Copyright © 2016 by Academic Publishing House Researcher

Published in the Russian Federation
Modeling of Artificial Intelligence
Has been issued since 2014.
ISSN: 2312-0355
E-ISSN: 2413-7200
Vol. 10, Is. 2, pp. 64-70, 2016
DOI: 10.13187/mai.2016.10.64

www.ejournal11.com

Articles and statements

UDC 004
Moments of the Distance between Two Random Points

Narine G. Aharonyan a, ${ }^{\text {, }}$, Victor K. Ohanyan ${ }^{\text {a }}$
${ }^{a}$ Yerevan State University, Armenia

Abstract

Let D be a bounded convex domain in the Euclidean plane and we choose uniformly and independently points P_{1} and P_{2} from D. Denote by $\rho\left(P_{1}, P_{2}\right)$ the Euclidean distance between points P_{1} and P_{2} and by $F_{\rho}^{D}(x)$ the distribution function of $\rho\left(P_{1}, P_{2}\right)$. Using the explicit form of distribution function we obtain a formula for the calculation of moments of order k for any natural k. In particular, using the formula for $F_{\rho}^{D}(x)$, we derive the mean distance between the points P_{1} and P_{2} for a disc, a regular triangle, a rectangle, a regular hexagon and a rhombus (see Santalo, 2004; Burgstaller, Pillichshammer, 2009; Dunbar, 1997).

Keywords: chord length distribution function, mean distance, bounded convex domain.

1. Introduction

The paper continues the investigations in (Aharonyan, 2015). Let D be a bounded convex domain in the Euclidean plane R^{2} (with the area $\|D\|$ and the perimeter $|\partial D|$) and we choose uniformly and independently two points P_{1} and P_{2} from D.

We denote by $F_{D}^{\rho}(x)$ the distribution function of the distance $\rho\left(P_{1}, P_{2}\right)$ between P_{1} and P_{2}, i.e.

$$
\begin{equation*}
F_{\rho}^{D}(x)=\frac{1}{\|D\|^{2}} \int_{A_{D}^{x}} d P_{1} d P_{2}, \tag{1.1}
\end{equation*}
$$

where $A_{D}^{x}=\left\{\left(P_{1}, P_{2}\right): \rho\left(P_{1}, P_{2}\right) \leq x\right\}$ is the set of pairs $\left(P_{1}, P_{2}\right)$ with distance between them less or equal to then $\mathrm{x}, d P_{i}(\mathrm{i}=1,2)$ is the 2 -dimensional Lebesgue measure (that is an area element in Cartesian coordinates).

Denote by $F_{D}(y)$ the distribution function of the length of random chord $\chi(g)=D \cap g$, where g is from the space G of all lines in the Euclidean plane R^{2} (see Harutyunyan, 2007):

$$
\begin{equation*}
F_{D}(y)=\frac{1}{|\partial D|} \mu\left(B_{D}^{y}\right)=\frac{1}{|\partial D|} \iint_{B_{D}^{y}} d g \tag{1.2}
\end{equation*}
$$

where $B_{D}^{y}=\{g \in G: g \cap D \neq \emptyset,|\chi(g)| \leq y\}, y \in R$ and $|\chi(g)|$ is the length of the chord $\chi(g)$, and μ is the Euclidean motion invariant measure in the space G.

It is well known that $\mu(g \in G: g \cap D \neq \varnothing)=\mu([D])=|\partial D|$.

[^0]We use the explicit formula for $F_{D}^{\rho}(x)$ obtained in (Santalo, 2004) (see formula (2.8)) which has the following form when $x \in[0, d]$ (d is the diameter of D):

$$
\begin{equation*}
F_{D}^{\rho}(x)=\frac{1}{\|D\|}\left[\pi x^{2}-\frac{2|\partial D|}{3\|\mid D\| \|} x^{3}+\frac{|\partial D|}{\|D\|} \int_{0}^{x}\left(x^{2}-t^{2}\right) F_{D}(t) d t\right] . \tag{1.3}
\end{equation*}
$$

For the density function $f_{\rho}^{D}(x)$ of $\rho\left(P_{1}, P_{2}\right)$ (i.e. $\left.\left(f_{\rho}^{D}(x)\right)^{\prime}=F_{\rho}^{D}(x)\right)$ the following result is obtained:

$$
\begin{equation*}
f_{D}^{\rho}(x)=\frac{2}{\|D\| \|}\left[\pi x-\frac{|\partial D|}{\|D\|} x^{2}+\int_{0}^{x}\left(1-F_{D}(t)\right) d t\right] . \tag{1.4}
\end{equation*}
$$

