
World of Computer Science and Information Technology Journal (WCSIT)

ISSN: 2221-0741

Vol. 6, No. 2, 12-20, 2016

12

The General Form of GoF Design Patterns

Siniša Vlajić

Department of software engineering

Faculty of organisational sciences, University of Belgrade

Belgrade, Serbia

Vojislav Stanojević, Dušan Savić, Miloš Milić,

Ilija Antović, Saša Lazarević

Department of software engineering

Faculty of organisational sciences, University of Belgrade

Belgrade, Serbia

Abstract— In this paper, we present a general form of GoF Design Patterns as a process that transforms the BDPSP (the Basic
Design Pattern Structure of the Problem) to the BDPSS (the Basic Design Pattern Structure of the Solution), i.e. transforms the
unstable structure of the program to the stable structure. The stability of the BDPSP and BDPSS is explained by using Robert C.
Martin’s Stability metric. The BDPSP and BDPSS are described by three elements: Client, Abstract Server and Concrete Server.
The Client is an element of the pattern structure that uses the functionalities of the abstract server and concrete servers in order to
carry out its own functionality. The Abstract Server is an element of the pattern structure that provides the client with an abstract
functionalities that can be implemented with various specific functionalities. The Concrete Server is an element of the pattern
structure that provide the client with concrete functionalities that realise abstract functionalities of the abstract server. In this sense,
the Design Pattern is a process that relationship Client has Concrete Server, transform to relationships: a) Client has Abstract
Server and b) Concrete server is Abstract Server. We believe the BDPSS is the key mechanism or essence of the GoF design
patterns, which allow easy maintenance and upgrade of the program. We have showed that in 20 of 23 GoF design patterns the
BDPSS completely describes a pattern or a particular part of the pattern. We are using the general form of GoF design patterns in
the teaching process, as the first step in the overall understanding of the GoF design patterns, before a detailed explanation of the
specific characteristics of GoF design patterns. We think that this paper can greatly help the students and developers to quickly and
clearly understand the essence of GoF design patterns.

Keywords- Software design; Design patterns; Stability metric; Software stability; Software maintenance.

I. INTRODUCTION

The development of the modern object-oriented software
systems involves the use of the Design Patterns [DP], that
represent the best experiences and practices in the software
design, that were discovered by numerous software developers
over a long period of time. One of the basic definition of the
design patterns is [DP]: “The design patterns are descriptions
of communicating objects and classes that are customized to
solve a general design problem in a particular context“. They
represent generic solutions that can be applied multiple times
for different classes of problems. The design patterns are one of
the most important mechanisms used for the development of
the stable software systems because they provide great
flexibility during the maintenance and upgrade of the software
systems. The software stability, according to ISO 9126
[ISO1] “characterizes the sensitivity to change of a given
system that is the negative impact that may be caused by
system changes”. From perspective of Yau and Collofello
software stability is resistance to propagation of changes
(ripple effect) that the software would have when it is
modified ([YAU1], [YAU2]), which is also known as modular
continuity [MEY1]. E. Mohamed Fayad points the importance

of identifying the areas in the project that are stable [MF1],
during the development of a software project: This yields a
stable core design and, thus, a stable software product. Changes
introduced to the software project will then be in the periphery,
since the core was based on something that remains and will
remain stable”. When talking about stability, Robert C. Martin
stressed the significance of the dependencies that exist between
components and classes for the stability of a software system.
He has said [RM2]: "Depend in the direction of stability" and
suggests that: "Any component that we expect to be volatile
should not be depended on by a component that is difficult to
change! Otherwise, the volatile component will also be difficult
to change ". He has introduced the Stable-Dependencies
Principle (SDP) to ensure that "modules that are intended to be
easy to change are not depended on by modules that are more
difficult to change than they are ". In our previous studies we
have tried to define a formal basis for making the stable and
sustainable software systems, explaining the design patterns by
the symmetry concepts[VS2]. The starting point of this study
was Rosen's definition of the symmetry [ROS1]: “Symmetry is
immunity to a possible change”. We also tried to explain the
relationship that exists between the GoF design patterns and
software entropy in the context of the software maintenance
[VS1].

