
World of Computer Science and Information Technology Journal (WCSIT)

ISSN: 2221-0741

Vol. 6, No. 3, 21-26, 2016

21

Enhancing the Performance of Intrusion Detection

System by Minimizing the False Alarm Detection

Using Fuzzy Logic

Khaled Batiha

Computer science department

Al al-Bayt University, Jordan

Mohammed O. Alshroqee

Computer science department

Al al-Bayt University, Jordan

Abstract— According to the information technology and regarding to the revolutions of the computer worlds, this world has got

important information and files that have to be secured from different types of attacks that corrupt and distort them. Thus, many

algorithms have turned up to increase the level of security and to detect all types of such attacks. Furthermore, many algorithms

such as Message Digest algorithm 5 (MD5) and Secure Hash Algorithm 1 (SHA-1) tend to detect whether the file is attacked,

corrupt and distorted or not. In addition, there should be more algorithms to detect the range of harm which the files are exposed to

in order to make sure we can use these files after they have been affected by such attacks. To be clear, MD5 and SHA-1 consider

the file corrupt once it is attacked; regardless the rate of change. Therefore, the aim of this paper is to use an algorithm that allows

certain rate of change according to the user, which is SSdeep algorithm. Meanwhile, it gives the rates of change depending on the

importance of each file. Moreover, each rate of change determines whether we can make use of the file or not. I made assumption

in creating four folders, each contains multiple files with minimum predefined allowed of similarity. Then graphical user interface

is created to utilize the SSdeep algorithm and to permit user to define the allowed similarity on each folder or file depending on

impotency of it. After applying the algorithm, I got results showing the benefits of such algorithm to make use of these attacked or

modified files.

Keywords-Intrusion Detection System; false alarm; fuzzy logic; computer security.

I. INTRODUCTION

As computers are becoming increasingly used by labor,
security issues have posed a big problem within organizations.
Firewalls, anti-virus software, password control are amongst the
common steps that people take towards protecting their systems.
However, these preventive measures are not perfect. Firewalls
are vulnerable; they may be improperly configured or may not
be able to prevent new types of attacks. Anti-virus software
works only if the virus matches its signature. Passwords can be
stolen and therefore, systems can be easily hacked into. Hackers
can change the system on initial access and manipulate it so that
their future access will not be detected. In these situations,
Intrusion Detection Systems (IDS) come into play [1].

Intrusion Detection System (IDS) meant to determine
whether the file or the packet is intruded or not. Depending upon
the place of anomaly, the IDS can be classified into Network-
based IDS or Host-based IDS [1].

The present study focused on HIDS. Therefore, whether the
IDS is HIDS or NIDS, it should inform the administrator by any
means that suspicious activities had happened and should trigger
an alarm.

The so-called "False Alarm Detection" is a method that
specializes in detecting anomalies in computer systems and
networks, which is mainly dependent on fuzzy logic and
artificial intelligence. The main purpose is to differentiate
between normal behaviors and anomalous ones. What makes
gaps and weaknesses is the false alarm rate mainly measured and
counted by the false positives of normal behaviors [2].

To clarify the idea, some anti-virus programs deal with
programs and data as viruses which are directly stopped. This,
in role, gives false alarms. For example, the so-called
"Kaspersky" anti-virus program deals with the program "Net
Support" as a virus which is directly stopped and cannot be
installed. Because they are not viruses, we conclude that what
happens is the so-called "False Alarm".

Many researchers have done researches in the field of
computer and its network, and they have talked and discussed
the threats that threaten them without talking about what is
supposed to do in order to recognize the consequences and the
damage by attacks and hackers. Therefore, this research
dedicated to measure these attacks' damages. Regarding this
matter, the Intrusion Detection System is used to detect these
threats in systems. Therefore, in using the software, we

WCSIT 6 (3), 21 -26, 2016

22

developed the techniques we have created. Thus, the user can
recognize the consequences, the damages, and the attacks that
happened. Consequently, this research shows in details the
problems, types of attacks, used algorithms and approaches to
detect these illegal threats and its impact.

When changes happens to some critical files, the IDS alerts
the system or the administrator that these files intruded but
without specifying the size of the damage and the effect of
damage, which may increase the false alarm. As a result, we
need an algorithm that can investigate the size of the damage and
its effects. In so doing, the damage cannot be considered harmful
and does not need to fire an alarm about it.

Consequently, the present study gives the user the control
with the range of trueness of produced alarms that detecting
intrusions.

This research comes up with findings and solutions that are
supposed to be followed when our computers and networks are
exposed to face malicious attacks and hackers who tend to distort
our main and important files. Besides, it show we can utilize the
proposed algorithms to detect the anomalies in these files and
take re-use of some of the attacked files.