These formulae allow to find an explicit forms of distribution and density functions of the distance between two points randomly and independently distributed in the bounded convex domain D when the chord length distribution function is known for that domain. In particular, using above formulae we obtain already known results for the mean distance between P_{1} and P_{2} when D is a disc, a regular triangle, a rectangle, a regular hexagon and a rhombus (see Santalo, 2004; Burgstaller, Pillichshammer, 2009; Dunbar, 1997).

2. Discussion

Moments of Distance Between Two Points In A Domain

One of the simplest applications of the formulae (1.3) and (1.4) is the calculation of the k-th moment between two points randomly and independently distributed on the bounded convex domain. To find the k-th moment between points P_{1} and P_{2} (we denote it by M_{k}^{ρ}) we need to calculate the following integral

$$
M_{k}^{\rho}=\int_{0}^{d} x^{k} f_{D}^{\rho}(x) d x
$$

Using (2.8) we rewrite the last equation in simpler form:

$$
\begin{align*}
& M_{k}^{\rho}=\int_{0}^{d} x^{k} f_{D}^{\rho}(x) d x= \frac{2 \pi}{\|D\|} \int_{0}^{d} x^{k+1} d x-\frac{2|\partial D|}{\|D\|^{2}} \int_{0}^{d} x^{k+1} d x \int_{0}^{x}\left(1-F_{D}(t)\right) d t=\frac{2 \pi d^{k+2}}{(k+2)\|D\|}- \\
& \frac{2|\partial D|}{(k+2)\|D\|^{2}} \int_{0}^{d} d x^{k+2} \int_{0}^{x}\left(1-F_{D}(t)\right) d t= \frac{2 \pi d^{k+2}}{(k+2)\|D\|}-\frac{2|\partial D|}{(k+2)\|D\|^{2}}\left[d^{k+2} \int_{0}^{d}\left(1-F_{D}(t)\right) d t-\quad \int_{0}^{d} d x^{k+2}(1-\right. \\
&\left.\left.F_{D}(x)\right) d x\right] . \tag{2.1}
\end{align*}
$$

In (2.1) we can calculate the integral $\int_{0}^{d}\left(1-F_{D}(t)\right) d t$. We have

$$
\begin{align*}
& \pi\|D\|=\int_{|x(g)|<a}|x(g)| d g=|\partial D| \int_{0}^{d} t d F_{D}(t)=-|\partial D| \int_{0}^{d} t d\left(1-F_{D}(t)\right)=-|\partial D|(d(1- \\
& \left.\left.F_{D}(d)\right)-\int_{0}^{d}\left(1-F_{D}(t)\right) d t\right)=|\partial D| \int_{0}^{d}\left(1-F_{D}(t)\right) d t \tag{2.2}
\end{align*}
$$

Putting (2.2) in (2.1) we obtain

$$
\begin{equation*}
M_{k}^{\rho}=\frac{2|\partial D|}{(k+2)\|D\|^{2}} \int_{0}^{d} x^{k+2}\left(1-F_{D}(x)\right) d x . \tag{2.3}
\end{equation*}
$$

(2.3) gives us a relationship between M_{k}^{ρ} and the k-th moment of random chord's length of the domain D. If denote by M_{k} the k-th moment of chord's length then it is not difficult to verify that

$$
\begin{equation*}
M_{k}=k \int_{0}^{d} x^{k-1}\left(1-F_{D}(x)\right) d x \tag{2.4}
\end{equation*}
$$

Taking into notice (2.4) we can rewrite (2.3) in the following form:

$$
\begin{equation*}
M_{k}^{\rho}=\frac{2|\partial D|}{(k+2)(k+3)\|D\|^{2}} M_{k+3} . \tag{2.5}
\end{equation*}
$$

Another interesting fact can be noted in (2.5). Denote

$$
I_{k}=\int_{g \cap D \neq 0}|x(g)|^{k} d g \quad \text { and } \quad J_{k}=\int_{P_{1}, P_{2} \in D} \rho^{k}\left(P_{1}, P_{2}\right) d P_{1} P_{2} .
$$