WCSIT 6 (2), 12 -20, 2016

13

The software system (in a broader sense) or the software
component (in a narrow sense) is being created on the basis of
the user requirements. The first version of the software usually
contains mixed a general and specific parts of the code. The
general parts of the code can be used not only to solve current
problems, but also to solve some other problems. They can be
reused in the development of new software systems (code
reuse). Code reuse is defined as: "... use of existing software, or
software knowledge, to build new software, following the
reusability principles" [FRAKES1]. Specific parts of the code
are related to the current problem and they can’t be used for
other problems. They don’t have reuse feature.

When software is being developed over the time, each new
version of the software tends to separate general and specific
parts of the programming code. Ideally, software system should
contain only general parts of the code. In that case, the specific
parts of the code could be "relocated" from the program and
somewhere kept as program parameters. This way, a
parameterized software system can be customized to different
problems, by changing the values of the parameters of the
software system for each new specific problem. M. Stark said
[STARK1]: “Parameterized software system is one that can be
configured by selecting generalized models and providing
specific parameter values to fit those models into a general
design.”

The software system should be created so that it can be
easily adapted to each new user requirement. Such software
system is able to accept new or change the existing
functionalities without major changes to its structure and
behavior.

Design Patterns provide separation of the general and
specific parts of a software system, allowing the use of the
general programming codes for some set of similar problems,
i.e. a class of the problems.

When writing a program it is necessary to identify general
and specific parts of the program, i.e. changeable and
unchangeable parts of the program. If we recognize the places
in the software system, which is constantly changing with the
advent of new user requirements, then the pattern should be
applied on those places to stem potential "chaos" that can be
caused by the changeable places in the program.

These places, or these points, are by analogy equal to
bifurcation point in the Chaos Theory. Steven Strogatz for
bifurcation said the following [SS1]: “ The bifurcation is a
qualitative change in the dynamics of a system as a parameter
is varied. The value of the parameter at which the change
occurs is called the bifurcation value, also sometimes known as
the bifurcation point or point of bifurcation”. The bifurcation
point push system in chaos, because it changes equilibrium
points of the system, i.e. the stability of the system.

Something similar can happen in the development of the
software systems. If timely, the bifurcation points are not
discovered, the orthogonal complexities could happen, i.e. the
system could be orthogonally developed (at more places) in
regard to the existing software system. This orthogonal
complexity can completely “crash” the existing software
system. This could be compared to “whirlpools” that pull the
program into “the depth of nothingness”.

Applying patterns on these points prevents the software
system turns into chaos. The developer must have the
knowledge, experience and intuition to recognize these
"bifurcation points" during development of the software
system. At these points the changes continuously occur. These
points grow with time and become huge and difficult to
maintain. Identifying "bifurcation point" accelerates
establishing order in the system, allowing easiness in use and
maintenance of the system.

 “Spaghetti code", a term known from software
engineering, which indicates the complex and complicated
algorithm of some method, which grows with new user
requirements, represents a potential case of "bifurcation point"
of the software systems.

In this paper, we have analysed the GoF (Gang of Four)
design patterns and found the structure of the solution that is
common to most of the GoF design patterns. This has led us to
hypothesize that this structure is a key mechanism of the GoF
design patterns, which should be applied to the places where
the bifurcation points occur. This structure of the solution
contains "attractor" which introduces order in the software
system.

Based on the previously mentioned structure of the
solution, we have defined the structure of the problem. At the
end, we have explained how the structure of the problem is
transformed to the structure of the solution. This approach
enables logical relationship between elements of the structure
of the problem and solution of the GoF design patterns,
allowing us to explain, in the general sense, what are design
patterns and when and how they arise.

II. THE GOF DESIGN PATTERNS – DESIGN PROBLEM AND

SOLUTION

The GoF defines design patterns [DP] as: “The design
patterns are descriptions of communicating objects and classes
that are customized to solve a general design problem in a
particular context“. The definition points out the main parts of
the GoF design patterns: problem and solution. The problem,
describes when the pattern should be applyed and specific
design problem that causes an inflexible design. The solution
describes the elements of the design, their roles and
relationships and explains how a general arrangement of
elements solves design problem.

That means, the design patterns recognise a design problem
and gives an appropriate design solution for it. Actually, the
GoF design patterns transform (T) the design problem to the
design solution (Figure 1).

