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Abstract

We present three methods to compute the expected value of the maximum of n independent,
identically distributed exponentials and also obtain their Laplace Stieltjes Transform-LST.
The results are applicable in the following cases: (1) the time to data loss in disk arrays with n-way
replication, where the time to disk failure is exponentially distributed; (2) the time to completion of
n exponentially distributed parallel tasks; (3) an upper bound to the mean fork-join response time
when arrivals are Poisson, service times are exponentially distributed, so that response times are
exponentially distributed.
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1. Introduction

The order statistics and especially the expected value of the maximum and minimum of
independent random variables are discussed in most books on probability theory and statistics
(Trivedi, 2002). We present three methods to compute the expected value and the Laplace Stieltjes
Transform (LST) of the maximum in the case of random variables with a negative exponential
distribution, whose coefficient of variation CV=1 is considered a midpoint between CV=0 and large
CVs. The resulting closed form equations can be applied to the following problems.

Reliability Modeling: The reliability of an n-way parallel system, where it takes the failure
of all n components with individual reliabilities R;(t), 1 <i <n for the system to fail is given as
(Trivedi, 2002):

n

Rparater (9 = 1= [[1- Ri®)] .

i=1

It has been shown in numerous studies such as (Gibson, 1992; Schroeder, Gibson, 2007) that

the exponential distribution is a sufficiently accurate approximation for the time to disk failure, so
that: R;(t) = e t. Most disk arrays have homogeneous disks so that A; =1, for all i. This
assumption has been subsequently used in reliability modeling studies of disk arrays, which
additionally requires disk repair times to be exponentially distributed (Gibson, 1992; Trivedi,
2002). There is interest in the Mean Time to Data Loss - MTTDL, which is the time that it takes for

* Corresponding author
E-mail addresses: victo@aua.am (V.K. Ohanyan); alexthomasian@gmail.com (A. Thomasian)

151



http://www.ejournal11.com/
mailto:victo@aua.am
mailto:alexthomasian@gmail.com

Modeling of Artificial Intelligence, 2016, Vol.(11), Is. 3

all n disks to fail. The time to first failure is R0 (t) = [Ii=; R;(t). In the case of the exponential
distribution Rye,ies (t) = e ™%, where A = ¥, 4; and it follows that the mean time to failure is
1/A.

Parallelism: Parallel processing systems where a job consists of n tasks with i.i.d.
exponentially distributed service times, which are executed in parallel. The interest is in the mean
time to complete all tasks (Sun, Peterson, 2012).

Fork/join — F/J queueing systems: We consider F/J queueing systems where each job
spawns n tasks, which are processed in parallel on n servers. Jobs arrive according to a Poisson
arrival process with rate A and service times are exponentially distributed with rate u and mean

X = i, so that each one of the n servers constitutes an M/M/1 queueing system (Kleinrock, 1975).

Given that the utilization factor of the servers: p = 1% = A/u is less than one, the mean task
response time is R(p) =%/(1 —p) = (u —A)~! and the task response time is exponentially
distributed: F(t) =1 — e t/R(®) (see Kleinrock, 1975). That the mean fork-join response time

Rg/] (p) equals the maximum of n response time R;'** (p) is not true, but rather the latter is an
upper bound to the former in the case of the exponential distribution (Nelson, Tantawi, 1988).

There is an exact solution for er/] only for n = 2: Rg / (») = (1.5 —p/8))R(p) (Nelson, Tantawi,
1988), which is less than R} (p) = H,R(p) where H, = Y}_;1/k is the Harmonic sum. An

approximation to le,/ /" is obtained in (Nelson, Tantawi, 1988):
H Hg\ 4
RE (p) ~ [H—’; + (1— H—’Z‘) 1—f] REV (p), 2< n< 32

In a RAID level 5 (RAID5) disk loads are balanced via striping, i.e., partitioning large files
into data strips which are placed round-robin across the n disks of the array, with one strip per row
(stripe) dedicated to a parity strip which holds the eXclusive OR- XOR of the corresponding bits at
the other strips in the row (Thomasian, Blaum, 2009). According to the left symmetric
organization parity strips are placed in repeating right to left diagonals to balance the parity update
load for OnLine Transaction Processing (OLTP) applications generate read/write requests to
randomly placed small disk blocks. Such disk requests are expensive to process, since in addition to
transfer time they incur both seeks and rotational delays (Thomasian, Fu, Han, 2007). When a
single disk fails the rate of read accesses to the n-1 surviving disks is doubled, which is due to F/J
requests for reconstructing missing blocks in addition to disk's own read requests to the disks.
There is a smaller load increase for writes. Although disk service times are not exponentially
distributed, such an assumption was used in (Menon, 1994). The performance of RAID5 and
RAIDG6 arrays with an OLTP workload in normal and degraded modes is analyzed with general
service times, i.e., an M/G/1 queueing model, in (Thomasian, Fu, Han, 2007). Rebuild processing
in RAID5 systematically reconstructs the contents of the failed disk on a spare disk, so that
according to read redirection, read requests directed to the failed disk are processed directly from
the spare disk provided the requested data block has already been reconstructed on the spare disk
(Thomasian, Blaum, 2009). As rebuild progresses the fraction of F/J read requests drops from 50%
of read requests to the disk to zero. It can be observed from simulation results in (Thomasian,
Tantawi, 1994) that with Poisson arrivals and general service times R;'** (p) remains an upper