Therefore, we obtain

$$
\begin{equation*}
I_{k}=\int_{g \cap D \neq 0}|x(g)|^{k} d g=|\partial D| \int_{0}^{d} x^{k} d F_{D}(x)=|\partial D| M_{k} \tag{2.6}
\end{equation*}
$$

Finally, we have

$$
\begin{equation*}
J_{k}=\|D\|^{2} M_{k}^{\rho} \tag{2.7}
\end{equation*}
$$

Due to (2.6) and (2.7), (2.5) gives us the following equality

$$
J_{k}=\frac{2}{(k+2)(k+3)} I_{k+3}
$$

which is proved in (Santalo, 2004) without mentioning the concepts of the k-th moments of the distance between two points and that of a chord length.

Mean Distance Between Two Points In A Domain

Using (2.3) for $k=1$ we obtain a formula for calculating the mean distance between two points uniformly and independently distributed in a bounded convex domain D :

$$
\begin{equation*}
M_{1}^{\rho}=M(D)=\frac{2|\partial D|}{3\|D\|^{2}} \int_{0}^{d} x^{3}\left(1-F_{D}(x)\right) d x \tag{3.1}
\end{equation*}
$$

The case of a Disc

Consider a disc of radius $r, D=C_{r}$. In this case the chord length density function has the following form (see Stoyan, Stoyan, 1994):

$$
F_{C_{r}}(x)=\left\{\begin{array}{cl}
0, & \text { if } x \leq 0 \\
1-\sqrt{1-\frac{x^{2}}{4 r^{2}}} & \text { if } 0 \leq x \leq 2 \mathrm{r} \\
1, & \text { if } x \geq 2 r .
\end{array}\right.
$$

Using (3.1) for this case we obtain

$$
\begin{gathered}
M\left(C_{r}\right)=\frac{4 \pi r}{3 \pi^{2} r^{4}} \int_{0}^{2 r} x^{3} \sqrt{1-\frac{x^{2}}{4 r^{2}}} d x=\frac{32 r}{3 \pi} \int_{0}^{1} t \sqrt{1-t} d t= \\
=\frac{32 r}{3 \pi} B\left(2, \frac{1}{2}\right)=\frac{32 r}{3 \pi} \cdot \frac{4}{15}=\frac{128 r}{45}
\end{gathered}
$$

where $B(x, y)$ is Euler's Beta function.

The case of a Regular Triangle

For a regular triangle T_{a} with side a we have

$$
F_{T_{a}}(x)=\left\{\begin{array}{cl}
\left(\frac{1}{2}+\frac{\pi}{3 \sqrt{3}}\right) \frac{x}{a}, & \text { if } x \leq 0 \\
\frac{x}{2 a}-\frac{2 \pi}{3 \sqrt{3}} \frac{y}{a}+\frac{2 x}{a \sqrt{3}} \arcsin \frac{a \sqrt{3}}{2 x}+\frac{\sqrt{4 x^{2}-3 a^{2}}}{2 x} & \text { if } \frac{a \sqrt{3}}{2} \leq x \leq a \\
1 & \text { if } x \geq a
\end{array}\right.
$$

In this case (3.1) gives

$$
\begin{aligned}
& \quad M\left(T_{a}\right)=\frac{32}{3 a^{3}}\left[\int_{0}^{\frac{a \sqrt{3}}{2}} x^{3}\left(1-\frac{x}{a}\left(\frac{1}{2}+\frac{\pi}{3 \sqrt{3}}\right)\right) d x+\int_{\frac{a \sqrt{3}}{2}}^{a} x^{3}\left(1-\frac{x}{a}\left(\frac{1}{2}-\frac{2 \pi}{3 \sqrt{3}}\right)-\frac{2 x}{a \sqrt{3}} \arcsin \frac{a \sqrt{3}}{2 x}-\right.\right. \\
& \left.\left.\frac{\sqrt{4 x^{2}-3 a^{2}}}{2 x}\right) d x\right]=\frac{32}{3 a^{3}}\left[\int_{0}^{a} x^{3} d x-\frac{1}{2 a} \int_{0}^{a} x^{4} d x+\frac{\pi}{3 a \sqrt{3}}\left(2 \int_{\frac{a \sqrt{3}}{2}}^{2} x^{4} d x-\int_{0}^{a} x^{4} d x\right)-\int_{\frac{a \sqrt{3}}{2}}^{a}\left(\frac{2 x^{4}}{a \sqrt{3}} \arcsin \frac{a \sqrt{3}}{2 x}+\right.\right. \\
& \left.\left.\frac{x^{2} \sqrt{4 x^{2}-3 a^{2}}}{2}\right) d x\right]=\frac{32}{3 a^{3}}\left[\frac{a^{4}}{4}-\frac{a^{4}}{10}+\frac{(64 \sqrt{3}-81) \pi a^{4}}{1440}-\frac{a^{4}(756+4(64 \sqrt{3}-81) \pi-81 \ln 3)}{5760}\right]=\frac{32}{3 a^{3}} * \frac{3 a^{4}}{640}(4+3 \ln 3)= \\
& a\left(\frac{1}{5}+\frac{3}{20} \ln 3\right) .
\end{aligned}
$$