II. RELATED WORK

Zadeh [3] started with the concept of fuzzy set theory, which
was mean to focus on the vagueness for dealing with it in several
cases in the world. The function called membership explains the
values of universe that lie between (0, 1). Each value has got an
indication. The (0) value indicates that it is not a member in the
fuzzy set, whereas the (1) value indicates that it is a member in
the fuzzy set. So, the other values remain within this range.

Kornblum [4] found Context Triggered Piecewise Hashing
(abbreviated CTPH) that divides an input dependent on its
context. It was basically dependent on a spam detection
algorithm of Tridgell. Since then several researches had been
published which checked this method in details. For example,
improvements related to efficiency and security had been
proposed by F.Breitinger in “Performance Issues about Context-
Triggered Piecewise Hashing”, whereas a security analysis had
shown that this method cannot resist an active opponent
regarding whitelisting and blacklisting.

Vassil Roussev [5] proposes a comparison between SDhash
and SSdeep which demonstrates that an “approach significantly
outperforms in terms of recall and accuracy in all tested
scenarios and insists on active and scalable behavior”.

Despite the importance of the above list of sources, this study
presents a different perspective. As mentioned earlier, the
previous studies highlight and detect the damage on the network
only. However, this study detects the damage on the host. In fact,
it tends to propose an algorithm that measures the size of the
damage and the effects of the damage when changes influence
some critical files. Moreover, it comes up with solutions to re-
use some of the attacked files.

III. COMBINING THE HASH ALGORITHMS

The rolling hash is used when the current piecewise hashing
programs used fixed offsets to conclude when to begin and to
stop the traditional hash algorithm. Yet, when the rolling hash’s

output is specific, the traditional hash is triggered. While
processing the input file, one must compute not only, the
traditional hash for the file but also, the rolling hash in order to
record the value of the traditional hash in the CTPH signature,
paving the way for the traditional hash to rest. As a result, any
change in the input is recorded and seen in localized changes
only in the CTPH signature, maintaining the majority of the
CTPH signature. Therefore, the modified file is associated with
CTPH signature of known files.

IV. APPROXIMATE MATCHING

Using the SHA-1 or MD5 only gives two simple answers
(yes or no), so two matched files might match or might not.
However, according to SSdeep algorithm, it gives a probable
answer within the interval of numbers (0-1) once two files are
compared. Here we have got two types of scores as the
following:

1. Confidence score that indicates a low score when there

is a small amount of similar content in the two files.

2. High score when the ratio of similarity of content is

high [6].

V. CUSTOM SCORE

We proposed another type of score called custom score. It is
mainly dependent on the importance of certain files according to
the user point of view. This allows the user the ability to choose
the files he wants to be secured and how much he allows a
percentage of changes.

To be clear on this matter, we suggested that the user has
important files which kept in a folder with minimum 95 percent
of importance, and the less important files are kept in a folder
that has got minimum 85 percent of importance. The files which
have got minimum 75 percent of importance are also saved in a
third folder, and the less important files are saved in a folder that
has got minimum 65 percent of importance. Moreover, the
custom score comes in the interval (0, 1) because (0) means that
the file is totally different, whereas (1) indicates that the file is
totally identical. What comes in between is dependent on the
user's custom score.

Empirical tests stated that more than 65% of similarity leads
to the recognition of the same files as they seem to be identical
[7].

At last, we conclude that the files are classified into many
percentages of importance according to the user's desire. This
also shows if the input file can be used or distorted.

VI. METHODOLOGY

The attacks have different impacts on the files, some of these
attacks are considered innocuous depending on the data types.
Also, we have set an assumption stating that determining the
allowed rate of change belongs to the user’s request of choosing
the type of file and the location of it, and the files are compared
by File Finger Print (Hash). Some algorithms such as SHA-1 or
MD5 consider that any attack on the data affects it and not
useful. But it cannot determine the size of the damage on these
data, whereas the SSdeep algorithm can determine the size of
damage on these data. Depending on the above assumption,
some data are very important. Thus, if the attack happened over

WCSIT 6 (3), 21 -26, 2016

23

the allowed rate, they are considered useless or unbeneficial.
On the other hand, if some of the files are attacked within the
allowed rate, they can be used and considered safe. Therefore,

the figure (1) demonstrates our assumption, depending on the
location and the extension of file. In so doing, we can determine
that the alarm, produced by the attack, is true or not.

Figure 1. : Minimum percent of similarity for each folder

The folder that is called “Necessary folders” is classified in

to four main folders according to minimum percent of allowed
similarity, and the following folders show this classification:

Folder "A"- is the most important one that includes sensitive
files.

Folder "B"- is less important than folder "A", which includes
files, which can be exposed to few changes.

Folder "C"-includes files, which can face more changes than
folder "B".

Folder "D"- includes files that can face many changes in
comparison with the previous folders.

In addition to this, we allowed the user to set the importance
of minimum of similarity according to the type of the file
(extension) in order to increase the security.

