AMBIENT TEMPERATURE TREND ANALYSIS FOR THE NORTH SAURASHTRA REGION IN VIEW OF CLIMATE CHANGE

G.R. SHARMA, V.D. VORA, P.D. VEKARIYA, J.T. PATEL, K.D. RAKHOLIYA \& D.P.SANEPARA
Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

Abstract

The paper emphasises the importance of Ambient temperature trend analysis, distinguishing between current climate variability and future changes in climate especially in understanding the agro-economic impact of climate change on Indian agriculture. The long-term change in maximum and minimum temperature has been evaluated by Mann-Kendall rank statistics and linear trend. The significantly increasing trend in maximum weekly temperature was observed in MSW 8, 14-15 and 18, which is initial, pegging and pod formation/development stages of summer groundnut in irrigated agriculture, respectively. Whereas significantly decreasing trend in maximum weekly temperature was observed in MSW 28, which is initial growing/establishment stage of kharif groundnut, cotton, pearl millet and sesame crops and MSW 3739, which is pod development stage of kharif groundnut and grand growth stage of cotton crops in dry farming area of Saurashtra region. The weekly minimum temperature showed significantly increasing trend in MSW 44-45(Oct.-29 to Nov.-11), which is mid season of cotton and sowing stage of rabi season crops and $48^{\text {th }}$ MSW, which is establishment stage of rabi season crops. This study may useful for management of kharif, rabi and summer season crops for agricultural community.

KEYWORDS: Ambient Temperature, Climate Variability, Grand Growth Stage, Agricultural Community

INTRODUCTION

In India, earlier work on long term trends of surface temperature showed a warming trend of $0.04{ }^{\circ} \mathrm{C}$ per decade. Due to such trend there has been a large-scale warming of the Earth's surface over the last hundred years or so (IPCC, 2007). This warming up of the Earth during the $20^{\text {th }}$ century brought with it a decrease in the area of the world affected by exceptionally cool temperatures, and, to a lesser extent, an increase in the area affected by exceptionally warm temperatures (Jones et al., 1999; Parker and Horton, 1999; IPCC, 2001; 2007; Jones and Moberg, 2001; Vinnikov and Grody, 2003). Evaluation of trends in temperature showed decreasing minimum temperature trend during summer, monsoon and an increasing trend during winter season, whereas an increasing trend for maximum temperature was noticed which may have influence on rain fed agriculture production system in kharif and wheat production in rabi. Rao et al. (2011) reported that agriculture in eastern region are most affected by increased air temperature and major shift in cropping pattern are expected. Also area under rabi crops is likely to be reduced to suit cooler climate. He also reported that yield levels of some major pulses like pigeon pea in kharif and chickpea in rabi are to be decreased. Therefore the present investigation is planned to model the air temperature using time series analysis. This study will help the decision makers/ scientist's farmers to establish strategies and priorities in agriculture. The main aim of this work is to examine the general trend of maximum and minimum air temperature.

METHODS

The maximum and minimum temperature data of 30 years (1982-2011) of dry farming research station, Targhadia (Rajkot), Gujarat, India was collected for this study. It was converted to weekly series.

The Mann-Kendall statistic S is calculated as by Mann-Kendall test as

$$
S=\sum_{i=1}^{n-1} \sum_{j=j+1}^{n} \operatorname{sgn}\left(x_{j}-x_{i}\right)
$$

The application of trend test is done to a time series x_{i} that is ranked from $i=1,2, \ldots \ldots . n-1$ and x_{j}, which is ranked from $\mathrm{j}=\mathrm{i}+1,2, \ldots \ldots . \mathrm{n}$. each of the data point x_{i} is taken as a reference point which is compared with the rest of the data points X_{j} so that,

$$
\begin{aligned}
& +1,>\left(x_{j-} x_{i}\right) \\
& \operatorname{Sgn}\left(x_{j}-x_{i}\right)=0,=\left(x_{j-} x_{i}\right) \\
& -1,<\left(x_{j-} x_{i}\right)
\end{aligned}
$$

