the AES algorithm [9]. The attack process performed to find out the key consists of the following 
steps: 

1. The Attack mainly focuses on one of the blocks, either the AddRoundKey block or the SubByte block. The usual preferred point 

is the output of SubBytes in the first round. The output of AddRoundKey block is also vulnerable but it offers poorer results. In 

general both the candidates are considered to be attacked first. 

2. Let T be the traces associated with the power consumption during the execution of a function that is being captured. Each trace Tj 
indicates the plain text that is known by the attacker. 

 

Fig.3 Block diagram for AES-192 bits. 

3. In order to simplify the calculation process, the traces are compressed. In our assumption, the average value associated with its 
power consumption is given by clock cycles. Let us assume that ta be the point chosen to be attacked. A new vector Tta of length L is 
generated, which contains all points ta associated with all compressed traces. 

4. The whole process is focused mainly on a particular byte of the function that is chosen in step one. This byte depends only on one 
byte of the key, which is unknown, along with a byte which is known of the plain text. Only one of the 256 potential keys is correct. 
For each possible keys a theoretical model of power consumption (hamming-weight) Hk (k=1..256) is created for each element of 
vector Tta. 

5. The correlation coefficient ρk (k=1 to 256), between the vector Tta and theoretical model Hk represents the real power consumption, 
that is calculated. 

6. The first byte of the correct cryptographic key corresponds to the highest correlation ρk. 

7. The process is repeated for each of the 15 remaining key bytes. 

 

III. ALGORITHM STRUTURE TO REVEAL FAKE KEYS 
 

A. Theoretical basis for hiding the true key  

The basic idea behind the fake key production is represented in Fig. 4 which is focused on function SubBytes that is denoted as 

SBox. The real key KEYREAL is concealed with a mask FAKEMASK through an exclusive-or operator [9].The result of this operation is 

the fake key KEYFAKE, which is used for encrypting the plain text that leads to false positive. 

It is seen that the system is protected, and if any statistical attack is performed on functions AddRoundKey or SubBytesthen it will 

reveal the false key KEYFAKE which misleads the attacker. However, some modifications have to be introduced along the encrypting 

process, the cipher text must be encrypted with the realkey KEYREAL. 
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Fig.4 Scheme for encrypting the plain text with a false key. 

Note that the output of SBox (the state) can be represented as: 

SBoxT KEYFAKESBoxT KEYREAL M BOX                                              (1) 

where MBOX is a vector of 8-bits length.  

Expression (1) allows retrieving the state related to the real key just operating the actual output of Sbox with an exclusive-or. 
Moreover, MBOX satisfies the following equality: 

MBOX jSBox jSBox j  FAKEMASK 

Being jTKEYFAKE . Note that j can take 256 different values. MBOX can be seen as a look-up table of 256 elements, which can be 

pre-computed only once, at the beginning of the encrypting algorithm: 

for (j=0; j<256; j++) { 

MBOX jSBox jSBox j  FAKEMASk  

} 

B. Structure of the modified AES. 

The complete architecture proposed in this paper to reveal fake keys is as shown in Fig.5. It can be clearly seen that there are only 

some small differences between the two models. Further, there are some features that are to be mentioned regarding our proposed 

system: 

1. At any time, the calculations done on the basic functions like AddRoundKey, ShiftRow,  SubBytes and MixColumnis always based 
on the false key KEYFAKE. Thus, any statistical attack performed on any of these functions would lead to a false positive (false key). 

2. Since the MBOX in our proposed system is pre-computed, so that its execution is very fast and comparable with the function 
SubBytes. Thus, the total execution time is less. 

3. Function MixColumn has been implemented twice though  the second implementation which is connected to the output of MBOX, 

is not strictly necessary, but we have included it for the success of any attack that was performed in MixColumn. 

4. The output of MBOX has been masked with m2 for security purpose. It is a mask which randomly changes for each encrypted 
plain text. This attempt to prevent a second order attack was carried out by processing the outputs of functions SubBytes and 

MBOX. 

           It is clear from the block diagram of our proposed model that, the ShiftRowsis located between AddRoundKey and SubBytes 

blocks, so that any attack that has been performed on this function will lead to an identical result similar to the one that we obtained 

for AddRoundKey. Some constrains has been imposed on the attack that is performed on output of MixColumn block. Since the 

MixColumn operates on bytes (four bytes) coming from the output ofSubBytes, key hypotheses of 32 bits should be performed while 

calculating the correlation coefficient. Usually, attacks based on hypotheses of more than 24 bits are considered unfeasible, in order to 

overcome this problem, we use plain texts with 3 bytes fixed. The position of these 3 bytes depends on the location of the byte that has 

to be attacked. 
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Fig.5 Proposed structure for AES algorithm to reveal fake keys. 

For instance, if the target is the byte 4 of the key, then bytes 5, 6 and 7 are fixed. These fixed bytes produced a constant power, 

which does not affect the correlation coefficient. All cases of simulation have revealed the expected false key KEYFAKE, as the key 

hypothesis by concealing the true key KEYREAL from the hacker.  

