
Do�u� Üniversitesi Dergisi, 6 (2) 2005, 268-278

BLOOM’S FILTERS : THEIR TYPES AND ANALYSIS

BLOOM F�LTRELER� : ÇE��TLER� VE ANAL�Z�

Ay�e SALMAN
Dogu� University, Department of Computer Engineering

ABSTRACT: In this paper we discuss Bloom filter in its original form and the
varieties of its extensions. A Bloom filter is a randomized data-structure for
concisely representing a set in order to support approximate membership queries.
Although it was devised in 1970 for the purpose of spell checking, it was seldom
used except in database optimization. In recent years, it has been rediscovered by the
networking community, and has become a key component in many networking
systems applications. In this paper, we will examine and analyse the different types
of this filter.

Keywords: Bloom Filter, data structure.

ÖZET: Bloom filtrelerini ve çe�itlerini inceleyen bir çalı�manın özetidir. Bloom
filtresi sorgulama üyeliklerini desteklemek amacıyla setleri temsil eden rasgele bir
veri yapısıdır. 1970’lerde daha çok veri tabanı optimizasyonlarında kullanılmı�tır.
Bu yakınlarda bilgisayar a�ları ile ilgili çalı�ma yapanlar daha sık kullanmaya
ba�lamı�tır. Bu çalı�mada filtrelerin çe�itleri analiz edilecektir.

Anahtar kelimeler: Bloom Filtreleri, veri yapıları.

1. Introduction
A Bloom filter is a compact data structures used for probabilistic representation of a
set in order to support membership queries (“Is element x in set X?”). The cost of
this compact representation is a small probability of false positives: the structure
sometimes incorrectly recognizes an element as member of the set, but often this is a
convenient trade-off. Bloom filters were developed in the 1970's (Bloom, 1970) and
have been used since in database applications to store large amounts of static data
(for example, hyphenation rules on English words) (Mullin, 1990). Bloom’s
motivation was to reduce the time it took to lookup data from a slow storage device
to faster main memory. And hence could dramatically improve the performance.
However, they were found to be particularly useful in data management for
modelling, storing, indexing, and querying data and services hosted by numerous,
heterogeneous computing nodes. Applications of Bloom filters in computer
networking include web caching (Iamnitchi, Ripeanu, Foster, 2002 ; Reynolds,
Vahdat, 2003 ; Dharmapurikar, Krishnamurthy, Taylor, 2003), active queue
management (Feng, We-chang,Kandlur, 2001; Feldman, Muthukrichnam, 2000),
IP traceback (Feng, KAndlur, Soha, Shin, 1999 ; Sanches, Milliken, Snoeren,
Tchakountio, Jones, Kent, Partridge,Strayer, 2001), and resource routing (Hsiao,
Pai-Hsiang, Huang, 2001 ; Kumar, Li, 2003 ; Czerwinski, Zhao, Hodes, Joseph,
Katz 1999 ; Byers, Considine, Mitzenmacher, Rost, 2002).

Bloom’s Filters : Their Types and Analysis

269

Broder and Mitzenmacher (2002) have considered four types of network-related
applications of Bloom filters. These are:

• Collaborating in overlay and peer-to-peer networks: Bloom filters can be
used for summarizing content to aid collaborations in overlay and peer-to-
peer networks.

• Resource routing: Bloom filters allow probabilistic algorithms for locating
resources.

• Packet routing: Bloom filters provide a means to speed up or simplify
packet routing protocols.

• Measurement: Bloom filters provide a useful tool for measurement
infrastructures used to create data summaries in routers or other network
devices.

This simple categorization is very loose; some applications fit into more than one of
these categories, and these categories are not meant to be exhaustive. In fact new
applications of Bloom filters and their variants were added to the network literature
since they published their paper. In all these applications a Bloom filter offers a
representation of a list that can dramatically reduce space, with no false negative
generated but at the cost of introducing false positives. If false positives do not cause
significant problems, the Bloom filter may provide improved performance.