It has been documented that when $n \geq 8$, the statistic S is approximately normally distributed with the mean.
$E(S)=0$
The variance statistic is
$\operatorname{Var}(S)=\frac{n(n-1)(2 n+5)-\sum_{i=1}^{m} t_{i}(i)(i-1)(2 i+5)}{18}$
Where t_{i} is considered as the number of ties up to sample i. the test statistics Z_{c} is computed as

Case Study

$$
\begin{gathered}
\frac{S-1}{\sqrt{\operatorname{Var}(S)}} \\
Z_{c}=0, S=0 \\
\frac{S+1}{\sqrt{\operatorname{Var}(S)}}
\end{gathered}
$$

Z_{c} here follows a standard normal distribution. A positive (negative) value of Z signifies an upward (downward) trend. A significance level α is also utilized for testing either an upward or down ward monotone trend (a two-tailed test). If Z_{c} appears than $Z_{\alpha / 2}$ where α depicts the significance level, then the trend is considered as significant.

Sen's Slope Estimator Test

The magnitude of trend is predicted by the Sen's estimator. Here, the slope $\left(\mathrm{T}_{\mathrm{i}}\right)$ of all data pairs is computed as (Sen, 1968)

$$
T_{i}=\frac{\left(x_{j}-x_{k}\right)}{(j-k)} \text { For } \mathrm{I}=1,2, \ldots \ldots, \mathrm{~N}
$$

Where x_{j} and x_{k} are considered as data values at time j and $k(j>k)$ correspondingly. The median of these N values of T_{i} is represented as Sen's estimator of slope which is given as:

$$
\begin{aligned}
& Q_{i}=T_{\frac{N+1}{2}} \text { if } \mathrm{N} \text { is odd } \\
& Q_{i}=\frac{1}{2}\left(T_{\frac{N}{2}}+T_{\frac{N+2}{2}}\right) \text { If } \mathrm{N} \text { is even }
\end{aligned}
$$

Sen's estimator is computed as $\mathrm{Q}_{\mathrm{med}}=\mathrm{T}(\mathrm{N}+1) / 2$ if N appears odd, and it is considered as $\mathrm{Q}_{\mathrm{med}}=\left[\mathrm{T}_{\mathrm{n} / 2}+\mathrm{T}_{(\mathrm{N}+2) / 2}\right] / 2$ if N appears even. At the end, $\mathrm{Q}_{\text {med }}$ is computed by a two sided test at $100(1-\alpha) \%$ confidence interval and then a true slope can be obtained by non-parametric test. Positive value of Q_{i} indicates an upward or increasing trend and a negative value of Q_{i} gives a downward or decreasing trend in the time series.

RESULTS AND DISCUSSIONS

Time series of maximum and minimum weekly temperature at Main Dry Farming Research Station for the period of 1982-2011 has been considered for trend analysis. The trend analysis of the weekly maximum and minimum temperature is given in Table 1 and 2 respectively. The weeks having trend of maximum and minimum temperature are shown in Figure 1-3 respectively. The MSW 8-10, 14-15, 18, and 28, 37-39 have shown the trend in maximum weekly temperature. Significantly increasing trend in maximum weekly temperature was observed in MSW 8,14 and 15 whereas significantly decreasing in maximum weekly temperature was observed in MSW 28, 37-39. During MSW 9, 10 and 38, trend of maximum weekly temperature was observed but it was non-significant.