The case of a Rectangle

The chord length distribution function for a rectangle $R_{a, b}$ with sides a and b has the following form

$$
F_{R_{a, b}}(x)=\left\{\begin{array}{cl}
0, & \text { if } x \leq 0 \\
\frac{x}{a+b}, & \text { if } 0 \leq x \leq a \\
\frac{a}{a+b}+\frac{b}{a+b} \frac{\sqrt{x^{2}-a^{2}},}{x}, & \text { if } a \leq x \leq b \\
1-\frac{x}{a+b}+\frac{1}{(a+b) x}\left(a \sqrt{x^{2}-b^{2}}+b \sqrt{x^{2}-a^{2}}\right), & \text { if } b \leq x \leq \sqrt{a^{2}+b^{2}} \\
1, & \text { if } x \geq \sqrt{a^{2}+b^{2}}
\end{array}\right.
$$

For this case (3.1) gives the following
$M\left(R_{a, b}\right)$
$=\frac{4(a+b)}{3 a^{2} b^{2}}\left[\int_{0}^{a} x^{3} d x-\frac{1}{a+b} \int_{0}^{a} x^{4} d x+\left(1-\frac{a}{a+b}\right) \int_{a}^{b} x^{3} d x\right.$
$-\frac{b}{a+b} \int_{a}^{b} x^{2} \sqrt{x^{2}-a^{2}} d x+\frac{1}{a+b} \int_{b}^{\sqrt{a^{2}+b^{2}}} x^{4} d x$
$\left.-\frac{b}{a+b} \int_{b}^{\sqrt{a^{2}+b^{2}}} x^{2} \sqrt{x^{2}-a^{2}} d x-\frac{a}{a+b} \int_{b}^{\sqrt{a^{2}+b^{2}}} x^{2} \sqrt{x^{2}-b^{2}} d x\right]$
$=\frac{4(a+b)}{3 a^{2} b^{2}}\left[\frac{a^{5}+b^{5}+a^{2} b^{2} \sqrt{a^{2}+b^{2}}\left(3-\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a^{2}}\right)+\frac{5 a^{2} b^{2}}{2}\left(\frac{b^{2}}{a} \ln \frac{\sqrt{a^{2}+b^{2}}+a}{b}+\frac{a^{2}}{b} \ln \frac{\sqrt{a^{2}+b^{2}}+b}{a}\right)}{20(a+b)}\right]$
Finally, we obtain

$$
\begin{equation*}
M\left(R_{a, b}\right)=\frac{1}{15}\left[\frac{a^{3}}{b^{2}}+\frac{b^{3}}{a^{2}}+\sqrt{a^{2}+b^{2}}\left(3-\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a^{2}}\right)+\frac{5}{2}\left(\frac{b^{2}}{a} \ln \frac{\sqrt{a^{2}+b^{2}}+a}{b}+\frac{a^{2}}{b} \ln \frac{\sqrt{a^{2}+b^{2}}+b}{a}\right)\right] \tag{3.2}
\end{equation*}
$$

