
Revista de Sistemas de Informação da FSMA
 n. 17 (2016) pp. 40-43

http://www.fsma.edu.br/si/sistemas.html

40

Abstract — Programming is considered a fundamental skill
for our technological, global world. Nevertheless, it is quite
hard to teach and most universities face staggering rates of
failure in programming disciplines. Besides, those who
pass in these courses are programmers who deliver
products below par. I propose some evaluation ideas in
order to improve the results and diminish this problem.

Keywordss — Teaching, Programming, Universities,
Evaluation.

I. INTRODUCTION

owadays, the world sees programming as a fundamental
discipline. It is considered that no one can survive in the

market without knowing how to make a computer work. This
idea may seem preposterous to some, but it is a consensus that
learning how to program computers is a remarkable skill that
can be of use to any professional.
 No matter where you stand on this divide, you will surely
agree that Computer Science graduates must learn how to
program. Even though it may be possible to work in very
specific niches without ever making a more complex program,
it is most likely that any graduate in this area must master this
technique and be able to create good working programmers.

Therefore, it is our goal to make our students good
programmers, who are equipped to be undeterred by highly
complex environments while developing large pieces of
software.

In order to be a good programmer means, our students
should be able to develop programs that work correctly, are
easily maintainable and user friendly. These ideas may seem
obvious to anyone, but if you had spent some time looking at
the products delivered by programmers, you will notice that
unfortunately, this is not a truism that goes without saying.

Besides not imparting the correct techniques and behaviors,
our classes do not teach to anyone. Watson and Li (2014)
made a thorough study and verified that about 1 in 3 students
fail in introductory programming classes. This number is

 Ricardo Linden is a Full Professor at FSMA, Macaé-RJ

(Ricardo.linden@gmail.com)

lower than the usual anecdotes (and I am sure you have
already taught a class with a higher failure rate), but it is still
high enough to raise eyebrows. Hence, we should consider
what we can do in order to improve these results.

Therefore, in this paper, I will propose some ideas. They are
not panacea and should be taken into consideration with the
necessary adaptations. Local realities and current practices
change the nature of the problem and, consequently, the
solution required. Nevertheless, this is a good start, with many
good ideas that can be a starting point to improve the results
from our classrooms.

II.EVALUATION MODEL

Part of the blame for the students’ failure relies on the

model we use to evaluate them. Sometimes we are
overwhelmed by the large classes that are common in our field
and design some easy to grade tests, rather than others that
would better evaluate their performance, but mostly, we are
simply comfortable with the idea of having a large portion of
our classes fail. Nevertheless, there are some ideas that could
improve our results which we will discuss in this section.

II.1 Pair programming

The first idea we propose is that students should never

code alone. This may seem to go against one of the principles
of hands-on discipline, that is, everybody should be hand-on
and do the work by themselves, but it looks like that only for
those that are not familiar with pair programming.

The idea behind pair programming is that “all code to be
sent into production is created by two people working together
at a single computer”. [2]. In our case, production means
“delivered for evaluation”.

Even though it may seem counter-intuitive, pair
programming increases productivity because code tends to
have more quality. In our case, we have the added benefit of
having both students working in tandem to address each other
faults, that is, when one makes a mistake, the other will have to
correct it, based on the fact that his grade is also dependent on
the result. With time, the error correction will cause the
corrected student to learn the reason behind his/her mistakes.

N

Teaching Good Programming Using Evaluation

Ricardo Linden, FSMA

Linden. R. / Revista de Sistemas de Informação da FSMA n. 17 (2016) pp. 40-43

41

This idea has the added benefit of dividing the correction
load by half, which would be welcomed by any professor or
TA in the area. Nevertheless, this is not the reason behind its
adoption.

William et al [3] conducted a formal experiment with
pair programming in their introductory programming classes
and found out that students who practice pair programming
perform better on programming projects and are more likely to
succeed by completing the class with a passing grade.

Nevertheless, just adopting pair programming will not be
enough to achieve good results if we don’t adopt some
relevant practices to boost its results. Prottsman [4] suggests
some practices that are relevant for success, but two of them
deserve comment here, which is to pair carefully and to switch
often.

The concept of pairing carefully consists in choosing the
pairs in order to maximize results. Based on this idea, students
should not be allowed to choose freely their partners. Actually,
pairing the best students with the ones in most need of help is
usually a good practice, but only if done within the lab, where
the professor can guarantee the participation of the lower
performance students.