The $8^{\text {th }}$ MSW is the initial stage of summer groundnut \& sesame and harvesting stage of rabi crops i.e. gram, cumin and coriander. Increasing trend of maximum temperature is beneficial for rapid establishment and initial growth of summer groundnut and sesame crops. The $14^{\text {th }}, 15^{\text {th }}$ and $18^{\text {th }}$ MSW are pegging, pod formation and development stages of summer groundnut as well as flowering and capsule/pod formation stages for summer sesame and green gram. Due to increasing trend of maximum temperature during these MSWs may decrease yield of summer groundnut and sesame crops because the reproductive stages of both crops coincides during MSW 14-15 and $18^{\text {th }}$. The $28^{\text {th }}$ MSW is the initial stage of the kharif groundnut and cotton, whereas 37 and $39^{\text {th }} \mathrm{MSW}$ is pod development stage of groundnut and grand growth stage of the cotton crop. Decreasing trend of maximum temperature during initial stage of groundnut and cotton crops may cause negative effect on early crop growth. Decreasing trend of maximum temperature during $37 \& 39^{\text {th }}$ MSW may have positive effect on groundnut and cotton yield as these period coinsides with groundnut pod development stage and peak flowering and ball formation stages of cotton crop.

Minimum weekly temperature has shown the trend in MSW 3, 8, 9, 12, 13, 15-19, 21,32, 44-46, 48, 51 and 52. Minimum weekly temperature showed significantly increasing trend in MSW 3, 8, 9, 12, 13, 15, 19, 44, 45, 48, 51 and 52 whereas it showed increasing trend $16-18,21,32,46$ MSW but it was non-significant.

The MSW $3^{\text {rd }}$ is the flowering and grain filling stages of wheat, cumin, coriander and gram crops, the increasing trend in minimum temperature during MSW 3 may have ngetive impact on these rabi crops yield. The MSW 12-13 ${ }^{\text {th }}$ are the maturity/harvesting stage of wheat, garlic and onion, the increasing trend in minimum temperature during these period will help in grain \& bulb development. It will also increase storage life of the bulb crops due to low moisture content. The MSW $15^{\text {th }}$ is flowering and pod formation stages of summer groundnut, green gram and sesame crops. The increasing trend in minimum temperature during this period wills results in more/better flowering and healthy grain/pod developmet in summer groundnut, green gram and sesame crops. The MSW 44-45 ${ }^{\text {th }}$ (Oct. 29 to Nov. 11) is the mid-season of the cotton
crop and sowing time of rabi crops like wheat, cumin, coriander. The increasing trend in minimum temperature during this period may results in poor germination of the rabi crops. The increasing trend in minimum temperature during MSW $48^{\text {th }}$, which is initial stage of wheat, cumin, gram and coriander crops may cause negative effect on tillering in wheat crop and vegetative growth of gram, cumin and coriander. The MSW 50-51 ${ }^{\text {st }}$ are the The increasing trend in minimum temperature during MSW 50-51 ${ }^{\text {st }}$ which is growing stage of cumin, coriander, wheat and gram crops may cause negative impact on growth of rabi crops.

CONCLUSIONS

Thus, in long run the study of temperature trend analysis will be helpful for management of kharif, rabi and summer crops.

REFERENCES

1. P. D. Jones, E. B. Horton, C. K. Folland, M. Hulme, D. E. Parker and T. A. Basnett, "The Use of Indices to Identify Changes in Climatic Extremes," Climatic Change, 42(1); pp. 131-149 (1999).
2. D. E. Parker and E. B. Horton, "Global and Regional Climate in 1998," Weather, 54; pp. 173-184 (1999).
3. Inter Governmental Panel on Climte Change (IPCC)," Climate Change 2001: Synthesis Report, Contribution Of Working Groups I and III to the Third Assessement of the (IPCC),"
4. Cambridge University Press, Cambridge, 2001.
5. IPCC.2007. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report ofthe Intergovernmental Panel on Climate Change. Parry, M.l., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. and Hanson, C.E. (Eds.) Cambridge Univ. Press, Cambridge, UK, 976 pp.
6. P. D. Jones and A. Moberg, "Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and Update to 2001," Journal Climate, 16; pp. 206-223 (2003).
7. K. Y. Vinnikov and N. C. Grody, "Global Warming Trend of Mean Tropospheric Temperature Observed by Satellites," Science, 302; pp. 269-272 (2003).
8. Bapuji Rao, B., Ramana Rao, B.V., Subba Rao, A.V.M., Manikandan, N., Narasimha Rao, S.B.S., Rao, V.U.M. and Venkateswarlu, B. (2011). Assessment of the impact of increasing temperature and rainfall variability on crop productivity in drylands - An illustrative approach. Research Bulletin 1/2011, Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad, Andhra Pradesh, India. 32p.