In general many type of filters are used for classifications of their input. Bloom filter
classify the input query to just two classifications; the answer to the query: “Is
element x in set X?” However, other types of filters are used for multiple
classifications. This includes filters used to control WWW sites accessibility and
other communications on the Internet, or used for email applications. The latter, for
example, could sort out incoming mail into junk (or spam) mail which would be
discarded and personal correspondences which could be filtered into several
different folders. In industry, categorial systems in which documents are classified
according to themes are often used. These automatic classification filters are very
desirable as they bring about enormous saving in both time- and cost.

This work presents the different types of Bloom filters in a variety of network
contexts. We first describe the mathematics behind the traditional Bloom filter, and
then we examine the several important variations with its modern applications.

2. Traditional (Standard) Bloom Filter
A Bloom filter represents an n-element set S = {X1, X2, ….., Xn} by using a bit-
vector B= B1….Bm of length m. Initially all the bits are set to 0. The filter uses k
independent hash functions h1,……hk with range {1,….m}, i.e. hi: X � {1..m},

ki ≤≤1 . For optimal performance, each of the k hash functions should be a
member of the class of universal hash functions (Koloniari, Pitoura, 2003). That is,
these hash functions map each item in the universe to a random number uniform
over the range {1 … m}. (In practice, reasonable hash functions appear to behave
adequately, e.g. MD5) Bloom filter works as follows (This is illustrated in Figure 1).
To store an element x ∈ S, the bits hi(x) are set to 1 for ki ≤≤1 . A location can be
set to 1 multiple times, but only the first change has an effect. To check if an
element y is in S, one simply checks whether all hi(y) are set to 1. If not, then clearly
y is not a member of S. However, if all hi(y) are set to 1, we cannot infer that

Ay�e SALMAN

270

element y is definitely in S. It is possible that by coincidence h1(y),…,hk(y) are all
set to 1. This situation is called false–positive and the probability that this occurs is
called false-positive rate. Hence a Bloom filter does not yield a false negative but
may yield a false positive, where it suggests that an element y is in S even though it
is not. Figure 1 provides an example.

Figure 1. Illustration of bloom filter

The false-positive rate is a function of the length of the filter and the number of
items stored in it. The smaller the filter, and the more items it contains, the greater
that will give a false positive. For many applications, false positives may be
acceptable as long as their probability is sufficiently small. The probability of a false
positive, or the false positive rate f , can be calculated in a straightforward fashion,
given our assumption that hash functions are perfectly random. It is given in
(Bloom, 1970) and (Mullin, 1983).

 kpf)1(−≈ , mknep /−= (1)

The parameters k and m should be chosen such that the probability of false
positive is acceptable. The minimum is achieved for nmk /2ln ×= hash
functions. However, k must be an integer and in practice a value less than optimal
is usually chosen to reduce computational overhead. The computational overhead of
each additional hash function is constant while the incremental benefit of adding a
new hash function decreases after a certain threshold. The graph in Figure 2 shows
the false positive rate f as a function of the number of bits allocated for each

element, that is the ratio nm / , for four values of k . The top curve is for the case of
7 hash functions. The bottom curve is for the optimum number of hash functions. It
is clear that Bloom filters require very little storage per element at the slight risk of
some false positives. For instance for a bit array 10 times larger than the number of
entries, the probability of a false positive is 1.2% for 4 hash functions, and 0.9% for
the optimum case of 5 hash functions. The probability of false positives can be
easily decreased by allocating more memory.

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 1 1 0

1 1 0 1 1 1 1 0 0 1 0 1

y

h1(x) …….….….…hk(x)

 x

h1(y) …….….……….hk(y)

Bloom’s Filters : Their Types and Analysis

271

Figure 2. False positive rate

3. Properties of Bloom Filters

• Since Bloom filters are bit-vectors it is possible to merge two or more of
them by bitwise ORing to produce a conglomerate single merged one. For
example, suppose we have sets S1 and S2 represented respectively by two
Bloom filters 1B and 2B , with the same number of bits and using the same

number of hash functions. Then a Bloom filter B that represents the union

21 SSS ∪= of the two sets can be obtained by taking the OR of the two

bit vectors of the original Bloom filters, that is 21 BBB ∨= . The merged
filter will recognize any inputs recognized by any of its ancestors.