In particular, when we have square S_{a} with side a then putting $a=b$ in (3.2) we obtain

$$
M\left(S_{a}\right)=\frac{a}{15}[2+\sqrt{2}+5 \ln (1+\sqrt{2})] .
$$

The case of a Regular Hexagon

Denote by H_{a} the regular hexagon with side a. We have (see Harutyunyan, 2007)

$$
F_{H_{a}}(x)=\left\{\begin{array}{cc}
0, & \text { if } x \leq 0 \\
\frac{x}{a}\left(\frac{1}{2}-\frac{\pi}{6 \sqrt{3}}\right), & \text { if } 0 \leq x \leq a \\
1+\frac{\pi x}{2 a \sqrt{3}}-\frac{2 x}{a \sqrt{3}} \arcsin \frac{a \sqrt{3}}{2 x}-\frac{\sqrt{4 x^{2}-3 a^{2}}}{2 x}, & \text { if } a \leq x \leq a \sqrt{3} \\
1+\frac{x}{a}\left(\frac{\pi}{6 \sqrt{3}}-\frac{1}{2}\right)+2 \frac{\sqrt{x^{2}-3 a^{2}}}{x}-\frac{x}{a \sqrt{3}} \arccos \frac{a \sqrt{3}}{x}, & \text { if } a \sqrt{3} \leq x \leq 2 a \\
1, & \text { if } x \geq 2 a
\end{array}\right.
$$

For $D=H_{a} \quad$ (3.1) gives

$$
\begin{aligned}
M\left(H_{a}\right)=\frac{32}{9 a^{3}} & {\left[\int_{0}^{a} x^{3} d x-\frac{1}{a}\left(\frac{1}{2}-\frac{\pi}{6 \sqrt{3}}\right) \int_{0}^{a} x^{4} d x-\frac{\pi}{2 a \sqrt{3}} \int_{a}^{a \sqrt{3}} x^{4} d x\right.} \\
& +\frac{2}{a \sqrt{3}} \int_{a}^{b} x^{4} \arcsin \frac{a \sqrt{3}}{2 x} d x+\int_{a}^{a \sqrt{3}} \frac{x^{2} \sqrt{4 x^{2}-3 a^{2}}}{2} d x \\
& \left.-\frac{1}{a}\left(\frac{\pi}{6 \sqrt{3}}-\frac{1}{2}\right) \int_{a \sqrt{3}}^{2 a} x^{4} d x-2 \int_{a \sqrt{3}}^{2 a} x^{2} \sqrt{x^{2}-3 a^{2}} d x+\frac{1}{a \sqrt{3}} \int_{a \sqrt{3}}^{2 a} x^{4} \arccos \frac{a \sqrt{3}}{x} d x\right]
\end{aligned}
$$

Finally, we obtain

$$
M\left(H_{a}\right)=\frac{a}{30}(42 \sqrt{3}-14+84 \ln 3+3 \ln (2 \sqrt{3}-3)) .
$$

3.5 The case of a Rhombus

Consider a rhombus $R H_{a, \gamma}$ with side a and acute angle γ. In (Harutyunyan, Ohanyan, 2011) an explicit formula for the chord length distribution function for rhombus is obtained which for $\gamma \leq \pi / 3$ has the following form:

$$
F_{R h_{a, \gamma}}(x)=\left\{\begin{array}{cl}
0, & \text { if } x \leq 0 \\
\frac{x}{2 a}\left(1+\left(\frac{\pi}{2}-\gamma\right) \cot \gamma\right), & \text { if } x \in[0, \operatorname{asin} \gamma] \\
\frac{x}{2 a}\left(1-\left(\frac{\pi}{2}+\gamma-2 \operatorname{arcin} \frac{a \sin \gamma}{x}\right) \cot \gamma\right)+\frac{\sqrt{x^{2}-a^{2} \sin ^{2} \gamma}}{x}, & \text { if } x \in\left[a \sin \gamma, 2 \operatorname{a} \sin \frac{\gamma}{2}\right] \\
\frac{x}{4 a}\left(3+\left(2 \operatorname{arcin} \frac{\operatorname{asin} \gamma}{x}-3 \gamma\right) \cot \gamma\right)+\frac{\sqrt{x^{2}-a^{2} \sin ^{2} \gamma}}{2 x}, & \text { if } x \in\left[2 a \sin \frac{\gamma}{2}, a\right] \\
1+\frac{x}{4 a}\left(-1+\left(\gamma-2 \operatorname{arcin} \frac{\operatorname{asin} \gamma}{x}\right) \cot \gamma\right)+\frac{\sqrt{x^{2}-a^{2} \sin ^{2} \gamma}}{2 x}, & \text { if } x \in\left[a, 2 a \cos \frac{\gamma}{2}\right] \\
1, & \text { if } x \geq 2 a \cos \frac{\gamma}{2}
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
M\left(R H_{a, \gamma}\right)= & \frac{8}{3 a^{3} \sin ^{2} \gamma}\left[\int_{0}^{\operatorname{asin} \gamma} x^{3} d x-\frac{1}{2 a}\left(1+\left(\frac{\pi}{2}-\gamma\right) \cot \gamma\right) \int_{0}^{\operatorname{asin} \gamma} x^{4} d x+\int_{a \sin \gamma}^{2 \operatorname{asin} \frac{\gamma}{2}} x^{3} d x\right. \\
& -\frac{1}{2 a}\left(1-\left(\frac{\pi}{2}+\gamma\right) \cot \gamma\right) \int_{\operatorname{asin} \gamma}^{2 \mathrm{a} \sin \gamma / 2} x^{4} d x \\
& -\frac{\cot \gamma}{a} \int_{a \sin \gamma}^{2 a \sin \gamma / 2} x^{4} \arcsin \frac{a \sin \gamma}{x} d x-\int_{a \sin \gamma}^{2 a \sin \gamma / 2} x^{2} \sqrt{x^{2}-a^{2} \sin ^{2} \gamma} d x \\
& +\int_{2 a \sin \gamma / 2}^{a} x^{3} d x \\
& -\frac{3(1-\gamma \cot \gamma)}{4 a} \int_{2 a \sin \gamma / 2}^{a} x^{4} d x-\frac{\cot \gamma}{a} \int_{2 a \sin \gamma / 2}^{a} x^{4} \arcsin \frac{a \sin \gamma}{x} d x \\
& -\frac{1}{2} \int_{2 a \sin \gamma / 2}^{a} x^{2} \sqrt{x^{2}-a^{2} \sin ^{2} \gamma} d x+\frac{1-\gamma \cot \gamma}{4 a} \int_{a}^{2 \mathrm{a} \cos \gamma / 2} x^{4} d x \\
& \left.+\frac{\cot \gamma}{2 a} \int_{a}^{2 \mathrm{a} \cos \gamma / 2} x^{4} \arcsin \frac{a \sin \gamma}{x} d x-\frac{1}{2} \int_{a}^{2 a \cos \gamma / 2} x^{2} \sqrt{x^{2}-a^{2} \sin ^{2} \gamma} d x\right] \\
& =\frac{a}{60}[2 \\
& +18 \sqrt{2} \sin \left(\frac{\gamma}{2}+\frac{\pi}{4}\right)-11 \sqrt{2} \sin \left(\frac{3 \gamma}{2}-\frac{\pi}{4}\right) \\
& +3 \sqrt{2} \sin \left(\frac{5 \gamma}{2}+\frac{\pi}{4}\right) \\
& \left.-6 \cos 2 \gamma-10 \sin ^{2} \gamma \log \left(\tan \frac{\gamma}{4} \cot \frac{\gamma+\pi}{4}\right)-6 \sin ^{2} \gamma \cos \gamma \log \left(\tan \frac{\gamma}{4} \tan \frac{\gamma+\pi}{4} \cot ^{2} \frac{\gamma}{2}\right)\right] .
\end{aligned}
$$

When $\frac{\pi}{3} \leq \gamma \leq \pi / 2, F_{R h_{a, \gamma}}(x)$ has the following form:

$$
\begin{aligned}
& F_{R h_{a, \gamma}(x)} \quad\left\{\begin{array}{cl}
0, & \text { if } x \leq 0 \\
\frac{x}{2 a}\left(1+\left(\frac{\pi}{2}-\gamma\right) \cot \gamma\right), & \text { if } x \in[0, a \sin \gamma] \\
\frac{x}{2 a}\left(1-\left(\frac{\pi}{2}+\gamma-2 \operatorname{arcin} \frac{a \sin \gamma}{x}\right) \cot \gamma\right)+\frac{\sqrt{x^{2}-a^{2} \sin ^{2} \gamma},}{x}, & \text { if } x \in[a \sin \gamma, a] \\
1-\frac{x}{2 a}\left(1+\left(\frac{\pi}{2}-\gamma\right) \cot \gamma\right)+\frac{\sqrt{x^{2}-a^{2} \sin ^{2} \gamma}}{x}, & \text { if } x \in\left[a, 2 a \sin \frac{\gamma}{2}\right] \\
1+\frac{x}{4 a}\left(-1+\left(\gamma-2 \operatorname{arcin} \frac{\operatorname{asin} \gamma}{x}\right) \cot \gamma\right)+\frac{\sqrt{x^{2}-a^{2} \sin ^{2} \gamma}}{2 x}, & \text { if } x \in\left[2 a \sin \frac{\gamma}{2}, 2 a \cos \frac{\gamma}{2}\right] \\
1, & \text { if } x \geq 2 a \cos \frac{\gamma}{2}
\end{array}\right. \\
& \text { Therefore }
\end{aligned}
$$