APPENDICES

Table 1: Trend Statistic of Weekly Maximum Temperature

St. week	Test Z	Significant	Q	Qmin99	Qmax99	Qmin95	Qmax95	B	Bmin95	Bmax95
1	-1.53		-0.067	-0.157	0.057	-0.135	0.029	29.07	30.23	27.64
2	0.70		0.033	-0.084	0.163	-0.056	0.127	27.73	29.03	26.27
3	0.51		0.014	-0.124	0.125	-0.078	0.100	28.24	29.11	26.34
4	-0.54		-0.035	-0.196	0.100	-0.167	0.051	29.37	30.43	28.34
5	-0.39		-0.025	-0.178	0.111	-0.125	0.078	29.20	30.78	27.90
6	-0.20		-0.013	-0.149	0.128	-0.119	0.094	30.44	32.57	29.04
7	0.44		0.020	-0.100	0.137	-0.063	0.106	30.22	31.28	29.37
8	2.07	*	0.100	-0.048	0.221	0.006	0.191	29.70	31.09	28.29
9	1.87	+	0.069	-0.038	0.200	0.000	0.159	31.95	32.80	30.74
10	-1.72	+	-0.060	-0.167	0.040	-0.137	0.013	35.36	36.31	34.23
11	0.70		0.029	-0.071	0.152	-0.050	0.120	34.90	35.76	34.00
12	1.43		0.059	-0.051	0.171	-0.023	0.135	35.97	37.39	34.32
13	1.24		0.056	-0.069	0.190	-0.041	0.165	37.14	38.91	34.82
14	2.23	*	0.092	-0.020	0.200	0.014	0.173	36.72	38.45	35.68
15	2.70	**	0.083	0.004	0.163	0.031	0.144	37.03	38.07	36.10
16	0.60		0.033	-0.058	0.137	-0.041	0.107	38.43	39.40	37.20
17	0.99		0.023	-0.045	0.074	-0.020	0.056	40.00	40.56	39.61
18	2.57	*	0.078	0.000	0.129	0.021	0.118	39.62	40.35	38.80
19	0.32		0.009	-0.075	0.086	-0.048	0.064	40.77	41.38	39.82
20	-0.95		-0.024	-0.102	0.064	-0.089	0.036	41.36	42.27	40.46
21	-1.01		-0.025	-0.106	0.058	-0.088	0.034	41.13	42.04	40.72
22	-0.60		-0.011	-0.088	0.050	-0.060	0.029	40.41	41.16	39.89
23	-1.33		-0.040	-0.125		-0.100	0.022	40.46	41.40	39.70
24	0.39		0.011	-0.105	0.100	-0.064	0.073	38.32	39.28	37.40
25	0.80		0.033	-0.100	0.175	-0.068	0.132	36.53	37.62	34.73
26	-1.46		-0.060	-0.147	0.059	-0.129	0.023	37.02	38.08	35.65
27	-1.53		-0.067	-0.157	0.057	-0.135	0.029	29.07	30.23	27.64
28	-2.64	**	-0.093	-0.175	0.000	-0.154	-0.029	34.69	35.72	33.78
29	1.16		0.053	-0.100	0.150	-0.050	0.113	31.95	33.10	31.25
30	-0.36		-0.015	-0.125	0.125	-0.085	0.094	31.83	32.65	30.40
31	-0.31		-0.015	-0.141	0.084	-0.100	0.066	31.93	33.00	30.10
32	-1.06		-0.050	-0.153	0.063	-0.126	0.040	31.90	32.78	30.46
33	0.44		0.013	-0.106	0.093	-0.066	0.072	31.19	32.36	30.41
34	0.83		0.025	-0.062	0.117	-0.034	0.094	31.30	32.34	30.40
35	-0.43		-0.017	-0.100	0.070	-0.072	0.050	32.10	32.99	31.20
36	-0.63		-0.018	-0.115	0.074	-0.090	0.050	33.22	33.90	32.09
37	-2.30	*	-0.061	-0.150	0.011	-0.129	-0.008	34.16	34.92	33.61
38	-1.94	+	-0.058	-0.150	0.017	-0.130	0.000	34.67	35.96	34.00
39	-1.99	+	-0.092	-0.209	0.020	-0.170	-0.006	35.32	36.63	34.00
40	-1.31		-0.063	-0.181	0.073	-0.158	0.034	36.35	37.50	35.19
41	-1.04		-0.047	-0.144	0.091	-0.117	0.054	36.52	38.04	34.77
42	0.82		0.025	-0.091	0.101	-0.062	0.083	35.13	37.06	34.18
43	0.56		0.016	-0.090	0.121	-0.053	0.100	34.82	36.16	33.30
44	-0.20		-0.004	-0.076	0.078	-0.057	0.055	34.83	35.80	34.03
45	0.95		0.025	-0.050	0.100	-0.033	0.080	33.90	34.60	33.10
46	-0.65		-0.019	-0.087	0.064	-0.065	0.042	33.88	34.23	32.77
47	0.00		0.000	-0.088	0.077	-0.064	0.062	32.30	33.24	31.60
48	-0.03		0.000	-0.090	0.062	-0.063	0.050	31.30	32.23	30.80
49	0.70		0.022	-0.087	0.107	-0.055	0.080	31.08	31.96	30.32
50	-0.07		0.000	-0.119	0.132	-0.092	0.100	30.10	31.96	29.40
51	-0.15		-0.004	-0.089	0.115	-0.062	0.077	30.27	31.18	29.25
52	0.66		0.018	-0.087	0.130	-0.059	0.099	28.33	29.51	26.71

