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A B S T R A C T : In this paper, 2-D Multi-Resolution Analysis (MRA) is used to per-

form Discrete-Parameter Wavelet Transform (DPWT) and applied to gravity a n o m-

aly separation problem. The advantages of this method are that it introduces little dis-

tortion to the shape of the original image and that it is not eff e c t e d significantly by f a c-

tors such as the overlap power spectra of regional and residual fields. The pro-

p o s e d method is tested using a synthetic example and satisfactory results have been

found. Then average depth of the buried objects have been estimated by power spectrum

analysis. 
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Ö Z E T : Bu makalede, gravite anomalilerinin ayr›m problemi için Discrete-

Parameter Wavelet Transform (DPWT) 2-B Multi-Resolution Analizi (MRA)

k u l l a n › l d › . Yüzeye yak›n kürelerin ortalama derinliklerini bulmak için güç spekturum

analizi kullan›ld›. Yöntemin geçerlili¤ini test etmek için sentetik yap›lar kulland›k

ve memnun edici neticeler bulduk. Gömülü cisimlerin ortalama derinliklerinin

h e s a p l a n m a s › için güç spektumu kullan›ld›.

Anahtar Kelimeler: Dalgac›k, Gravite anomalisi, Güç spekturum analizi.
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Geophysical maps usually contain a number of features (anomalies, structures, etc.)

which are superposed on each other. For instance, a magnetic map may be composed

of regional, local, and micro-anomalies. The aim of an interpretation of such maps

is to extract as much useful information as possible from the data. Since one type of

anomaly often masks another, the need arises to separate the various features from

each other.

One of the main purposes of geophysical mapping is the identification of units that

can be related to the unknown geology. On a regional scale, aeromagnetic and gravity

maps are most useful tools presently available, although other techniques such as

conductivity mapping (Palacky, 1986) or remote sensing (Watson 1985) are very

helpful in locating lithologic boundaries. The interpretation which makes extensive

use of enhanced maps of gravity data often involves initial steps to eliminate or

attenuate unwanted field components in order to isolate the desired anomaly (e.g.,

residual-regional separations). These initial filtering operations include the radial

weights methods (Griffin, 1989), least squares minimisation (Abdelrahman et al.,

1991), the Fast Fourier Transform methods (Bhattacharyya, 1976) and recursion filters

(Vaclac et’al, 1992) and rational approximation techniques (Agarwal and Lal, 1971). 

Gravity anomaly separation can be effected by such wavelength filtering when

gravity response from the geologic feature of interest (the signal) dominates one

region (or spectral band) of the observed gravity field’s power spectrum. R.S.

P a w l o w s k i et’al (1990) has investigated a gravity anomaly separation method based

on frequency-domain Wiener filtering. S. Hsu et’al (1996) has presented a method

for geological boundaries from potential-field anomalies. 

In this paper, 2-D Wavelet is applied to gravity anomaly map on real time. T h i s

m o d e r n and real time signal processing approach is tested using synthetic examples

and perfect results have been found. So we can offer 2-D wavelet as an alternative

to classical gravity anomaly separation methods. 

This paper is organised as follows. In Section II, Problem Statement at Gravity

Anomaly Map is presented. In Section III, 2-D Wavelet Transforms and Multi-

Resolution Analysis (MRA) is explained. In Section IV, Wavelet Application on

Gravity Anomaly Map is tested using a synthetic examples and satisfactory results

have been observed. In the last Section, average depth of the buried objects have been

estimated using power spectral approach. 

II. PROBLEM ST ATEMENT AT GRAVITYANOMAL Y MAP

Traditionally, magnetic and gravity maps are subjected to operations approximating

certain functions such as second derivative and downward continuation (Pick et'al,

1973). Gravity data observed in geophysical surveys are the sum of gravity fields

produced by all underground sources. The targets for specific surveys are often

small-scale structures buried at shallow depths, and these targets are embedded in a

regional field that arises from residual sources that are usually larger or deeper than
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the targets or are located farther away. Correct estimation and removal of the regional

field from initial field observations yields the residual field produced by the target

sources. Interpretation and numerical modelling are carried out on the residual field

data, and the reliability of the interpretation depends to a great extent upon the success

of the regional-residual separation. 

In literature some classical methods are proposed for the seperation of gravity maps.