The students that need more help will be more easily
identifiable as the term progresses. They should be discovered
by their grades or their consistent inability to create
functioning work products. Hence, monitoring performance is
a necessity for those intending to maximize end grades.

The idea of switching gives us the advantage of creating
a communication between different programming practices
and always giving a new set of eyes to look for the mistakes a
student tends to make.

Adopting these concepts, we together with the third
practice proposed by Prottman (encourage respect), we get an
additional benefit, that is to train our students to work in
groups and to listen to other persons’ opinions. This is a
characteristic that is much appreciated by recruiters and
workplaces in general.

II.2 – Test Cases

It is close to a consensus that programs cannot be graded

binary (correct or incorrect). There is some nuance in how well
the software developed by the students actually fulfills the goal
of the exercise.

Usually, grades are defined in a somewhat arbitrary
fashion. The professor defines some criteria on which part of
the software is more important, which is less and gives points
accordingly.

I would like to argue that this is not only quite arbitrary,
but goes against the final goal of the software, which is to
solve a specific problem. Software is never the goal by itself,
but rather a tool to solve a problem.

Hence, evaluation would be much better served if it was
performed through test cases. Students should be given all test
cases their software is supposed to deal with, with the
appropriate response and grades would be given by how well
the software complies with the specifications.

The test cases should include a blanket covering of the
required solution space and also, their choice should be
explained to the students. The explanation is due because in a
second moment (late in the first introductory course or early in
the second), students should be required to develop their own
test cases, attesting the extent to which their software was
tested.

All this work means that students should be taught a unit
testing tool together with their coding. Many would claim that
this is a complication and in purely technical terms, it is, for
there is another tool to learn. Nevertheless, giving your
students strong testing skills makes them better programmers
and ones who are readier for the job market.

The language in which the introductory programming course
is defined is not a barrier to the adoption of the unit testing
mentality, for there are unit testing tools for most of the main
programming languages. There is, for instance, JUnit for Java,
unittest for Python, PerlUnit for Perl, cUnit and cppUnit for C
and C++ and many others. All share the main characteristics,
differing only in their syntax and use.

A secondary benefit of adopting test cases as correction
benchmark is that your grades will be fully objective, and there
will be less whining at your doorstep.

II.3 – Coding Standards

Every software development company establishes coding

standards. They range from the namespace of the variables and
functions to the comments’ style used. A classroom should
have a coding standard, just like any other software
development enterprise. This teaches students how to follow
rules and also, many good practices in the industry.

I am not presenting here what your conventions practices
should be. There are several books and papers on the issue.
McConnel [5], for instance, devotes more than 1.000 pages to
the issue (if you could get your students to read this book,
surely they would learn a lot). The point here is to emphasize
the need for a structured development and to establish
guidelines. These will foster discipline and even facilitate the
correction.

II.4 – Continuous Integration

There are a lot of benefits from adopting additional

technologies in your classrooms, but usually they are too hard
for the institution and/or the professor. Nevertheless, if they
are achievable, you should consider the following.

First of all, you should consider the creation of a
continuous integration environment. Continuous Integration is
a software development practice where members of a team
integrate their work often – usually each person integrates at
least daily – leading to multiple integrations per day. Each
integration is verified by an automated build (including test) to
detect integration errors as quickly as possible. Many teams
find that this approach leads to significantly reduced

Linden, R. / Revista de Sistemas de Informação da FSMA n. 14 (2014) pp. 40-43

42

integration problems and allows a team to develop cohesive
software more rapidly [6].

Using this type of software, students are also learning
new skills, which are nowadays considered of the utmost
importance. Nevertheless, you need to implement a lot of
software and maybe this will not be easy to do in your
institution.

Continuous integration is a group coding technique, but
there is no limitation that excludes single programmers from
adopting them. Also, when you progress towards larger
projects, the students will be ready to work together as a team.

If there is any kind of limitation in your institution, you
should consider at least using public Internet repositories, such
as Github for your assignments. This type of environment may
be considered a fad by some, but is very important nowadays
and also, if students make their work public, they can be
downloaded and experience the taste of contributing to the
programming community.

II. 5 – Participation in Coding Communities

There are many coding communities whose goal is to

provide answers to questions other people may have. Most of
the time, participation is voluntary and the person answering
does not know the one who has the coding problem. An
example of this community is Stack Overflow
(http://stackoverflow.com).