bound R,f/ J (p). For smaller fractions of F/J accesses R,f/ J (p) = RI"* (p), where the latter is much
easier to compute. The paper is organized as follows. In Section 2 we first provide the formula for
calculating the expectation of the maximum of independent exponentially distributed random
variables. We obtain the formula for the maximum of n i.i.d. exponentials using two different
methods in Sections 3 and 4, while a third method is given in Appendix I.

The LST for the maximum is derived in Section 5. In Appendix II we provide the LST for
exponentials with different rates based on the analysis in (Harrison, S. Zertal, 2007). Conclusions
appear in Section 6.

2. Maximum of Exponential Independent Random Variables

Let Xi,..,X, be n independent random variables with exponential distribution &(4;) for
i =1,...,n. We want to study

X(n) = max;<;<n(X;).
First, we need the distribution function F, of X(n), which by independence is:
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n

E@®)=PXMm)<t)= HP(X <t)= H(l —e ) I,59, VEER,

i=1

where I, is the 1ndlcator functlon of the event t = 0. The product can be expanded:
n—1

1_[(1 —e M) =1+ Z(—1)k Z et 2iee M
i=1 k=1

[ET=k
The sum 35— is a sum for all subsets of {1,...,n} with k elements. It means

n(l—e“)—l z g N et ) — g (—1) e Tk,

1<i<j<n
Now, we are able to calculate the expectation of X(n):

+o00 +co n
E[X = 1-F(t))dt = 1-— 1—etit) | dt =
weol= | (-rP@)de=[ ( ]_1[< e )) :

n+1 n+1

Z( 1)k Zf e~ tXice i dt :Z(_l)k Z ! .
|E[=k k=1 |E|=k Yiegh
Therefore
ELX(n)] = T N D o
n 7 +/1 L LA+ "
1<i<j<n 1<i<j<k<n

3. The First Proof for the Maximum of ni.i.d. Exponentials
Now, we assume that the variables (X;);,cy are i.i.d with distribution &(4). In this particular

case, the expectation can be greatly simplified. For each k, there are (Z) subsets of {1,...,n} with k

1
EIX()] = Z ) Dk

This sum hides a well known sum: the harmomc sum.

LEMMA:
1 1 .
> 2=> 201 (}) (1)

i=1 i=1

elements. So we have

holds for any natural n.
PROOF: We prove it by the method of mathematical induction. For n = 1, the identity is
true: 1=1. To complete the inductive step of a proof using the principle of mathematical induction,

we assume that (1) is true for an arbitrary positive integer n and show that under this assumption,
n+1 n+1

z Z (— 1)llrz+1)

must also be true (that is we assume that it is true for a natural n and prove it for n + 1).
Since

n+1 n
RN
i Li n+1
. i=1 i=1
using inductive step, we get
n+1 1 n 1 1
(M
= —(-1 i—1 . -
_zli > e ()4
L= L
Therefore we have to prove the followmg equlvalent identity:

or
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n
1 1
— i-1[(Mn +1 n _1\n
n+1_Z =D [( i ) (l)]+( D n+1
L
It is not difficult to see that the difference of two combinations has the form:

e
(nJirl)_(Til): i!(n—i)r!l(ri—i+1)'

Therefore, we can rewrite (1) to the form:
n

1 1 - n!
n+1_(_1) n+1 ;(_1) 1 itn=!(n—i+ 1!

or

L
n+1 n+1 n+1 L tm—i+ 1D
1=

Canceling by 711? we come to the following equivalent identity:
n

1+ (_1)n+1 — Z(_l)i—l (Tl 'll' 1)
or =
n+1

;(_1)1'—1 (Tl ‘ll' 1) =(1-1D"1 =0

The proof is complete.
4. The Second Proof for the Maximum of n i.i.d Exponentials

This proof is inspired by the way of calculating Y7_, (Z) (—1)* ﬁ The goal is to find a
function whose derivative or primitive integral is linked to the sum we want to calculate.