• Bloom filters can easily be halved in size. Suppose the size of the filter is a
power of 2. To half the size of the filter, just OR the first and second halves
together. When hashing, the high order bit can be masked.

• Bloom filter bit arrays are robust in the presence of errors. If part of the
array was corrupted, merely substitute all 1’s for the corrupted bits. This
will slightly increase the false positives rate, but no false negatives will be
introduced.

4. Compressed Bloom Filters
Compressing Bloom filter improves performance when the Bloom filter is passed as
a message between nodes, particularly when information must be transmitted
repeatedly, and its transmission size is a limiting factor. For example, Bloom filters
have been suggested as a means for sharing Web cache information. In this setting,
proxies do not share the exact contents of their caches, but instead periodically
broadcast Bloom filters representing their cache. However, if we choose the optimal
value for k to minimize the false probability as calculated above, then 2/1=p .
Under our assumption of independent random hash functions, the bit array is
essentially a random string of 0's and 1's, with each entry being 0 or 1 with
probability 1/2. It would therefore seem that no gain in compression when sending
such Bloom filters.

Ay�e SALMAN

272

On the other hand, large sparse Bloom Filters can be greatly compressed
(Mitzenmacher, 2001). Theoretically, an m-bit filter can be compressed to

)(pmH bits where p is the probability that a bit in the filter is 0 and

() () ()pppppH −−−−= 1log1log 22 is the entropy function. For sufficiently
large filters, arithmetic coding guarantees close to optimal compression, so if p is
small enough, H(p) is much smaller than 1, and significant savings in the
transmission size can be achieved.

Hence, by using such compressed Bloom filters, proxies can reduce the number of
bits broadcast, the false positive rate, and/or the amount of computation per lookup.
The cost is the processing time for compression and decompression, which usually
uses simple arithmetic coding, and more memory use at the proxies, which utilizes
the larger sparser array of uncompressed form of the Bloom filter.

5. Counting Bloom Filters
If the set of elements is changing over time then insertions and deletions in the
Bloom filter become important. Inserting elements into a Bloom filter is easy; hash
the element k times and set the bits to 1. However, deletion by reversing this
process, i.e. hashing the element to be deleted k times and set the corresponding bits
to 0, is not possible. This is because we may be setting a location to 0 that is hashed
to by some other element in the set, and the resultant Bloom filter is no longer
correctly reflects all elements in the set.

To avoid this problem, counting Bloom filter was introduced as an extension to
Bloom filters (Czerwinski at al., 1999). Here, each entry in the Bloom filter is not a
single bit but instead a small counter. When an item is inserted, the corresponding
counters are incremented; and when an item is deleted, the corresponding counters
are decremented (see Figure 3.). To avoid counter overflow, sufficiently large
counters can be used. However, analysis from (Fan, Cao, Almeida Broder, 2000)
reveals that 4 bits per counter should be sufficient for most applications.

Figure 3. Incrementing/decrementing counters

6. Multi-level Bloom Filters
Traditional Bloom filters can be extended to be used on hierarchical documents.
Koloniari et al introduced extensions to Bloom filters based on two alternative ways
of hashing XML trees to support path expressions. They called these filters:
‘Breadth Bloom Filter’ (BBF), and ‘Depth Bloom Filter’ (DBF).

1
0
1
1
0
0
1
0

2
0
1
1
0
0
2
0

 A

 B

.

.

.

.

.

.

.

.

Bloom’s Filters : Their Types and Analysis

273

Figure 4. Multi level bloomfilters

6.1. Breadth Bloom filter (BBF)
Let T be an XML tree with j levels, with 1 as the root level. The Breadth Bloom
Filter (BBF) for an XML tree T with j levels is a set of Bloom filters {BBF0, BBF1,
BBF2, …, BBFi}, ji ≤ . There is one Bloom filter, denoted BBFi, for each level i of
the tree. In each BBFi, we insert the elements of all nodes at level i. To improve
performance, we construct an additional Bloom filter denoted BBF0. In this Bloom
filter, we insert all elements that appear in any node of the tree. For example, the
BBF for the XML tree in Figure 4 is a set of four Bloom filters in Figure 5.