Here, the proposed assumption of the minimum of similarity
depends on the user himself and his job. For example, the most
important files for secretary are MS-word files. Therefore, the
minimum of allowed similarity on these files is very high and
these files are critical, while the pdf files are less important with
less minimum of similarity. However, according to a
programmer, the most important files are the DLL files and the
minimum allowed of similarity is very high, while the MS-Excel
files are less important with less minimum allowed of similarity.

As we can see in Figure (2), we proposed generally the
minimum allowed of similarity of some files, but the user can
set his own minimum allowed percent of similarity depending
on his job and the location he puts the files in to. Also, we made
assumption states that the default percentage of any other files is
65 percent.

 Minimum percent of similarity is 0.67.

Minimum percent of similarity is 0.75.

 Minimum percent of similarity is 0.80.

 Minimum percent of similarity is 0.90.

 Minimum percent of similarityis 0.95

Figure 2. Minimum percent of similarity depend on file type

Consequently, the comparison is made according to the type
of the file (extension) and where it exists, based on the highest
rate, as demonstrated in the following equation:

 α: file acceptable percentage (extension for file).

β: folder acceptable percentage.

µ: result percentage.

µ = {
α ≥ β α

otherwiseβ
} µ: is it the highest percentage

WCSIT 6 (3), 21 -26, 2016

24

VII. STAGES OF OUR PROPOSED WORK

a) Preprocessing Stage:

Our system deals with a huge set of files that cannot process
them shortly so we do pre-processing for these files and calculate
the hash for each one. Then, we store them in the data base to be
used later.

In this stage, the system scans all the selected files by the
user and passes them to “SSdeep algorithm” in order to produce
a hash code which consists of alphabets and symbols for each
file. After that, it stores their hash codes, sizes, and paths in the
data base as shown in the figure 3.

Figure 3. Preprocessing stage

b) Processing stage:

In this stage, we tend to divide this process into the following

steps:

I. Input file:Here we choose the file we need to check whether

it is attacked or not.

II. Calculating the file hash (using "SSdeep algorithm"):

The system passes the file to SSdeep algorithm to produce a

hash code that consists of alphabetical characters and

symbols.

III. Hash existence check:
The system searches in the database for the hash code and

compare it to the input file hash code. If the hash code of input
file is similar to the current file hash code, we make sure that the
file is not attacked because there is, at least, one file with the
same size and hash, so no alarm is on this file. Otherwise, it
calculates the file size and stores it in (T). Then (T) equals " file
size *0.35". Afterwards, it creates a file probability range that
tends to add T to the input file size and subtract T from the input
file size. In addition, it does a small procedure that creates a

range of files (zero or more files), based on the target file size.
After that, it starts searching in the result list (zero or more files).
If it doesn’t find any file within the specified files size range
(+T,-T), the system will send an alarm to the user. But if it finds
files, it calculates the percentage of similarity depending on
extension and location.

If it has, at least, one file in the database which has an
acceptable percentage of similarity; it will alert the user that the
file has been changed without any alarm. Otherwise, it will send
an alarm to the user because the file has been changed over the
predefined allowed percentage of similarity as shown in figure
4.

Figure 4. Processing stage

WCSIT 6 (3), 21 -26, 2016

25

Figure 5. Processing stage (Cont.)

VIII. RESULTS:

Assuming we have four folders each has minimum percent of

similarity as shown in table 1.

TABLE I. FOLDER PRIORITY

Folder name Score

A (Critical) >= 0.95

B (Very high) >= 0.85 and <0.95

C (High) >= 0.75 and <0.85

D (Low) >= 0.65 and <0.75

Here five experiments are made, in experiment one we took
twenty five files and we let the system go through the
preprocessing stage to store the size and the hashes, then we
change six files which have been intruded, then we checked the
whole files with MD5 algorithm to check whether these files
have been hacked or not, and how many files have been hacked.
As a result, six files have been hacked. Then when we move the
files to folder (A) and check them with SSdeep algorithm, the
system finds five files have been hacked. After that, we move
them to folder (B) and check them again with SSdeep algorithm.
As a result, four files have been hacked. Then we repeat that with
folders (C and D) and the results are similar to the ones shown
in table 2 and figure 5. In the second experiment, we increased
the number of files to one hundred, and change fifteen files.
Then we checked them with MD5 algorithm and then with
SSdeep algorithm while being in folder (A) then folder (B) until
folder (D) and the results are similar to the ones as shown in table
2. Then, we repeat the whole procedures with the third
experiment until five, taking into consideration, changing the

total number of files and the number of the changed files as
shown in table 2 and figure 6.