Figure 1: The GoF Design pattern – Design problem and solution

T

GoF Design patterns

Design

problem

Design

solution

WCSIT 6 (2), 12 -20, 2016

14

The GoF design patterns contains: a) Design problem,
b) Design solution and c) Transformation (T) of the design

problem to the design solution, which can be represented as:
 Т
Design problem --------> Design solution

III. THE BASIC DESIGN PATTERN STRUCTURE OF THE

SOLUTION

In the book Design Patterns: Elements of Reusable Object-

Oriented Software [DP], there are 23 GoF design patterns.
They are divided into three groups: creational patterns,
structural patterns and behavioral patterns. We have discovered
the structure that exist in 20 of these 23 patterns. This structure
eighter completely describes a pattern or some particular part
of the pattern. It is key mechanism or essence of GoF design
patterns. We called (Figure 4) this structure: “The Basic
Design Pattern Structure of the Solution (BDPSS) ”. This
structure is presented on figure 2:

Figure 2: The Basic Design Patern Structure of the Solution

The BDPSS is a 3-tuple (Client(Cl), Abstract Server (AS)
and Concrete Server (CS)), where can be an arbitrary number
(n) of the concrete servers. The client can be normal or abstract
class, abstract server can be interface, normal or abstract class,
while concrete server can be normal class. Below we show the
definitions of the elements of BDPSS:

The Client is an element of the pattern structure that uses
the functionalities of the abstract server and concrete servers in
order to carry out its own functionality.

The Abstract Server is an element of the pattern structure
that provides the client with an abstract functionalities that can
be implemented with various specific functionalities.

The Concrete Server is an element of the pattern structure
that provide the client with concrete functionalities that realise
abstract functionalities of the abstract server.

The Client and concrete servers are connected to abstract
server. Between client and abstract server exist aggregation,
composition or dependency UML relationship. Mentioned
relationships are described by the term "has". Between
concrete servers and abstract server exist inheritance or
realization UML relationship. Mentioned relationships are
decribed by the term “is“. BDPSS can be represented as
follows:

(Cl has AS) and (CS1 is AS) and (CS2 is AS) and ...

and (CSn is AS)

In the general sense, we can describe it on the folowing way:

(Cl has AS) and (CS is AS), where can be an arbitrary
number (n) of the concrete servers.

The client and concrete servers are dependent on abstract
server. Between the client and concrete servers there is not
dependence. The Abstract server in the BDPSS represents
“atractor” of the software system.

If we look BDPSS as some object-oriented program:

interface AS { void request(); }

class CS1 implements AS { void request() { System.out.println(“CS1
performs client’s request!“); } }

class CS2 implements AS { void request() { System.out.println(“CS2
performs client’s request!“); } }
...
class CSn implements AS { void request() { System.out.println(“CSn
performs client’s request!“); } }

class CL
 { AS as;
 void makeConnection(AS as1) {as = as1;}
 void request() {as.request();}
 }

class Main
 { public static void main(String arg[])
 { CS1 cs1 = new CS1();
 CS2 cs2 = new CS2();
 ...
 CS2 csn = new CSn();

 CL cl = new CL();
 if (arg[0].equals(“cs1”))
 cl.makeConnection(cs1);
 if (arg[0].equals(“cs2”)
 cl.makeConnection(cs2);
 ...
 if (arg[0].equals(“csn”)
 cl.makeConnection(csn);

 cl.request();
 }
 }

we can say that, at compile time, the client (CL) knows that
will be connected with some object of classes (CS1, C22, ...,
CSn) that implement abstract server (AS), but in that moment,
it does not know the exact object (cs1or cs2,... or csn). The
Client makes connection, at run time, with concrete object.
That means, at run time will be resolved what concrete server
will realize the client’s request. The relationship Client has AS
gives the program flexibility during its maintenance and
upgrade, because a client’s request can be realized in many
different ways by using different concrete servers. This is
known as dynamic or late binding, that lets the mutual
subtitution of the objects, that have same interface, at run-time.
This substitutability is known as polymorphism [DP], which is
one of the key concepts in object-oriented design. The
advantage of BDPSS is reflected in the case, when we want to
add new concrete server CSn +1 to BDPSS,

CL

CS1

AS

CS2 CSn

https://en.wikipedia.org/wiki/Design_Patterns_(book)
https://en.wikipedia.org/wiki/Design_Patterns_(book)