Note that the BBFis are not necessarily of the same size. In particular, since the
number of nodes and thus keys that are inserted in each BBFi (i > 0) increases at
each level of the tree, we analogously increase the size of each BBFi. However, for
equal size BBFis, BBF0 is the logical OR of all BBFis, ji ≤≤1 .

The procedure that checks whether a BBF matches a query distinguishes between
path queries starting from the root and partial path queries. In both cases, first we
check whether all elements in the query appear in BBF0. Only if we have a match for
all elements, we proceed by examining the structure of the path. For a root query
/a1/a2/…/ap, (e.g. A/B/D) every level i from 1 to p of the filter is checked for the
corresponding ai. The algorithm succeeds, if we have a match for all elements. For a
partial path query, for every level i of the filter, the first element of the path is
checked. If there is a match, the next level is checked for the next element and the
procedure continues until either the whole path is matched or there is a miss. If there
is a miss, the procedure repeats for level i + 1. For paths with the ancestor-
descendant axis (e.g. A//D), the path is split at the //, and the sub-paths are
processed. All matches are stored and compared to determine whether there is a
match for the whole path.

BBF0 1 1 1 1 1 0 1 0 1 1 1 1

BBF1 1 0 0 0 1 0 1 0 0 0 0 0
BBF2 0 1 1 1 1 0 0 0 1 0 0 1
BBF3 0 0 0 1 0 0 1 0 0 1 1 1

Figure 5. The BBF for the XML tree in Figure1

 C
 B

 A

 D E F

<xml>
 <A>

 <D></D>
 <E></E>

 <C>
 <F></F>
 </C>

</xml>

 A
B ∪ C

A∪ B ∪ C ∪ D ∪ E ∪ F

 D ∪ E ∪ F

Ay�e SALMAN

274

6.2. Depth Bloom filters (DBF)
This provides an alternative way to summarize XML trees. Here different Bloom
filters are used to hash paths of different lengths. The Depth Bloom Filter (DBF) for
an XML tree T with j levels is a set of Bloom filters {DBF0, DBF1, DBF2, …, DBFi-

1}, There is one Bloom filter, denoted DBFi, for each path of the tree with length i
(i.e., a path of i + 1 nodes), where we insert all paths of length i. For example, the
DBF for the XML tree in Figure 4 is a set of three Bloom filters in Figure 6. Note
that we insert paths as a whole, we do not hash each element of the path separately;
instead, we hash their concatenation. We use a different notation for paths starting
from the root. This is not shown in Figure 6 for ease of presentation. Regarding the
size of the filters, as opposed to BBF, all DBFis have the same size, since the
number of paths of different lengths is of the same order. The procedure, that checks
whether a DBF matches a path query, first checks whether all elements in the path
expression appear in DBF0. If this is the case, we continue treating both root and
partial paths queries the same. For a query of length p, every sub-path of the query
from length 2 to p is checked at the corresponding level. If any of the sub-paths does
not exist, the algorithm returns a miss. For paths that include the ancestor-
descendant axis //, the path is split at the // and the resulting sub-paths are checked.
If we have a match for all sub-paths the algorithm succeeds, else we have a miss.

BBF0 Paths of length 0
1 1 1 1 1 0 1 0 1 1 1 1
BBF1 Paths of length 1
1 0 0 0 1 0 1 0 0 1 0 1
BBF2 Paths of length 2
1 0 0 0 1 0 1 0 0 1 0 1

Figure 6. The DBF for the XML tree in Figure1

7. False Positives
The probability of false positives depends on the number k of hash functions we use,
the number n of elements we index, and the size m of the Bloom filter. The formula
that gives this probability f for standard Bloom filters is (Carter, Wegman, 1979):

 f � (1 –e �kn/m)k (2)

 Using multi-level Bloom filters, a new kind of false positive appears. Consider the
tree of Figure 1 and the path query /A/C/D. For BBFs, we have a match for C at
BBF2 and for D at BBF3; thus we falsely deduce that the path exists. The probability
for such a false positive is strongly dependent on the degree of the tree. For DBFs,
we have a type of false positive that refers to queries that contain the // axis.
Consider the paths a/b/c/d/ and m/n. For the query a/b//m/n, we split it to a/b and
m/n. Both of these paths belong to the filter, so the filter would indicate a false
match. A full analysis of false-positive rate for multi-level Bloom filters can be
found in (Koloniari, Pitoura, 2003).