Table 2: Trend Statistic of Weekly Minimum Temperature

St. week	Test Z	Significant	Q	Qmin99	Qmax99	Qmin95	Qmax95	B	Bmin95	Bmax95
1	0.56		0.018	-0.100	0.156	-0.067	0.120	10.53	12.27	9.16
2	1.29		0.059	-0.059	0.200	-0.031	0.150	9.77	11.36	8.60
3	1.99	*	0.085	-0.027	0.188	0.000	0.156	9.53	11.10	8.12
4	0.71		0.027	-0.096	0.160	-0.064	0.130	11.22	12.64	9.38
5	0.53		0.016	-0.076	0.125	-0.060	0.093	11.47	12.18	10.13
6	0.71		0.035	-0.128	0.150	-0.069	0.126	12.20	13.51	11.09
7	1.36		0.057	-0.059	0.133	-0.028	0.112	12.07	13.36	11.64
8	2.26	*	0.088	-0.025	0.208	0.018	0.178	12.54	13.80	11.44
9	2.28	*	0.067	-0.012	0.139	0.006	0.125	14.13	14.89	13.12
10	0.05		0.000	-0.118	0.120	-0.086	0.087	16.00	17.43	14.53
11	0.56		0.017	-0.051	0.104	-0.035	0.088	17.22	18.02	16.45
12	2.06	*	0.071	-0.038	0.175	0.003	0.157	17.79	18.65	16.34
13	2.40	*	0.100	-0.012	0.200	0.029	0.170	17.93	19.07	16.82
14	1.14		0.033	-0.050	0.117	-0.025	0.096	19.87	20.55	18.92
15	2.23	*	0.038	-0.007	0.094	0.005	0.079	20.82	21.40	20.30
16	1.79	+	0.045	-0.024	0.118	-0.004	0.100	21.59	22.23	20.40
17	1.96	+	0.029	-0.014	0.072	0.000	0.063	22.67	23.00	22.21
18	1.72	+	0.038	-0.016	0.075	-0.004	0.067	23.11	23.60	22.69
19	2.30	*	0.041	-0.006	0.097	0.006	0.086	23.98	24.38	23.36
20	1.57		0.031	-0.029	0.084	-0.011	0.069	24.46	24.98	23.90
21	1.72	+	0.033	-0.018	0.088	-0.005	0.072	25.13	25.56	24.67
22	1.06		0.015	-0.029	0.050	-0.014	0.040	25.59	25.89	25.18
23	-1.17		-0.019	-0.072	0.034	-0.057	0.018	26.37	26.93	25.87
24	-1.26		-0.018	-0.052	0.017	-0.043	0.008	26.34	26.56	25.88
25	1.01		0.013	-0.033	0.079	-0.020	0.065	25.86	26.42	24.78
26	0.49		0.008	-0.046	0.050	-0.035	0.041	25.63	26.30	25.23
27	-0.85		-0.017	-0.063	0.025	-0.050	0.014	25.45	25.95	24.98