WCSIT 6 (2), 12 -20, 2016

15

class CSn+1 implements AS { void request() {
System.out.println(“CSn+1 performs client’s request!“); }}

then we don’t change the client, because the client is not related
to concrete servers than with the abstract server. Note that GoF
said [DP]: “Each design pattern lets some aspect of system
structure vary independently of other aspects, thereby making a
system more robust to a particular kind of change“. The
BDPSS lets that some aspect of system structure (Concrete
servers) vary independently of other aspects (Client). Also,
BDPSS is in compliance to one of the most important principle

of reusable object-oriented design [DP]: Program to an
interface, not an implementation. The Client depends on
abstract server (interface) instead of concrete servers
(implementation).

There is 5 categories BDPSS presence in GoF design
patterns:

Wholly – one BDPSS: One BDPSS is presented wholly in
the structure of the solution of the design patterns (6 design
patterns).

Wholly – more BDPSS: More BDPSS are presented
wholly in the structure of the solution of the design patterns (4
design patterns).

Partly – one BDPSS: One BDPSS is presented partly in
the structure of the solution of the design patterns (7 design
patterns).

Partly – more BDPSS: More BDPSS are presented partly
in the structure of the solution of the design patterns (3 design
patterns).

There isn’t BDPSS: The BDPSS isn’t presented in the
structure of the solution of the design patterns (3 design
patterns).

Table 1 shows presence of the BDPSS in the GOF design
patterns. The Client cannot be seen directly in Factory Method
and Template Method patterns, but it practically exists when
the pattern is used. Once again we emphasize, the BDPSS
occurs in 20 GOF design patterns.

TABLE 1: THE PRESENCE OF THE BDPSS IN GOF DESIGN PATTERNS

GOF design patterns Client Abstract Server Concrete Server Category presence of

BDPSS

1. Abstract Factory Client AbstractFactory ConcreteFactory Wholly – more BDPSS

Client AbstractProductA ProductA

Client AbstractProductB ProductB

2. Builder Director Builder ConcreteBuilder Wholly – one BDPSS

3. Factory Method Creator Product ConcreteProduct Partly – one BDPSS

4. Prototype Client Prototype ConcretePrototype Wholly – one BDPSS

5. Singleton Singleton There isn’t BDPSS

6. Adapter Client Target Adapter Partly – one BDPSS

7. Bridge Client Abstraction RefinedAbstarction Wholly – more BDPSS

Abstraction Implementor ConcreteImplementor

8. Composite Client Component Leaf или Composite Wholly – more BDPSS

Composite Component Leaf или Composite

9. Decorator Decorator Component ConcreteComponent или
Decorator

Partly – one BDPSS

10. Façade main Façade There isn’t BDPSS

11. Flyweight FlyweightFactory Flyweight ConcreteFlyweighti или
UnsharedConcreteFlyweight

Partly – one BDPSS

12. Proxy Client Subject Proxy или RealSubject Wholly – one BDPSS

13. Chain of

Responsibility

Client Handler ConcreteHandler Wholly – more BDPSS

Handler Handler ConcreteHandler

14. Command Invoker Command ConcreteCommand Partly – one BDPSS

15. Interpreter Client

AbstractExpression

TerminalExpression или

NonterminalExpression

Partly – more BDPSS

NonterminalExpre

ssion

AbstractExpression TerminalExpression или

NonterminalExpression

16. Iterator Client Aggregate ConcreteAggregate Partly – more BDPSS

Client Iterator ConcreteIterator

17. Mediator Colleague Mediator ConcreteMediator Partly – one BDPSS

18. Memento CareTaker Memento There isn’t BDPSS

19.Observer Subject Observer ConcreteObserver Partly – one BDPSS

20. State Context State ConcreteState Wholly – one BDPSS

21. Strategy Context Strategy ConcreteStrategy Wholly – one BDPSS

22. Template Method Client AbstractClass ConcreteClass Wholly – one BDPSS

23. Visitor Client Visitor ConcreteVisitor Partly – more BDPSS

ObjectStructure Element ConcreteElementi

WCSIT 6 (2), 12 -20, 2016

16

Below we will give one example for each category of the
BDPSS presence in GoF design patterns.

a) Wholly–one BDPSS category – Builder pattern

At the Builder pattern there is one BDPSS (Figure 3):

Client = Director, AbstractServer = Builder and Concrete
Sever = ConcreteBuilder.