$$
\begin{aligned}
M\left(R H_{a, \gamma}\right)= & \frac{8}{3 a^{3} \sin ^{2} \gamma}\left[\int_{0}^{a \sin \gamma} x^{3} d x-\frac{1}{2 a}\left(1+\left(\frac{\pi}{2}-\gamma\right) \cot \gamma\right) \int_{0}^{a \sin \gamma} x^{4} d x+\int_{a \sin \gamma}^{0} x^{3} d x\right. \\
& -\frac{1}{2 a}\left(1-\left(\frac{\pi}{2}+\gamma\right) \cot \gamma\right) \int_{\operatorname{asin} \gamma}^{a} x^{4} d x \\
& -\frac{\cot \gamma}{a} \int_{a \sin \gamma}^{a} x^{4} \arcsin \frac{a \sin \gamma}{x} d x-\int_{a \sin \gamma}^{a} x^{2} \sqrt{x^{2}-a^{2} \sin ^{2} \gamma} d x \\
& +\frac{1}{2 a}\left(1+\left(\frac{\pi}{2}-\gamma\right) \cot \gamma\right) \int_{a}^{2 \operatorname{asin} \gamma / 2} x^{4} d x \\
& -\int_{a}^{2 a \sin \gamma / 2} x^{2} \sqrt{x^{2}-a^{2} \sin ^{2} \gamma} d x \\
& +\frac{1-\gamma \cot \gamma}{4 a} \int_{2 a \sin \gamma / 2}^{2 a \cos \gamma / 2} x^{4} d x+\frac{\cot \gamma}{2 a} \int_{2 a \sin \gamma / 2}^{2 a \cos \gamma / 2} x^{4} \arcsin \frac{a \sin \gamma}{x} d x \\
& \left.-\frac{1}{2} \int_{2 a \sin \gamma / 2}^{2 a \cos \gamma / 2} x^{2} \sqrt{x^{2}-a^{2} \sin ^{2} \gamma} d x\right] \\
& =\frac{a}{60}[2 \\
& +18 \sqrt{2} \sin \left(\frac{\gamma}{2}+\frac{\pi}{4}\right)-11 \sqrt{2} \sin \left(\frac{3 \gamma}{2}-\frac{\pi}{4}\right) \\
& +3 \sqrt{2} \sin \left(\frac{5 \gamma}{2}+\frac{\pi}{4}\right) \\
& \left.-6 \cos 2 \gamma-10 \sin ^{2} \gamma \log \left(\tan \frac{\gamma}{4} \cot \frac{\gamma+\pi}{4}\right)-6 \sin ^{2} \gamma \cos \gamma \log \left(\tan \frac{\gamma}{4} \tan \frac{\gamma+\pi}{4} \cot ^{2} \frac{\gamma}{2}\right)\right] .
\end{aligned}
$$

Thus, we get the same expression for both cases. It is not difficult to verify that putting $\gamma=\pi / 2$ in the expression above we come to the result obtained in the case of a square.

3. Conclusion

We have derived a formula for the distribution and density functions of a distance between two points in a domain. We would like to stress that in (Harutyunyan, Ohanyan, 2009) there exist an explicit form for the chord length distribution function for any regular polygon, while in (Harutyunyan, Ohanyan, 2009) and (Harutyunyan, Ohanyan, 2011) an explicit formula for the chord length distribution function for any triangle is obtained. Thus it is possible to obtain explicit form for $F_{D}^{\rho}(x)$ and $f_{D}^{\rho}(x)$ for any regular polygon and a triangle. In particular we can find k-th moment of the distance between two points in a domain where the chord length distribution function is known.