28	-0.41		-0.006	-0.049	0.040	-0.038	0.032	25.24	25.78	24.61
29	1.55		0.015	-0.017	0.050	-0.004	0.042	24.63	25.03	24.27
30	1.01		0.015	-0.026	0.050	-0.015	0.043	24.38	24.92	24.07
31	-0.29		-0.001	-0.050	0.042	-0.040	0.032	24.41	24.94	24.08
32	1.83	+	0.022	-0.012	0.055	0.000	0.046	24.02	24.30	23.70
33	0.38		0.005	-0.029	0.040	-0.021	0.033	24.01	24.45	23.54
34	-0.44		-0.006	-0.056	0.032	-0.045	0.020	24.04	24.55	23.74
35	0.34		0.006	-0.040	0.047	-0.026	0.036	23.64	24.10	23.30
36	0.95		0.020	-0.050	0.076	-0.033	0.064	23.06	24.03	22.42
37	1.31		0.030	-0.030	0.087	-0.014	0.070	22.58	23.27	21.86
38	1.02		0.025	-0.035	0.089	-0.024	0.073	22.83	23.77	22.11
39	-0.07		0.000	-0.083	0.077	-0.058	0.060	23.20	24.01	22.68
40	-0.24		-0.005	-0.067	0.082	-0.047	0.060	23.02	23.48	22.08
41	1.28		0.031	-0.043	0.108	-0.022	0.096	21.35	21.86	20.44
42	0.34		0.017	-0.086	0.113	-0.067	0.075	20.85	21.60	19.80
43	0.41		0.009	-0.082	0.125	-0.056	0.100	18.98	20.03	18.00
44	2.26	*	0.075	-0.009	0.150	0.010	0.138	17.53	18.63	16.82
45	3.27	**	0.117	0.032	0.222	0.050	0.194	16.52	17.60	15.22
46	1.68	+	0.084	-0.045	0.197	-0.009	0.165	15.95	17.18	14.78
47	0.60		0.023	-0.075	0.126	-0.050	0.100	15.43	16.55	14.09
48	1.99	*	0.067	-0.025	0.173	0.000	0.148	13.67	14.50	12.60
49	1.16		0.062	-0.055	0.222	-0.028	0.168	13.19	14.22	12.09
50	0.00		0.000	-0.121	0.181	-0.095	0.131	13.30	14.55	11.10
51	2.16	*	0.095	-0.025	0.216	0.011	0.178	12.02	13.12	10.85
52	2.21	*	0.095	-0.019	0.206	0.015	0.178	10.41	11.50	9.17

[^0]

Figure 1: Trend of Maximum Temperature in Different Weeks

Figure 2: Trend of Minimum Temperature in Different Weeks (Upto MSW 18)

Figure 3: Trend of Minimum Temperature in Different Weeks (Upto MSW 52)

[^0]: NASS Rating: 3.30 - Articles can be sent to editor@impactjournals.us