Figure 3: Buider pattern

b) Wholly–more BDPSS category – Bridge pattern

At the Bridge pattern there are two BDPSS (Figure 4):

Client = Client, AbstractServer = Abstraction and
ConcreteSever = RefinedAbstraction

Client = Abstraction, AbstractServer = Implementor and
ConcreteSevers = ConcreteImplementor.

ConcreteImplementor are ConcreteImplementorA and
ConcreteImplementorB.

Figure 4: Bridge pattern

c) Partly–one BDPSS category – Mediator pattern

At the Mediator pattern there is one BDPSS (Figure 5):

Client = Colleague, AbstractServer = Mediator and Concrete
Sever = ConcreteMediator.

Figure 5: Mediator pattern

d) Partly –more BDPSS category – Interpreter pattern

At the Interpreter pattern there are two BDPSS (Figure 6):

Client = Client, AbstractServer = AbstractExpression and
ConcreteSever = ConcreteExpression

Client = NoterminalExpression, AbstractServer =
AbstractExpression and ConcreteSever = ConcreteExpression.

ConcreteExpression are TerminalExpression and
NoterminalExpression.

Figure 6: Interpreter pattern

e) There isn’t BDPSS category – Memento pattern

At the Memento pattern there isn’t the BDPSS (Figure 7).

Figure 7: Memento pattern

WCSIT 6 (2), 12 -20, 2016

17

IV. THE BASIC DESIGN PATTERN STRUCTURE OF THE

PROBLEM

The BDPSS is the result of the transformation of the
structure of the problem of the GOF design patterns, in which
the client is directly connected to the concrete servers (Figure
8). We called this structure: “The Basic Design Pattern
Structure of the Problem (BDPSP)”.

Figure 8: The Basic Design Pattern Structure of the Problem

The BDPSP is 2-tuple (Client (Cl), Concrete
Servern(CSn)), where can be an arbitrary number (n) of the
concrete servers. Below we show the definitions of the
elements of BDPSP:

The Client is an element of the pattern structure that uses
the functionalities of the concrete servers in order to carry out
its own functionality. The Client is connected to many different
concrete servers and dependent of them.

The Concrete Server is an element of the pattern structure
that provides the client with concrete functionalities.

Between the client and the concrete server can be aggregation,
composition or dependency UML relationship. The BDPSS is
difficult to maintain because of the changeability of the client
(its structure) when new concrete server CSn +1 is added to the
BDPSP. The Client in BDPSP represents “bifurcation point”
of the software system. The problem of the BDPSP is the
strong dependence between the client and concrete servers.
The BDPSP can be represented as follows:

(Cl has CS1)and(Cl has CS2) and ... and (Cl has CSn)

In the general sense, we can describe it on the folowing
way:

Cl has CS, where can be an arbitrary number (n) of the
concrete servers.

From the perspective of the object-oriented program, client
during compile time make connection to a concrete servers.

class CL
 { CS1 cs1; Cs2 cs2; ... CSn csn; ...
 CL() { cs1 = new CS1(); cs2 = new CS2(); ...
 csn= new CSn(); ... }
 void request (int cs)
 {
 if (cs==1) {cs1.request();}
 if (cs==2) {cs2.request();}
 ...
 if (cs==n) {csn.request();}
 }
 ... }

class CS1 { void request() { System.out.println(“CS1 performs client’s
request!“); } }
class CS2 { void request() { System.out.println(“CS2 performs client’s
request!“); } }

...
class CSn { void request() { System.out.println(“CSn performs client’s
request!“); } }

class Main

 { public static void main(String arg[])
 { CL cl = new CL();
 int cs;
 if (arg[0].equals(“cs1”))
 cs = 1;
 if (arg[0].equals(“cs2”)
 cs = 2;
 ...
 if (arg[0].equals(“csn”)
 cs = n;

 cl.request(cs);
 }
 }

This connection remains for all the time of the program
execution and it disables the flexibility of the program during
its execution.

In the book [DP] is said that: ”The key to maximizing reuse
lies in anticipating new requirements and changes to existing
requirements, and in designing your systems so that they can
evolve accordingly. To design the system so that it's robust to
such changes, you must consider how the system might need to
change over its lifetime. A design that doesn't take change into
account risks major redesign in the future. Those changes
might involve class redefinition and reimplementation, client
modification, and retesting”.