8. Samples of Applications
The following are samples of Bloom filter network applications. More applications
can be found in (Brodery, Mitzenmacherz, 2002) and (Chang, Feng, Wu-chang Li,
Kang, 2004).

A/B∪A/C∪B/D∪B/E∪C/F

A/B/D ∪ A/B/E ∪ A/C/F

A∪ B ∪ C ∪ D ∪ E ∪ F

Bloom’s Filters : Their Types and Analysis

275

8.1. Distributed Caching
Fan, Cao, Almeida, and Broder describe Summary Cache, which uses Bloom filters
for Web cache sharing [Fan, Cao, Almeida, Broder, 2000). In their setup, proxies
cooperate in the following way: on a cache miss, a proxy attempts to determine if
another proxy cache holds the desired Web page. If so, a request is made to that
proxy rather than trying to obtain that page from the Internet. For such a scheme to
be effective, proxies must know the contents of other proxy caches. In Summary
Cache, to reduce message traffic proxies do not transfer URL lists corresponding to
the exact contents of their caches, but instead periodically broadcast Bloom filters
that represent the contents of their cache. If a proxy wishes to determine if another
proxy has a page in its cache, it checks the appropriate Bloom filter. In the case of a
false positive, a proxy may request a page from another proxy, only to find that that
proxy does not actually have that page cached. In that case, some additional delay
has been incurred. In this setting, false positives and false negatives may occur even
without a Bloom filter, since the cache contents may change between periodic
updates. The small additional chance of a false positive introduced by using a Bloom
filter is greatly outweighed by the significant reduction in network traffic achieved
by using the compact Bloom filter instead of sending the full list of cache contents.
This technique is used in the open source Web proxy cache Squid, where the Bloom
filters are referred to as Cache Digests (Rousskov, Wessels, 1998). Since cache
contents are changing frequently (Fan, Cao, Almeida, Broder, 2000) suggests that
caches use a counting Bloom filter to track their own cache contents, and broadcast
the corresponding standard Bloom filter to the other proxies. The alternative would
be to construct a new Bloom filter from scratch whenever an update is sent; using
the counting Bloom filter both reduces and amortizes this cost. Using delta
compression and compressed Bloom filters, as described in (Mitzenmacher, 2001),
can yield a further reduction in the number of bits transmitted.

8.2. P2P/Overlay Networks
Peer-to-peer applications are a natural place to use Bloom filters, as collaborating
peers may need to send each other lists of URLs, packets, or object identifiers. As an
example of peer-to-peer application of Bloom filters is due to (Marais and Bharat,
1997) in the context of a desktop web browsing assistant called Vistabar.
Cooperative users of Vistabar store annotations and comments about the web pages
they visited in a central repository. Conversely they see these comments whenever
they load an annotated page. Rather than make a request for each URL encountered,
Vistabar periodically downloads a Bloom filter corresponding to all annotated
URLs.

8.3. A Basic Routing Protocol
A general framework that highlights the main idea of resource routing protocols was
described by Czerwinski et al. as part of their architecture for a resource discovery
service (Czerwinski et al,1999). Suppose that we have a network in the form of a
rooted tree, with nodes holding resources. Resource requests starting inside the tree
head toward the root. Each node keeps a unified list of resources that it holds or that
are reachable through any of its children, as well as individual lists of resources for
it and each child. When a node receives a request for a resource, it checks its unified
list to make sure it has a way of routing that request to the resource. If it does, it
checks the individual lists to find how to route the request toward the proper node;
otherwise, it passes the request further up the tree toward the root. This rather
straightforward routing protocol becomes more interesting if the resource lists are

Ay�e SALMAN

276

represented by Bloom filters. The property that a union of Bloom filters can be
obtained by ORing the corresponding individual Bloom filters allows easy creation
of unified resource lists. False positives in this situation may cause a routing request
to go down an incorrect path. In such a case backtracking up the tree may be
necessary, or a slower but safer routing mechanism may be used as a back-up.
Several recent papers utilize a resource routing mechanism of this form.