IV. SIMULATION RESULTS 

A. Simulation results 

Several simulations have been performed in ModelSim6.5e software based on the assumptions made on section III and for the sake 
of simplicity, pre-fixed values has been used for all simulated attacks. On the other hand, mask m2 as in our proposed model is 
randomly chosen in each encryption process. Fig 6 and 7 shows the simulated output of the encryption and decryption of proposed 
AES algorithm. The proposed system of obtaining a fake key for the actual text is observed in decryption part of the simulation. A 
fake key has been obtained for the actual text which acts as the temporary fake key without which the hacker cannot hack the data. 

 

  

Fig.6 Simulation output of AES-192 Encryption 
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Fig.7 Simulation output of AES-192 Decryption 

Fig. 8 and 9, show a comparison of how a brute force attack on both the existing and proposed model is being carried on in 

MatLabR2014. Here a brute force attack is performed by generating certain number of keys by the attacker and it is being compared 

with the original key in order to hack the actual data and plotted as a figure of correlation between the generated key and the 192 bit 

input data 

 

                           

    Fig.8 High correlation between actual key and hacker’s key.      Fig.9 Low correlation between actual key and hacker’s key.  

                                 (Existing Model)                                                                                    (Proposed Model)  

 

Moreover, it is observed that the maximum key is hacked (98%) in existing system without masking scheme indicating that the 

system is vulnerable and also the time delay was low (0.1157secs). Whereas in our proposed system, when the brute force attack is 

performed, we find that the correlation between the key and data was found to be minimal (74%) with time delay of 0.6310secs that 

makes the system reliable and robust when compared to the existing one The experimental results were focused mainly on performing 

the correlation attacks on functions AddRoundKey, SubBytes and MixColumn. 
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TABLE I DATA HACK% AND ITS TIME DELAY IN AES-128 AND AES-192[9]. 

 

AES Algorithm 

 

Data Hacked 

 

Time Delay 

 

Original AES-128 (with no countermeasures) 98% 0.1045secs 

 

Faked AES-128 (with countermeasures) 

 

84% 

 

0.7321secs 

Original AES-192 (with no countermeasures) 98% 0.1157secs 

Faked AES-192 (our proposal) 74% 0.6310secs 

C. Execution and processing times 

Table II shows the execution time of different versions of AES. The original AES-128 and AES-192, with no countermeasures, 

takes about 16.144 ns and 20.349ns, whereas the protected version using faked AES key is executed in 18.707 ns and 20.341ns. The 

proposed concept of AES-192 is executed in 20.341ns, including the pre-computation of MBOX and the masking of some intermediate 

values [9].  

TABLE II DELAY TIME FOR DIFFERENT IMPLEMENTATIONS OF AES-128 AND AES-192 

 

AES Algorithm 

 

Delay 

 

Original AES-128 (with no countermeasures) 

 

16.144 ns 

 

Faked AES-128 (with countermeasures) 

 

18.707 ns 

Original AES-192 (with no countermeasures) 20.349 ns 

Faked AES-192 (our proposal) 20.341 ns 

 Since the statistical attack is usually performed on the first (1 or 2) or on the last (8, 9 or 10) rounds, the faking countermeasure 

can be disable during the intermediate rounds (3 to 7) to accelerate the execution time.  

TABLE III POWER CONSUMPTION FOR DIFFERENT IMPLEMENTATIONS OF AES-128 AND AES-192 

 

AES Algorithm 

 

Dynamic power 

(mW) 

 

Static power 

(mW) 

 

Original AES-128 (with no countermeasures) 

 

457 

 

338 

 

Faked AES-128 (with countermeasures) 

 

295 

 

337 

Original AES-192 (with no countermeasures) 347 295 

Faked AES-192 (our proposal) 382 295 
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Table III shows the power consumption (both static and dynamic) for different versions of AES. The original AES-128 and  AES-
192, with no countermeasures, takes about  457 mW and 347 mW of dynamic power along with 338 mW and 295mW of static power, 
whereas the protected version using faked AES key for AES-128 and AES-192 consumes about 259 Mw and 382mW of dynamic 
power along with 337 mW and 295Mw of static power. It is clear from the observation that the proposed scheme has increased power 
consumption of 10% when compared to convectional model but with the advantage of having increased security of the system [9]. 

The brute force attack process was programmed in MATLAB R2014a and executed on a laptop clocked at 1.90GHz with a RAM 
memory of 8.0 GB. 

V   CONCLUSION 

A new countermeasure against side-channel attacks was presented for AES-192. The cryptographic key is protected when a 
classical statistical attack is performed on any of the functions implemented on the AES algorithm by revealing a false key. The 
proposal was tested executing the algorithm in ModelsimDE6.5e. Experimental results showed the effectiveness of the proposed 
method by revealing false keys under brute force attack from hackers using MatLabR2014a Software.  
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