The BDPSP is example of a structure that isn’t robust on
changes, where the Client must be modified every time when
the new concrete server is added to the software system:

class CSn+1 { void request() {

 System.out.println(“CSn+1 performs client’s request!“); } }

class CL

 { CS1 cs1; Cs2 cs2; ... CSn csn; ...

 CSn+1 csn+1; // change of the Client

 CL() { cs1 = new CS1(); cs2 = new CS2(); ...

 csn= new CSn(); ... }

 void request (int cs)

 { if (cs==1) {cs1.request();}

 if (cs==2) {cs2.request();}

 ...

 if (cs==n) {csn.request();}

 if (cs==n+1) {csn+1.request();}// change of the Client

 }

 ... }

This structure (BDPSP) is cause of formation BDPSS.

CL

CS1

CS2

CSn

WCSIT 6 (2), 12 -20, 2016

18

V. THE GENERAL FORM OF GOF DESIGN PATTERNS

The general form of GoF design patterns could be presented

as follows (Figure 9):

Figure 9: The general form of GOF Design Patterns

The general form of GoF design patterns contains:

a) The Basic Design Pattern Structure of the Problem
(BDPSP), b) The Basic Design Pattern Structure of the
Solution (BDPSS) and c) The Transformation (T) of BDPSP to
BDPSS, which can be represented as:

 Т

BDPSP --------> BDPSS
The transformation T of the BDPSP to the BDPSS,

indicates to the transformation of the 2-tuple (Client, Concrete
server) to 3-tuple (Client, Abstract server, Concrete server), on
the folowing way:

Cl has CS -> (Cl has AS) and (CS is AS)

The transformation T occurs when new user requirements
often happens and increases the number of new concrete
servers in the BDPSP. Then the client frequent changes its
structure and the BDPSP with changeable client is difficult to
maintain and upgrade. The BDPSP has “unstable” structure.

This can be demonstrated by using the Robert C. Martin’s
Stability metric [RM1, RM2]:

I = Ce/(Ca+Ce),

where is I mark for instability. Ca is afferent couplings, i.e. the
number of classes outside this component that depend on
classes within this component. Ce is efferent couplings, i.e. the
number of classes inside this component that depend on classes
outside this component. Stability metric has the range [0,1].

if I = 0 a component has a maximally stability. If I = 1 a
component has a maximally instability.

If we assume that each class of the BDPSP is in a separate
component, and if we examine the stability of the class Client,
from which depend m classes, and that depends on n classes
(the number of the Concrete servers), then is Ce = n and Ca =
m. if we assume m = 1 and n = 3 then the instability is:

I = n/m+n => I = 3/3+1 => I = 0.75

That means that the Client class is unstable 0.75. If n
increases, then the expression n / (n + 1) tends to 1 and
maximum instability. We can conclude, the instability of the
class Client will grow with the increasing number of the
concrete servers.

On the other hand a program that has the BDPSS in which
number of the concrete servers does not affect the client. The
BDPSS has "stable" structure.

If the stability of the Client class of the BDPSS is tested ,
when m = 1 (as in the previous examples), then is Ce = 1 а Ca
= 1.

In this case instability is:

I = n/m+n => I = 1/1+1 => I = 0.5

Here is the Client class unstable 0.5 which is less than the
Client class of the BDPSP. With the increasing number of the
concrete servers the Client class does not change the stability,
which means that the stability of the client is independent of
the number of the concrete servers.

It means the patterns by the transformation T provides the
mechanism that the unstable structure transforms to stable
structure. The unstable structure has shorter life cycle than
stable structure, because the unstable structure relatively

Design problem-BDPSP Design solution-BDPSS

T
Cl

CS1

CS2

CSn

Cl

CS1

AS

CS2

CSn

GoF Design Patterns

WCSIT 6 (2), 12 -20, 2016

19

quickly lead a program to chaotic state which is very difficult
to maintain.

Based on the above analysis we can give our definitions of
design pattern:

Definition 1: The Design Pattern is a process that

transforms the BDPSP to the BDPSS, i.e. transforms the
unstable structure of the program to the stable structure.

Definition 2: The Design Pattern is a process that

relationship Client has Concrete Server, transform to
relationships: a) Client has Abstract Server and b) Concrete
Server is Abstract Server.