We introduce g, (x) = w and G,(x) = f;_ gn (t) dt. The domain of g can be extended by
continuity in zero and we have :
n n k
_ MY 1yk k-1 _ ny 1y X
7@ =) (o) CDF T and G0 =) () CDF

k=1 k=1
So E[¢§,] = _71 G,(1). As we know how to factorize a™ — b", we have:

n—1 n—1
1—-x)—-1
gy = 17071 D=0t ==
k=0

And fol_(l —t)*d t = —, so we have the result

k+ 1’
Elxu] AZ

5. The LST for the Maximum of n Exponentlals
Another interesting characterization of X(n) is its LST. For n a nonnegative random variable,
we define its Laplace's transform by the following formula
Ly: s v E[e{_sn}]
If  has a density function f; , we have

+oo
Vs € R, Ly, (s) =f e f(x)d x
0-

In the case of X(n), we have
+oo

Vs ER,, Lg () = f e™* fr(x)d x

= e (Fe (x) —)];m + s f;we‘s" (1 — Ff(x)) dx
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= s f+°° et i(—nk > e Tenh Jdx = - Z( DF Y D

- k=1 |ET=k \ET=k ZleEll +s
Therefore, we obtain

L = ! Z L +oe 4+ (=D :
gn(S)_S : 1)Li+S /11+/1]+S ?:1/11"}‘5
i=

1<i<j<n

In the particular case of i.i.d. random variables, we get
n

n 1
Le, (s) = SkZ () D KA+s
The above equation can be used to obtain the moments of X(n). The first and second
moment for n = 2 taking the first and second derivatives of the LST is 1.5/1 and 3.5/42,
respectively (Kleinrock, 1975), so that the variance is 1.25/42.
Noting that the exponentials are mutually independent the variance of the maximum can be
obtained directly (Trivedi, 2002):

Var[X(n)] Z VarX; =7 Z

The analy31s in (Harrison, S. Zertal, 2007) for the Laplace transform for exponentials with
different rates is given in Appendix II.

6. Conclusion

We have presented three methods to compute the expected value of the maximum of n i.i.d.
exponentials and their Laplace transform, which can be used to compute higher moments of the
maximum.

Appendix I: The third Proof for the Maximum of n i.i.d Exponentials
The method described here to obtain E[X] where X = max(X;, X3, ...,X,) and Fy, = 1 - e~Ait
n

Fx(t) = ani(t) :
i=1

Let Ry, (t) = 1 — Fy,(t), we have

n

Re(® =1 - [ [t = Re @]
i=1
Givenl; =1, 1<i<n

E[X] = f [1 - (1-e*at.
Letu =1 — e*tsothat—At = In(1 —u)anddt = [1/1 (1 —w)] du

-3 -

Appendix II: The LST for the Max1mum of n Exponentlals with Different Rates

According to (Harrison, S. Zertal, 2007) the maximum of n r.v.'s with negative exponential
distribution with parameters A = (44, ... ,4, ) can be expressed as the recurrence for 1 < m< n
(where \j indicates the exclusion of 4;)
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m

m

SN |y @)= Dk Lna Gyjo)

j=1 j=1

The k" moment of the maximum of K exponentially distributed i.i.d. r.v. is then
kM, (4 k=1) XMy 1Ay, k)

M, (A,k) =
< (&4) j=1% j=1%
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AnHOTamuA. Mbl IPUBOAUM TPHU METOJA JJI BBIUKCJIEHUS CpPEHEr0 3HAYeHUs I
MaKCuMyMa n HE3aBUCHMbIX U OJJUHAKOBO PACIIpEAC/IEHHBIX SKCIIOHEHT, 4 TaKX€ BbIYUC/IAEM €ro
npeobpasoBanue Jlamnaca-Crubreca. Pe3ysbTaT mpuMeHsieTcs B CIEAYIOMNX ciaydasx: (1) BpeMs
IIOTEPH TAHHBIX B IUCKOBBIX MAaCCHBAX C-IIOJIOCHON PENPOJIYKIIMEH, T7ie BPEMsI /10 BBIXO/Ia U3 CTPOS
JINCKa WMeEeT SJKCIIOHEHIIHAJIbHOEe pacmpezesienue; (2) BpeMs OKOHYAHHsA h SKCIIOHEHIIUATHHO
pacrpezie/IeHHbIX TapasUIeIbHBIX 3a7a4; (3) BepXHssA rPaHUIIA CPETHETO BpEMEHHU OKUIAHUS JIJIsT
MapasuIeJIbHOTO COEIMHEHUsI, KOTJa IIOCTYIUIEHUs pacipesiesieHsl 1o IlyaccoHy, BpemeHa
OoOCTy’KMBaHHUSA DKCIIOHEHITUAJIbHBI, TaK YTO BpeMeHa OKUJAHHA HKCIIOHEHI[UATIHHO
pacIipe/ieyieHbl.

KiaoueBble cioBa: KoMOWHATOpHBIA aHAIN3, TMOPSAAKOBAasl CTAaTUCTUKA, AaHAJIU3
SKCIUTyaTallHOHHBIX KauyecTB, CHUCTEMA ouepeziel, MapasuleJIbHBIA IIPOIlecC, He IMapasuleibHbIe
CHCTEMBI MaCCOBOTO OOC/TYKUBaHHUS, OLIEHKA Ha/IE;KHOCTH.
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