TABLE II. TOTAL ALARMS ACCORDING TO THE NUMBER OF

CHANGED FILES

Experiment

number

Total

files

Number

of

changed

files

Total

alarms

of

MD5

in all

folders

Total

assumed

alarms

in folder

"A"

Total

assumed

alarms

in folder

"B"

Total

assumed

alarms

in folder

"C"

Total

assumed

alarms

in folder

"D"

1 25 6 6 5 4 3 2

2 100 15 15 8 5 4 2

3 200 25 25 12 10 7 4

4 300 40 40 20 17 16 13

5 500 60 60 31 28 20 16

Figure 6. Number of alarms when number of file = 25

Figure 7. Number of alarms when number of file = 500

In addition, we can see in table 3 all the accepted files in
folder (A (will be also accepted in the other folders (B, C and
D). Accordingly, all the files accepted in folder (B) will be
accepted in folders (C and D) but they will not be accepted in
folder (A). While the files accepted in folder (C (will be accepted
in folder (D (, but they will not be accepted in folders (A and B
(. Finally, all the files accepted in folder (D), will not be accepted
in Folders (B, C and D), Depending on the folder minimum of
similarity.

WCSIT 6 (3), 21 -26, 2016

26

TABLE III. RESULTS FOR EACH FOLDER

Location

A B C D

Critical Acceptance Acceptance Acceptance Acceptance

Very high Avoidance Acceptance Acceptance Acceptance

High Avoidance Avoidance Acceptance Acceptance

Low Avoidance Avoidance Avoidance Acceptance

IX. CONCLUSION AND FUTURE WORK

We can notice from the results, in the previous chapter, that
as we increased the number of total files and the number of
changed files, the MD5 algorithm will always give the same
number of changed files, whereas the detected number of
changed files will decrease, depending on minimum allowed
percentage of similarity. As we can see I developed a simple
graphical user interface for a program utilizing the SSdeep
algorithm to allow a user manually to check if his files have been
attacked or not with allowable setting for the minimum allowed
percent of similarity for the files types or its locations. As a result
the user can re-use some of the attacked files depends on the
minimum of similarity.

Using such hashing, the examiners will be able to associate
the previous lost files. In this way, the examiners, in
investigating the homologous but not the identical files, find
easily relevant materials in other investigations.

Regarding the matter of computer world and its revolution,
this conclusion indicates the mentioned improvements and
solutions discovered and found to detect the unallowable access
done by several types of attackers and hackers. As a result, the
attacked data do not seem to be useless, but the rate of change
shows that the data can be reused or not. Therefore, we think by
inventing new hashes or modifying the existed hashing
algorithms, we can determine the exact portion of hacked file or
increase the number of restored files.

ACKNOWLEDGMENT
This study is a part of M.SC. thesis of Mohammed O.

Alshroqee under the supervision of Dr. Khaled Batiha Al al-Bayt
University.

REFERENCES

[1] Mallery, John. “Network Intrusion Detection”. Security Technology &
Design. 44 – 47, 2008.

[2] Pokrywka, Rafał. Pokrywka
http://link.springer.com/chapter/10.1007%2F978-3-540-69384-0_45.
2008. Last visited Jan 2015.

[3] Zadeh, L A .. “Fuzzy Sets”, Information and Control, Vol.8, pp. 338-353,
1965.

[4] Kornblum, J., “Identifying almost identical files using context triggered
piecewise hashing,” Digital Forensic Research Workshop (DFRWS), vol.
3S, pp. 91–97, 2006.

[5] Roussev, Vassil,. An evaluation of forensic similarity hashes. Digital
Forensic Research Workshop, 8:34–41, 2011.

[6] Roussev, Vassil Simson Garfinkel, Frank Breitinger, John Delaroderie,
Barbara Guttman, John Kelsey, Jesse Kornblum, Mary Laamanen,
Michael McCarrin, Clay Shields, Douglas White, John Tebbutt, and Joel
Young. The NIST Definition of Approximate Matching.Technical report,
National Institute of Standards and Technologies, 2013.

[7] Chyssler, Tobias, Stefan Burschka, Michael Semling, and Tomas
Lingvall, KalleBurbeck, "Alarm Reduction and Correlation in Intrusion
Detection Systems". In Detection of Intrusions and Malware &
Vulnerability Assessment”. Ulrich Flegel, Michael Meier (Eds) Dept. of
Computer and Information Science Linköping University, S-581 83
Linköping , Sweden, 2004.

AUTHORS PROFILE

Full name: Khaled M. Batiha

Qualifications: Associate Professor Ph.D.; Automatic Control systems,
Networks, Computer security Computer science department, Al al-Bayt

University, Jordan.

Full name: Mohammed O. Alshroqee
Qualifications: Master of Computer Science; Computer science

department, Al al-Bayt University, Jordan.

µ

http://link.springer.com/chapter/10.1007%2F978-3-540-69384-0_45
http://link.springer.com/chapter/10.1007%2F978-3-540-69384-0_45