VI. CONCLUSION

At the beginning of this paper, we have explained that the
GoF design patterns, in the most general sense, represent the
transformation of the problem to the solution. Then we pointed
to the structure of the solution that is common to most of GoF
Design Patterns. We called (Figure 4) this structure: "The Basic
Design Pattern Structure of the Solution (BDPSS)". We believe
that this structure represents a key mechanism, essence or
property of the GoF design patterns, which allows easy
maintenance and upgrade of the program.

The BDPSS lets some aspect of the system structure
(Concrete servers) varies independently of other aspects
(Client). After that, we have mentioned 5 categories the
BDPSS presence in GoF design patterns. For each of these
categories we gave one example. We showed that in 20 of 23
GoF design patterns the BDPSS completely describes the
pattern or some particular part of the pattern, as shown in Table
1. The problem of GoF design patterns is explained by the
structure that we called "The Basic Design Pattern Structure of
the Problem (BDPSP)". The BDPSP is example a structure that
isn’t robust on changes. This structure is changeable (Client)
when the new functionality is added to the software system and
it is the cause of formation of the BDPSS. The main part of the
paper considers the general form of the GoF design patterns,
i.e. explains how the elements of the BDPSP are transformed to
the elements of the BDPSS. Justification of the transformation
is explained by using the Stability metric. Based on the above
considerations are derived 2 definitions of the GoF design
patterns:

Definition 1: The Design Pattern is a process that

transforms BDPSP to BDPSS, i.e. transforms the unstable
structure to the stable structure.

Definition 2: The Design Pattern is a process that

relationship Client has Concrete Server, transform to
relationships: a) Client has Abstract Server and b) Concrete
Server is Abstract server.

At the end, we gave two examples of using general form of
GoF design patterns. We believe that this paper can greatly
help all those who want to understand, in general sense, how
the structure of the problem is transformed to the structure of
the solution of the GoF design patterns, i.e. how from the

unstable structure of the program becomes the stable structure
of the program which is invariant to changes.

This paper is the result of many years of teaching
experience that we have had in working with our students on
Department for Software Engineering, Faculty of
Organizational Sciences, University of Belgrade. We are using
the general form of GoF design patterns in the teaching
process, as the first step in the overall understanding of GoF
design patterns, before a detailed explanation of the specific
characteristics of GoF design patterns. We think that this paper
can greatly help the students and developers to quickly and
clearly understand the essence of GoF design patterns.

REFERENCES

[1] [DP] Gamma E, Helm R, Johnson R, Vlissides J.: Design Patterns.
Addison-Wesley: Reading MA, 1995.

[2] [ISO1] ISO 9126 “Information Technology: Software product
evaluation, quality characteristics and guidelines for their use”,
International Organisation for Standardization, Geneva, 1992.

[3] [MEY1] B. Meyer: “Object-Oriented Software Construction”, 2nd
Edition, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1997.

[4] [YAU1] S. Yau and J. Collofello:“Some stability measures for software
maintenance,” Transactions on Software Engineering, IEEE Computer
Society, 6 (6), pp. 545-552, November 1980.

[5] [YAU2] S. Yau and J. Collofello, “Design stability measures for
software maintenance,” Transactions on Software Engineering, IEEE
Computer Society, 11 (9), pp. 849-856, September 1985.

[6] [6] [MF1] Mohamed E. Fayad and Adam Altman: “Thinking
objectively An Introduction to Software Stability”, Communications of
the ACM, Volume 44, Issue 9, Spet. 2001.

[7] [RM1] Robert . C. Martin , “Design Principles and Design patterns”,
www.objectmentor.com.

[8] [RM2] Robert . C. Martin, Micah Martin, Agile Principles, Patterns, and
Practices in C#, Prentice Hall,

[9] ISBN: 978-0-13-185725-4, 2006.

[10] [AL1] Christopher Alexander,Sara Ishikawa, Murray Silverstein, Max
Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel: A Pattern
Language. Oxford University Press, New York, 1977.

[11] [COP1] James O. Coplien: Software Patterns, Bell Labs, The Hillside
Group, 2000.

[12] [ROS1] Joe Rosen: Symmetry rules – how science and nature are
founded on symmetry, Springer-Verlag Berlin Heidelberg, 2008, ISBN
978-3-540-75972-0.