8.4. Geographic Routing
Hsiao suggests using the type of routing in for a geographic routing system for
mobile computers (Hsiao, 2001). For convenience, suppose that the geographic
space is a square region that is recursively subdivided into smaller squares, each
one-fourth the size of the previous level. That is, each parent square is broken into
four children squares, giving a natural implicit tree hierarchy. If the smallest square
subregions have size 1 and the size of the original square is k , there will be

1log2 +k levels in this recursive structure. For the geographic routing scheme,
each node contains a Bloom filter representing the list of mobile hosts reachable
through itself or through its three siblings at each level. Using these filters, a source
finds the level corresponding to the smallest geographic region that contains it and
the destination, and then forwards a message to the centre of the region
corresponding to the sibling that the destination node currently resides in.
Intermediate nodes forward the message appropriately, recursing down the implicit
tree until the destination is reached. Distributed hashing has also been proposed as a
means of accomplished geographic routing (Li et al 2000). So for both P2P network
and geographic routing, Bloom filters have been suggested as a possible alternative
to distributed hashing that may prove better for systems of intermediate size.

8.5. Measurement Infrastructure
A growing problem for networks is how to provide a reasonable measurement
infrastructure. How many packets from a given flow pass through a router? Has a
packet from this source passed through this router recently? The challenge in coping
with such questions lies in the tremendous amounts of data being processed, making
complete measurement extremely expensive. Because of their succinctness, Bloom
filters may be useful for many such problems, such as IP traceback described below.
If one wanted to trace the route a packet took in a network, one way of doing it
would be to have each router in the network record every packet that it forwards.
Then each router could be queried to determine whether it forwarded the given
packet, allowing the route of the packet to be traced backward from its destination.
Such a scheme would allow malicious packets to be traced back along uncorrupted
routers in order to find their source. Snoeren et al. (2001) suggest this approach with
the addition of using Bloom filters in order to reduce the amount of information that
needs to be stored in order summarize the set of packets seen, as part of their Source
Path Isolation Engine (SPIE). A false positive in this setting means that a router
mistakenly identifies a packet as having been seen. When attempting to trace back
the reverse path of a packet, a false positive would lead to a branching, giving
multiple possible paths. A low false positive rate would keep the branching small
and hence the number of possible paths small as well. Of course to make such a
scheme practical the authors gave careful consideration to how much information to
store and when to discard stale information.

Bloom’s Filters : Their Types and Analysis

277

References
BLOOM, B. (1970). Space/time tradeoffs in hash coding with allowable errors.

Communications of the ACM, 13(7).
BRODERY, A. & MITZENMACHERZ, M. (2002). Network applications of Bloom

Filters : a survey. Proceedings of 40th Annual Allerton Conference. Also
available at <http://www.eecs.harvard.edu/_michaelm>

BYERS, J., CONSIDINE, J., MITZENMACHER, M., & ROST, S. (2002).
Informed content delivery across adaptive overly networks. Proceedings of ACM
SIGCOMM 2002, pp. 47-60.

CARTER, L., & WEGMAN, M. (1979). Universal classes of hash functions.
Journal of Computer and System Sciences, pp. 143-154. CS223 Final Project
Report.

CHANG, F., FENG, W. & LI, K. (2004). Approximate caches for packet
classification NSF Grant EIA-0130344, IEEE INFOCOM 2004.

CZERWINSKI, S., ZHAO, B.Y., HODES, T., JOSEPH, A.D., & KATZ, R. (1999).
An architecture for a secure service discovery service. Proceedings of MobiCom-
99, pp. 24-35.

DHARMAPURIKAR, S., KRISHNAMURTHY, P., & TAYLOR, D. (2003).
Longest prefix matching using Bloom Filters. Proceedings of the ACM
SIGCOMM, pp. 201-212.

 FAN, L., P. CAO, J. ALMEIDA, & BRODER, A. Z. (2000). Summary cache : a
scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on
Networking, 8(3), pp. 281-293.

