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ABSTRACT : In this paper, we have given the applications of homogeneous

differential polynomials to the Nevanlinna’s theory of meromorphic functions in the

finite complex plane and given some generalizations by these polynomials. 
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ÖZET : Bu çal›flmada, homojen diferansiyel polinomlar Nevanlinna kuram›na

uyguland› ve bu homojen polinomlarla baz› genellefltirmeler verildi.

Anahtar kelimeler: Meromorfik fonksiyon, homojen diferansiyel polinom ve sonlu

karmafl›k düzlem.
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1. INTRODUCTION

In this work, we are going to use the usual notations of the Nevanlinna theory of

meromorphic functions as explained in (Hayman,1968,1-20), (Nevanlinna,1974,10-

25) and (Wittich, 1968, 5-30) such as m(r,f), N(r,f), m(r,a), Nr,a), T ( r,f),                    

By a meromorphic function we shall always mean that a 

function is meromorphic in the finite complex plane.

If f is a non-constant meromorphic function we shall denote by S(r,f) any quantity

satisfying S(r, f ) = o [ T ( r,f)] as            through all values if f is of finite order and

possibly outside a set of finite linear measure if f is of infinite order. Also,

we shall always denote a(z), a0(z), a1(z), a2(z), etc. meromorphic functions satisfying 

We shall be concerned with meromorphic functions P which are polynomials in the

meromorphic function f and the derivatives of f with coefficients of the form a(z).

Let

and 

where f(1), f(2)..., f(m) are the successive derivatives of f and t0, t1,..., tm are non-negative

integers.

Definition 1. If t0 + t1, + ..., +  tm for a fixed positive integer in every term of P,

then Pis called a homogeneous differential polynomial in f of degree n.

2. LEMMAS

Lemma 1. If P is a homogeneous differential polynomial in f of degree n ≥ 1, then

we have

(Gopalakrishna, 1973, 330).

Lemma 2. Let P be a homogeneous differential polynomial in f of degree n and

suppose that P does not involve f. That is, P is a homogenous polynomial of degree

n in  f( 1 ), f( 2 ),..., f(m) with coefficients of the form a(z) satisfying  T [ r,a(z)] = S(r, f ) .
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If P is not a constant and a1, a2,…,aq are distinct elements of C where q is any

positive integer, then we have 

(Gopalakrishna, 1973, 329-335).

3. THEOREMS

T h e o r em 1. Let P be a homogeneous differential polynomial in f of degree n and a ≠ b.

If f is a non-constant meromorphic function in the finite complex plane, then we

have the following inequality

Proof. Since a ≠ b we can write 

If we take absolute values, positive logarithms and mean values of the both sides of

this equality we have 
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If we add the term                    on both sides of the inequality (3), we get 

If we restrict P = f´(z), the inequality (4) becomes

which is one of the Nevanlinna’s results.

T h e o r em 2. Let P be a homogeneous differential polynomial in f of degree n and b ≠ 0.

If f is a non-constant meromorphic function in the finite complex plane, we have the

following inequality 

Proof. Since b ≠ 0 we can write 

The mean values of this equality give

If we restrict  P = f(k) (z), the inequality (6) becomes 

which is the one of Milloux’s results (Dönmez, 1979, 203-207).
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Theorem 3. Let P be a homogeneous differential polynomial in f of degree n. If f is

a non-constant meromorphic function in the finite complex plane, we have 

where

and non-negative.

Proof. It is easy to write 

The mean values of this equality give

We know that Nevanlinna’s second fundamental theorem is the following in terms

of P

If we use the second fundamental theorem in the inequality (8), we can write 

If we restrict  P = f(k) (z), the inequality (7) becomes 

which is the one of Hiong’s results (Dönmez, 1979, 203-207).

Theorem 4. If P is a homogeneous differential polynomial in f of degree n, then we

have 
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Proof. The Nevanlinna’s second fundamental theorem can be written in terms of the

homogenous differential polynomial P as the following,

On the other hand, it is easy to write                                           If we use the inequal-

ity (2), we can write

If n = 1 and q = 1 the inequality (9) gives the inequality (5). That is, the inequality

(9) is the generalization of the inequality (5).

T h e o r em 5. If P is a homogeneous differential polynomial in f of degree n and

s = 2,3,4,... then 

If s = 3,4,5,... then we have 

Proof. The Nevanlinna’s second fundamental theorem can be written in terms of the

homogeneous differential polynomial P as the following

and 
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where                                                              and non-negative. If we use the ine-

qualities (12) and (13) in the equality (10), we obtain the inequality (11).
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