[13] [VS1] Vlajic Sinisa: Explanation of Software Entropy by Golden Ratio
and Logarithmic Spiral, Proceedings of the 2007 International
Conference on Software Engineering Theory and Practice (SETP-07) ,
Pages 12-20, ISBN: 978-0-9727412-6-2, July 9-12, 2007, Orlando,
Florida, USA.

[14] [VS2] Siniša Vlajić, Dušan Savić, Ilija Antović: The Explanation of the
Design Patterns by the Symmetry Concepts, The Fourteenth IASTED
International Symposium on Artificial Intelligence and Soft Computing
(ASC 2011), Proceedings of the IASTED International Conference on
Signal and Image Processing and Application, Pages: 363-372, ISBN:
978-0-88986-885-4, June 22 – 24, 2011, Crete, Greece.

[15] [STARK1] M. Stark, "On Designing Parameterized Systems Using
Ada", Proceedings of the Seventh Washington Ada Symposium, June
1990

[16] [FRAKES 1] Frakes, W.B. and Kyo Kang: "Software Reuse Research:
Status and Future", IEEE Transactions on Software Engineering, 31(7),
July, pp. 529-536., 2005.

[17] [SS1] Steven H.Strogatz: Nonlinear Dynamics and Chaos, with
Applications to Physics, Biology, Chemistry and Engineering, Addison-
Wesley, 1994.

http://www.objectmentor.com/

WCSIT 6 (2), 12 -20, 2016

20

AUTHORS PROFILE

PhD Siniša Vlajić, is an associate professor of software engineering at University of Belgrade,

Facult y of Organizational Sciences, Department of Information Systems. He has taught

undergraduate and graduate level courses: introduction to programming, introduction to information

system, software design, software patterns, programming methodology and Java programming

language. He wrote many books, scripts and publications about C++, Java, software design, software

patterns, database and information systems. His main research interests include: software process,

software design, software maintenance, software pattern formalization and programming

methodology. He is one of the founders of the Laboratory and Department of the Software

Engineering at Faculty of Organizational Sciences.

Stanojević Vojislav, is an teaching assistant of software engineering at University of Belgrade,

Faculty of Organizational Sciences, Department of Information Systems. He has taught

undergraduate and graduate level courses: introduction to programming, introduction to information

system, software design, software patterns, programming methodology and Java programming

language. He wrote publications about Java, software design, software patterns, application

frameworks and domain specific languages. His main research interests include: software design,

application frameworks, business rules, domain specific languages.

Dušan Savić received the Magistar degree in Information system and technologies from the Faculty

of Organization Sciences, University of Belgrade, in 2010. He is currently postgraduate student and

teaching assistant on Faculty of Organizational Sciences at the Software Engineering Department.

He has interests in the following areas: Modeling and Meta-modeling, Model Driven Engineering,

Requirement Engineering, Software Development, Software Design, Domain Specific Languages,

Automation of User Interface development. He has taught undergraduate and graduate level courses

in his area. He is the author or co-author of several publications on national and international

conference and workshop and journal papers.

Miloš Milić is teaching assistant at Faculty of Organizational Sciences, University of Belgrade,

Serbia. He has taught undergraduate and graduate level courses: introduction to programming,

software design, software patterns and Java programming language. His research interests include

Software Quality, Software Design and Software Testing. He holds BSc in Information Systems and

MSc in Software Engineering. He is PhD student at University of Belgrade

PhD Ilija Antović is an assistant professor of software engineering at University of Belgrade, Faculty

of Organizational Sciences, Department of Information Systems. His research interests are:

Automation of User Interface development, Modeling and Meta-modeling, Model Driven

Engineering, Requirements Engineering, Software patterns, Code Generation. He lectures at

undergraduate and graduate level courses in his area. He is the author or co-author of several

publications on national and international conferences and journal papers.

PhD Saša D. Lazarević, is an associate professor at the University of Belgrade, Faculty of

Organizational Sciences, Department of Software Engineering. He has taught undergraduate and

graduate level courses: Introduction to programming, Software design, Software construction,

Software testing, Software quality, Database systems. His main research interests include: software

process, software design, software testing, software quality, universe of database systems and

software construction on .NET platform. He is co-founder of the Department of Software

Engineering at FOS, UB.