The simplest is the graphical method in which a regional trend is drawn manually

for profile data. Determination of the trend is based upon interpreter’s understanding

understanding of the geology and related field distribution This is a subjective

approach and also becomes increasingly difficult with large 2-D data sets. In the

s e c o n d approach, the regional field is estimated by least-squares fitting a low-order

of the observed field (Abdelrahman et al., 1991) . This reduces subjectivity, but still

needs to specify the order of the polynomial and to select the data points to be fit.

The third approach applies a digital filters such as Wiener filtering to the observed

(R.S. Pawlowski et’al, 1990). 

In this study, one of the very update 2-D image processing technique, Wa v e l e t

a p p r o a c h is applied to gravity anomaly map and satisfactory results are observed. 

III. 2-D WAV E L E T TRANSFORMS AND MULTI-RESOLUTION A N A LYSIS 

The wavelets, first mentioned by Haar in 1909, had compact support which means

it vanishes outside of the finite interval, but Haar wavelets are not continuously

differentiable. Later wavelets are with an effective algorithm for numerical image

processing by an earlier discovered function that can vary in scale and can conserve

e n e rgy when computing the functional energ y. In between 1960 and 1980,

mathematicians such as Grossman and Morlet (1985) defined wavelets in the

context of quantum physics. Stephane Mallat (1989) gave a lift to digital signal

processing by discovering pyramidal algorithms, and orthonormal wavelet bases.

Later Daubechies (1989, 1990) used Mallat’s work to construct a set of wavelet

orthonormal basis functions that are the cornerstone of wavelet applications today.

A- Wavelet Transforms:

The class of functions that present the wavelet transform are those that are square

integrable on the real line. This class is denoted as L2 (R).

The set of functions that are generated in the wavelet analysis are obtained by dilating

(scaling) and translating (time shifting) a single prototype function, which is called

the mother wavelet. The wavelet function                             has two characteristic

parameters, called dilation (a) and translation (b), which vary continuously. A set of

wavelet basis function                may be given as
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Here, the translation parameter, "b", controls the position of the wavelet in time. The

"narrow" wavelet can access high frequency information, while the more dilated

wavelet can access low frequency information. This means that the parameter "a"

varies for different frequencies. The continuous wavelet transform is defined by

The wavelet coefficients are given as the inner product of the function being

t r a n s f o r m e d with each basis function. 

Daubechies (1990) invented one of the most elegant families of wavelets. They are

called compactly supported orthonormal wavelets, which are used in discrete wavelet

transform (DWT). In this approach, the scaling function is used to compute the   . The

scaling function        and the corresponding wavelet           are defined by

where N is an even number of wavelet coefficients,                              The discrete

presentation of an orthonormal compactly supported wavelet basis of            is

formed by dilation and translation of signal function            , called the wavelet

function. Assuming that the dilation parameters "a" and "b" take only discrete values.

. Where                                ,  and            . The wavelet

function may be rewritten as 

and, the discrete-parameter wavelet transform (DPWT) is defined as

The dilations and translations are chosen based on power of two, so called dyadic

scales and positions, which make the analysis efficient and accurate. In this case, the

frequency axis is partitioned into bands by using the power of two for the scale

parameter "a". Considering samples at the dyadic values, one may get             and

, and then the discrete wavelet transform becomes 
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Here,                 is defined as

B- Multi-resolution Analysis (MRA) 

Mallat (1989) introduced an efficient algorithm to perform the DPWT known as the

Multi-resolution Analysis (MRA). It is well known in the signal processing area as

the two-channel sub-band coder. The MRA of                 consists of successive approx-

imations of the space                             There exist a scaling function                      such

that 

This equation is known as two-scale difference equation. Furthermore, let us define   

as a complementary space of                    ,  such that                               and 

Since the             is a wavelet and it is also an element of      , a

sequence             exists such that

It is concluded that the multiscale representation of a signal  f(x) may be achieved

in different scales of the frequency domain by means of an orthogonal family of

functions            N o w, let us show how to compute the function in      The projection

of the signal                               defined by                  is given by

Here,                                    S i m i l a r l y, the projection of the function f ( x ) on the

s u b s p a c e is also defined by

where                                    .     Because of , the original

f u n c t i o n can be rewritten as
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The coefficients                       are given by 

and

The multiresolution representation is linked to Finite Impulse Response (FIR)

filters. The scaling function     and the wavelet      are obtained using the filter t h e o r y

a n d consequently also the coefficients are defined by these last two equations. If at

x=t/2,                    is considered and 

As                                   this means that           is a low-pass filter. According to

this result           is computed by the low-pass filter . The mother wavelet is

computed by defining the function          so that

. Here,         and        are
q u a d r a t u r e mirror filters for MRA solution.