FELDMANN, A., & MUTHUKRISHNAN, S. (2000). Tradeoffs for packet
classification, IEEE INFOCOM, 2000.

FENG, W., KANDLUR, D., SAHA D., SHIN, K., BLUE (1999). A new class of
active queue management algorithms, U. Michigan CSE-TR-387-99.

FENG, W. & KANDLUR, D.D. (2001). Stochastic fair blue : a queue management
algorithm for enforcing fairness. Proceedings of IEEE INFOCOM 2001.

HSIAO, P. & HUANG, J. (2001). Geographical region summary service for wireless
routing. MobiHoc 2001, Long Beach, CA, USA, pp. 263-266. Also available at
<http://www.eecs.harvard.edu/~shawn/papers/courses/cs223_ final.pdf> as
CS223 Final Project Report.

HSIAO, P (2001). Geographical region summary service for geographical routing.
Mobile Computing and Communications Review, 5(4), pp. 25-39.

IAMNITCHI, A., RIPEANU, M. & FOSTER, I. (2002). Locating data in (Small-
World?) peer-to-peer scientific collaborations. 1st International Workshop on
Peer-to-Peer Systems IPTPS 2002. Also available at
http://arxiv.org/abs/cs/0209031.

KOLONIARI, G. & PITOURA, E. (2003). Bloom-based filters for hierarchical data.
5th Workshop on Distributed Data Structures and Algorithms (WDAS’03).

 . (2004). Filters for XML-based service discovery
in pervasive computing. The Computer Journal, 47(4). Oxford University Press
for the BCS.

KUMAR, A. & LI, L. (2003). Space-code Bloom Filter for efficient traffic flow
measurement. IMC’03 2003, Miami Beach, Florida, USA. Also available at:
http://www.imconf.net/imc-2003/papers/p312-kumar1.pdf.

LI, J. & JANNOTTI, J. & DE COUTO, D & KARGER, D. & MORRIS, R.
(2000). A scalable location service for geographic ad-hoc routing. Proceedings
of MobiCom 2000, pp. 120-130.

Ay�e SALMAN

278

MARAIS, H. & BHARAT, K. (1997). Supporting cooperative and personal surfing
with a desktop assistant. In ACM Symposium on User Interface Software and
Technology, pp. 129-138

MITZENMACHER, M. (2001). Compressed Bloom Filters. Proceedings of the 20th
ACM SIGACT Symposium on Principles of Distributed Computing (PODC
2001).

 . (2001). Compressed bloom filters. Proceedings of the 20th
ACM SIGACT- SIGOPS Symposium on Principles of Distributed Computing, pp.
144-150.

MULLIN, J.K. (1983). A Second look at Bloom Filters. Communications of the
ACM, 26(8).

 . (1990). Optimal semijoins for distributed database systems. IEEE
Transactions on Software Engineering, 16(5).

Passive measurement and analysis project, National Laboratory for Applied
Network Research (NLANR). Available at http://pma.nlanr.net/Traces/Traces/

REYNOLDS, P. AND VAHDAT, A. (2003). Efficient Peer-to-peer keyword
searching. Middleware 2003, Rio de Janeiro Brazil, pp. 21-40. Also available at
http://issg.cs.duke.edu/search/.

RIVEST, R. (1991). THE MD5 Message-Digest Algorithm. RFC1321.
 ROUSSKOV, A & WESSELS, D (1998). Cache digests. Computer Networks and

ISDN Systems, 30(22-23), pp. 2155-2168.
SANCHEZ, L., MILLIKEN,W., SNOEREN, A.,TCHAKOUNTIO, F., JONES,

C.,KENT, S.,PARTRIDGE,C., & STRAYER, W. (2001). Hardware support for
a hash-based IP traceback. Proceedings of the 2nd DARPA Information
Survivability Conference and Exposition.

SNOEREN, A. C., PARTRIDGE, L. A. SANCHEZ, C. E. JONES, F.
TCHAKOUNTIO, S. T. KENT, & STRAYER, W. T. (2001). Hash-Based IP
traceback. Proceedings of the ACM SIGCOMM 2001 Conference (SIGCOMM-
01), volume 31:4 of Computer Communication Review, pp. 3-14.