One way to create an enterprising behavior and
motivating students is to offer them rewards for participation
in these sites.

In Stack Overflow, for instance, an answer can be
upvoted by any participant, if he finds it good and helpful, and
accepted by the answering party, if he considered that the
answer solved his problem. The first gives the answering user
10 points and the second, 25 points.

You can give students extra points based on the number
of points they amassed in a specific time frame (for instance,
from the beginning of the semester until the midterm).

Answering questions encourage users to research, learn
and experiment with code. It is usually quite addictive and
beneficial for all parties involved. Therefore, this is an strategy
that has low cost and can extend your classroom into the whole
world.

III.PARTICIPATION MODEL

The Hawthorne Effect, or observer effect, is quite known

in Psychology. It states that individuals tend to modify or
improve their behaviors when they are aware that they are
being observed. The initial definition was that there would
be “an increase in worker productivity produced by the
psychological stimulus of being singled out and made to feel
important” [7].

From this definition, we understand that a person
becomes more productive when singled out. Personal

experiments with a small number of classes have led me to
conclude that this is also true when teaching programming.

It is obvious that with large classes, comprising 50 to 60
students, this might be a difficult feat to accomplish.
Nevertheless, we are interested at this point in the bottom
third of a class, for we assume that the others have learned
well enough, given that they received a passing grade (we
will address the issue of their quality below in this
document).

The participation should be within the class framework,
calling them out to help you with issues such as helping
other students or finishing up a code you purposely left
incomplete in the board.

Special care should be taken not to humiliate the students.
Their mistakes should be corrected with delicacy and they
should be helped to correct the assignments. Otherwise, this
educational device will backfire.

A simple Excel spreadsheet containing the names of the
bottom third of the class and the dates when they were last
called to participate is enough to control this model.

A good technique consists in observing the coding pairs
while they are working and write down in the spreadsheet
the strengths of the bottom third students. There will always
be issues they are good with. Hence, calling them out when
these issues arise in class will make it easier for them to
excel and achieve the goal of this didactic technique.

IV. CONCLUSION

Introductory programming classes are a daunting

challenge for both the teachers and the professors. The
failure rate, even though in average not as high as the
anecdotes, is still high enough to raise eyebrows and leave
us looking for improvements.

I consider that transforming you class into a software
house, using common professional practices such as pair
programming, coding standards and continuous integration
can be beneficial not only for the current moment, where the
students are learning to code, but also to improve their
employability in the future.

Besides, common psychological techniques can also show
to be beneficial. Engaging students lead to the Hawthorne
effect, which can boost performance and increase student
confidence and participation.

Most of these techniques are quite easy to employ and
some of them, such as pair programming and the use of test
cases, can reduce the total effort spent by a professor in
these courses.

Even though the term is not widely used nowadays, we
still face a crisis in software [8]. Hence, creating better and
more conscientious developers in our classrooms may be a
good way to diminish the nefarious effects that bad software
causes in our businesses and in our society.

Linden, R. / Revista de Sistemas de Informação da FSMA n. 14 (2014) pp. 40-43

43

REFERENCES

[1] Watson, C.; Li, F. W. B., “Failure Rates in Introductory Programming
Revisited”, Proceedings of the 2014 conference on Innovation &
technology in computer science education, pp. 39-44, 2014

[2] ExtremeProgramming.org, “Pair Programming” Available at
http://www.extremeprogramming.org/rules/pair.html.

[3] William, L.; Wiebe, E.; Ferzli, M.; et al., “In Support of Pair
Programming in the Introductory Computer Science Course”, Computer
Science Education, vol. 12, n. 3, pp. 197-212, 2010

[4] Prottman, K., “Three best practices for Pair Programming”, ISTE,
available at https://www.iste.org/explore/articleDetail?articleid=221,
2014

[5] McConnel, S., “Code Complete”, 2nd Edition, Microsoft Press, USA,
2004

[6] Fowler, M.; “Continuous integration”, web article available at
http://www.martinfowler.com/articles/continuousIntegration.html, 2006

[7] McCarney, R; Warner, J.; Iliffe, S. et al, “The Hawthorne Effect: a
randomised, controlled trial”, BMC Med Res Methodol, vol. 30, n. 7,
available at the address http://www.biomedcentral.com/1471-2288/7/30,
2007

[8] Rice, D., “Geekonomics: The Real Cost of Insecure Software”, Addison-
Wesley Professional, 2007