Substituting H(0)=1 and H(π)=0, it yields G(0)=0 and G(π) =1, respectively. This

means that           is a high pass filter. As a result, the MRA is a kind of two-channel

sub-band coder used in the high-pass and low-pass filters, from which the

original signal can be reconstructed. 

Since a major potential application of wavelets is in image processing, 2-D wavelet

transform is a necessity. The subject, however, is still in an evolving stage and this

section will discuss only the extention of 1-D wavelets to the 2-D case. The idea is

to first form a 1-D sequence from the 2-D image row sequences, do a 1-D MRA,

restore the MRA outputs to a 2-D format and repeat another MRA to the 1-D column

sequences. The two steps of restoring to a 2-D sequence and forming a 1-D column

sequence can be combined efficiently by appropriately selecting the proper points

directly from the 1-D MRA outputs. As seen in Figure 1, after the 1 –D row MRA,

each lowpass and highpass output goes through a 2-D restoration and 1-D column

formation process and then move on to another MRA. Let t1 and t2 , be the 2-D

coordinates and L=lowpass, H=highpass. Then the 2-D separable scaling function is 
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Figure 1. 2-D Multi-resolution Analysis (MRA) decomposition.

original signal can be reconstructed. Then 2-D separable wavelets are

with the corresponding wavelet coefficients s2 , s3 and s4.

It is easy to verify that the         are orthonormal wavelets, i.e.,

The scheme of separable 2-D processing, while simple and uses available 1-D filters,

has disadvantages when compared to a genuine, 2-D MRA with non-separable filters.

The latter possesses more freedom in design, can provide a better frequency and

even linear phase response, and have non-rectangular sampling.

IV. WAVELETAPPLICATION ON GRAVITYANOMAL Y MAP

In this section, we have tested our proposed approach to some synthetic data and

perfect results have been obtained. All the units used in examples are normalized

values. In the first example (Table I) four spherical structures are used. For increas-

ing regional effects on Bouguer anomaly map (Figure 2), the big sphere with the

biggest radius is replaced deeper than the others. Also to increase the residual effect,

the other spheres are closer to the ground. At wavelet output, the residual map is

extracted satisfactory as shown in Figure 3. 



8

Table 1 : Parameters of Bouguer anomaly map of an Example. 

Figure 2. Bouguer Anomaly of four spheres with parameters as in Table I.

Figure 3. 2-D Wavelet output of the Bouguer Anomaly given in Figure 2 (Level 2,

Daubechies 2).
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V. DEPTH ESTIMATION USING POWER SPECTRAL PROPERTIES

One of the main researches on gravity anomaly maps is to estimate the average depth

of the buried objects resulting the anomaly. In interpretation of gravity anomalies by

means of local power spectra, there are three main parameters to be considered.

These are, depth , thickness and density of the disturbing bodies. In direct interpretation,

the information such as the maximum depth at which the body could lie and depth

estimates of the centre of the body are obtained directly from the gravity anomaly

map. It is clear that infinite number of different configurations can result in identical

gravity anomalies at the surface and in general, gravity modelling is ambigous. In

indirect interpretation the simulation of the causative body of the gravity anomaly is

computed by simulation. The variables defining the shape, location, density etc. of

the body are altered until the computed anomaly closely matches the observed

anomaly. As it is well known potential fields obey Laplace's equation which allows

for the manipulation of the gravity in the wavenumber domain. Many scientists have

used the calculation of the power spectrum from the Fourier coefficients to obtain

the average depth to the dist›rbing surface or eqivalently the average depth to the top

of the disturbing body (A. Spector and Grant 1970). 

It is necessary to define the power spectrum of a gravity anomaly in relation to the

average depth of the disturbing interface. It is also important to point out that the

final equations are dependent on the definition of the wavenumber in the Fourier

transform. For an anomaly with n data points the solution of Laplace equation in 2D is,

where wavenumber k is defined as                                  are therefore the amplitude

coefficients of the spectrum,

for z=0, equation (27) can be written as,

Then equation (27) can be rewritten in terms of (28) as,

Then the power spectrum Pk is defined as,
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Taking logarithm of both sides, 

we can plot wavenumber, k, against                  to attain the average depth to the

disturbing interface. 