4. Acknowledgment

The present research of the second author was partially supported by the Mathematical Studies Center of Yerevan State University.

References

Aharonyan, 2015-Aharonyan N.G. (2015). The distribution of the distance between two random points in a convex set. Russian Journal of Mathematical Research. Series A, vol. 1, Is. 1, pp. 4-8.

Aharonyan, Ohanyan, 2005 - Aharonyan N. and Ohanyan V. (2005). Chord length distribution functions for polygons. Journal of Contemporary Mathematical analysis (Armenian Academy of Sciences), vol. 40, no 4, pp. 43-56.

Aharonyan, Ohanyan, 2009 - Aharonyan N.G., Ohanyan V.K. (2009). Tomography of bounded convex domains", Sutra: International Journal of Mathematical Science Education, 2, no. 1, pp. 1-12.

Burgstaller, Pillichshammer, 2009 - Burgstaller B., Pillichshammer F. (2009). The average distance between two points. Bull. Aust. Math. Soc. 80, pp. 353-359.

Dunbar, 1997 - Dunbar S.R. (1997). The average distance between points in geometric figures. College Math. J. 28, pp. 187-197.

Gille, 1988 - Gille W. (1988). The chord length distribution of parallelepipeds with their limiting cases, Exp. Techn. Phys., vol. 36, pp. 197-208.

Harutyunyan, 2007 - Harutyunyan H.S. (2007). Chord length distribution functions for regular hexagon. Proceedings of Yerevan State University, 1, pp. 17-24.

Harutyunyan, Ohanyan, 2009 - Harutyunyan H.S., Ohanyan V.K. (2009). Chord length distribution function for regular polygons, Advances in Applied Probability 41, pp. 358-366.

Harutyunyan, Ohanyan, 2011 - Harutyunyan H. S., Ohanyan V. K. (2011). Chord length distribution function for convex polygons, Sutra: International Journal of Mathematical Science Education, 4, no. 2, pp. 1-15.

Santalo, 2004 - Santalo L.A. (2004). Integral Geometry and Geometric probability, AddisonWesley, Reading, Massachusetts, USA.

Schneider, Weil, 2008-Schneider R., Weil W. (2008). Stochastic and integral Geometry, Springer-Verlag, Berlin.

Stoyan, Stoyan, 1994 - Stoyan D., Stoyan H. (1994). Fractals, Random shapes and Point fields, John Wiley\& Sons, Chichester, New York, Brisbane, Toronto, Singapore.

Sulanke, 1961 - Sulanke R. (1961). Die Verteilung der Sehnenlangen an ebenen und raumlichen Figuren, Math. Nachr., 23, pp. 51-74.

УДК 004

Моменты расстояния между двумя точками

Нарине Геворковна Агаронян ${ }^{\text {a }, ~ *, ~ В и к т о р ~ К а р о е в и ч ~ О г а н я н ~}{ }^{\text {a }}$
${ }^{\text {a }}$ Ереванский государственный университет, Армения

Аннотация. Пусть D ограниченная выпуклая область на евклидовой плоскости. Случайно выбираются независимо друг от друга две точки P_{1} и P_{2} равномерно распределенные в области D. Обозначим через $\rho\left(P_{1}, P_{2}\right)$ евклидово расстояние между точками P_{1} и P_{2}, а через $F_{\rho}^{D}(x)$ функцию распределения расстояния $\rho\left(P_{1}, P_{2}\right)$. Используя явный вид функции распределения выводится формула для вычисления моментов произвольного порядка k. В частности, используя явный вид для $F_{\rho}^{D}(x)$, вычислены средние расстояния в случае, когда точки P_{1} и P_{2} случайно брошены в круг, в правильный треугольник, прямоугольник, в правильных шестиугольник и ромб (см. Santalo, 2004; Burgstaller, Pillichshammer, 2009; Dunbar, 1997).

Ключевые слова: функция распределения длины хорды, среднее расстояние, ограниченная выпуклая область.

[^1]
[^0]: * Corresponding author

 E-mail addresses: narine78@ysu.am (N.G. Aharonyan), victo@aua.am (V.K. Ohanyan)

[^1]: * Корреспондирующий автор

 Адреса электронной почты: narine78@ysu.am (Н.Г. Агаронян), victo@aua.am (В.К. Оганян)