The interpretation of the            against wavenumber k requires the best fit line

through the lowest wavenumbers of the spectrum. The wavenumbers included in

this procedure are those smaller than the wavenumber where a change in gradient is

observed. Then average depth can be estimated from plotting of Equation (31) as, 

where     is the average depth,       and       are derivative of P and k respectively.

In this paper, we have estimated the spheres depths using power spectral approach

with high accuracy as shown in Figures (4-6). 

Figure 4. Power Spectral Density of the sphere-2 in Table I (cross-section A1-A2). 

Figure 5. Power Spectral Density of the sphere-3 in Table I (cross-section B1-B2).



11

Figure 6. Power Spectral Density of the sphere-4 in Table I (C1-C2).

VI. CONCLUSION

In this paper, wavelet approach has been applied to gravity anomaly separation problem.

The proposed method is tested using a synthetic example and satisfactory results

have been found. Then average depth of the buried objects have been estimated by

power spectrum analysis. 

ACKNOWLEDGEMENT

This project is supported by Research Fund of University of Istanbul. Project

No.1409/05052000.

REFERENCES

ABDELRAHMAN, E.M., A.I., BAYOUMI, H.M. EL-ARABY. (1991), "A l e a s t -

squares minimization approach to invert gravity data", Geophysics, 5 6,

115-118

A G A RWAL, B.N.P., AND LAL, L.T. (1971), "Application of rational approximation

in the calculation of the second derivative of the gravity field", 

Geophysics, 36, 571-581.

A . S P E C TOR AND F. S. GRANTI. (1970), "Statistical models for interpreting

a e r o m a g n e t i c data", Geophysics, 35, 293-302.

B H AT TA C H A R RY YA, B.K., AND NAVOLIO,M.E.(1976), "A Fast Fourier

Transform method for rapid computation of gravity and magnetic anomalies

due to arbitrary bodies",Geophysics, Prosp., 20, 633-649.



CHAN Y.T. (1996), "Wavelet Basics",Kluwer Academic Publishers, USA.

DAUBECHIES,I. (1990), "The Wavelet Transform, Time-Frequency Localization

and Signal Analysis", IEEE Trans. On Information Theory, 36.

E. ISING, (1925), "Zeitschrift Physik", 31, 253.

GABOR, D. (1946), "Theory of Communications", J.IEEE, 93, 3, 429.

GRIFFIN, W.P. (1989), "Residual gravity in theory and practice", Geophysics, 14,

39-56.

GROSSMAN,A.,MORLET,J. (1985), " Mathematics and Physics", 2, L. Streit, Ed.,

World Scientific Publishing, Singapore.

MALLAT, S. (1989), "A Theory for Multiresolution Signal Decomposition the

Wavelet Representation", IEEE Trans. Pattern Anal. And Machine

Intelligence, 31, 679-693.

PALACKY, G.J.(1986), "Geological background to resistivity mapping, in, Ed.,

Palacky, G.J., Airborne resistivity mapping",G.S.C. Paper 86-22,19-27. 

PICK, M., PICHA,J., AND VYSKOCIL, V. (1973), "Theory of Earth’s gravity

field", Academia

R.S.PAWLOWSKI, AND R.O. HANSEN, (1990), "Gravity anomaly separati›n by

Wiener filtering", Geophysics , 55, 539-548.

RICHARD C. DOBES, A N I L JAIN, (1989), "Random field models in image analysis",

Journal of Applied Statistics, 16, 131-162.

SHU-KUN HSU, JEAN-CLAUDE S., AND CHUEN-TIEN S. (1996), "High-

r e s o l u t i o n detection of geological boundaries from potential-field anom-

alies; An enhanced analytical signal technique", Geophysics, 61, 373-386.

VACLAC B., JAN H., AND KARELS. (1992), "Linear filters for solving the direct

problem of potential fields", Geophysics, 57, 1348-1351.

WATSON, K., (1985), "Remote sensing: A geophysical perspective",Geophysics.

55, 843-850.

YAOGUO LI., AND DOUGLES W. O. (1998), "Separation of regional and residual

magnetic field data",Geophysics, 63, 431-439.

12


