
 

 Nanomed J, Vol. 1, No. 1, Autumn 2013                                               1 

   
 

 

 

 

Received: Apr. 15, 2013; Accepted: May. 12, 2013 

Vol. 1, No. 1, Autumn 2013, page 1-12 

 

 

Online ISSN  2322-5904 

http://nmj.mums.ac.ir 

Review Article 

 
Nano-niosomes in drug, vaccine and gene delivery: a rapid overview 
 

Abbas Pardakhty
1, 2*

, Esmaeil Moazeni
3
 

 
1
Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran 

2
Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran  

3
Aerosol Research Laboratory, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran 

 

 

Abstract 

Niosomes, non-ionic surfactant vesicles (NSVs), are the hydrated lipids composed mainly of 

different classes of non-ionic surfactants, introduced in the seventies as a cosmetic vehicle. 

Nowadays, niosomes are used as important new drug delivery systems by many research 

groups and also they are effective immunoadjuvants which some commercial forms are 

available in the market. These vesicles recently used as gene transfer vectors too. This review 

article presents a brief explain about the achievements in the field of nano-science related to 

NSVs. Different polar head groups from a vast list of various surfactant with one, two or 

three lipophilic alkyl, perfluoroalkyl and steroidal chemical moieties may be utilized to form 

the proper vesicular structures for encapsulating both hydrophilic and hydrophobic 

compounds. The methods of niosome preparation, the vesicle stability related aspects and 

many examples about pharmaceutical applications of NSVs will be presented. The routes of 

administration of these amphiphilic assemblies are also discussed.  
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Introduction 
The construction of the new phrase "nano-

medicine" which is a term implying the 

application of nanotechnology for therapy and 

diagnosis (1), has made new branches in this 

field such as “pharmaceutical nanocarriers”. 

Several varieties of nanocarriers are available, 

such as nanoparticles, liposomes, solid lipid 

particles, micelles, surfactant vesicles, quantum 

dots and different nanodevices (2, 3). Liposome 

is a general phrase covering many classes of 

lipid vesicles. However, the term nano-

liposome has recently been introduced to 

exclusively refer to nanoscale lipid vesicles (4). 

Higher ratio of surface area to volume of 

nanocarriers results in improved 

pharmacokinetics and biodistribution of 

therapeutic agents; therefore, they diminish 

toxicity by their preferential accumulation at 

the target site (5). On the other hand, 

nanocarriers at first improve therapeutic 

potential of drugs by facilitating intracellular 

delivery and prolonging their retention time 

either inside the cell (6, 7) or in blood 

circulation (8). The second available approach 

is to modify the composition of the systems, 

such as the incorporation of polyethylene 

glycol (PEG) to make stealth vesicle drug 

carriers or by reducing the size into nanoscale 

(9). Niosomes are vesicles composed mainly 

of hydrated non-ionic surfactants in addition 

to, in many cases, cholesterol (CHOL) or its 

derivatives. While most niosomes are in the 

nano or sub-micron (colloidal) size range, not 

many authors used the "nano-niosome" or 

"nanovesicle" term in their published articles 

which was due to introduction of new 

nanotechnology related phrases during the 

past few years. Niosomes are capable of 

encapsulating both hydrophilic and lipophilic 

substances where the former usually are either 

entrapped in vesicular aqueous core or 

adsorbed on the bilayer surfaces while the 

latter are encapsulated by their partitioning 

into the lipophilic domain of the bilayers. 

Cosmetic industry was the place for the first 

account of niosome production (10) after 

which a large number of niosome applications 

in drug delivery have been explored.  

Non-ionic surfactants have more chemical 

stability against both oxidation and 

temperature in comparison to phospholipids, 

the main constituent of liposomes, thus 

requires less care in handling and storage (11, 

12). Furthermore, greater versatility and lower 

cost make this type of vesicles more attractive 

in drug, gene and vaccine delivery (13). From 

the pharmaceutical manufacturing stand of 

view, the superiority of niosomes is the ease 

of their production in large scale without the 

use of pharmaceutically unacceptable solvents 

(14). Although the niosome has better 

chemical stability in storage but the physical 

instability during dispersion may be 

equivalent to that of the liposome. During 

dispersion, both liposomes and niosomes are 

at risk of aggregation, fusion, leakage of 

drugs, or hydrolysis of encapsulated drugs 

(15). 

 

Chemical composition of niosomes 
Surfactants 

Following the application of some forms of 

energy such as mechanical or heating, the 

formation of niosomes is a self-assembly 

process due to high interfacial tension 

between aqueous medium and the lipophilic 

alkyl chain(s) resulted in the association of 

non-ionic surfactant monomers into vesicles 

(16). Concurrently, the hydrophilic head 

groups of amphiphilic molecules make water 

mediated interactions counter the previous 

formed force eventually results in bilayer 

formation.  

Formation of niosomes requires an 

amphiphilic molecule composed of two main 

parts, a polar or hydrophilic head group and a 

non-polar or hydrophobic tail. This is 

obviously the ordinary structure of surfactant 

molecules, but in many cases the presence a 

wedge-shaped molecule such as CHOL is 

essential for turning the micellar structure of 

surfactant aggregates to bilayer arrangement 

(17). The lipophilic moiety of amphiphile 

molecule may contain one (18), two (19) or 

three (20-22) alkyl or perfluoroalkyl (23) 

groups or in some cases, a single steroidal 

group (24). 
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Alkyl ethers, alkyl esters, alkyl amides, fatty 

acids and amino acids are the main non-ionic 

surfactant classes used for niosome 

production. However, the most frequently 

used surfactants in niosomes formulations are 

sorbitan monoesters (Spans®, Fig. 1). The 

versatility of compounds capable of forming 

vesicle is due to the presence of different and 

various polar head groups attached to 

saturated or unsaturated alkyl chain(s) 

composed of 12 to 18 carbon atoms (C12-C18).  

 

 

 
Figure 1. Chemical structure of most frequently used 

surfactants in niosomes formulations, sorbitan monoesters 

(Spans
®
). 

 

Bilayer additives 
Cholesterol 

The most common additive found in niosomal 

systems is CHOL which is known to abolish 

the gel to liquid phase transition of liposomal 

and niosomal systems, resulting in less 

leakiness of the vesicles and improved 

niosomes stability (25). Surface pressure 

measurements on monolayers of nonionic 

surfactant/CHOL mixtures demonstrated a 

condensing effect of CHOL as evidenced by 

the decrease in the effective area per molecule 

as the CHOL content of the monolayer 

increased. This effect maybe attributed to the 

accommodation of CHOL in the molecular 

cavities formed by surfactant monomers 

assembled into vesicles and is responsible for 

the observed decreased permeability of 

CHOL-containing membranes compared to 

CHOL-free membranes (26). CHOL is used 

to complete the hydrophobic moiety of high 

HLB single alkyl chain non-ionic surfactants 

for vesicle formation (27). In general, it has 

been found that a molar ratio of 1:1 between 

CHOL and non-ionic surfactants is an optimal 

ratio for the formulation of physically stable 

niosomal vesicles (28). Some reports denote 

the formation of monohydrate or anhydrous 

CHOL crystals among the surfactant/CHOL 

bilayers (29). The minimum amount of CHOL 

required to form vesicles without evoking 

surfactant aggregates or other irregular 

structures depended on the type of surfactant 

and it's HLB (30).   

 

Charged molecules  

Charged molecules may be incorporated into 

vesicular formulation to enhance the 

electrostatic stability of vesicle, to increase 

the encapsulation or adsorption of charged 

molecules, to increase the transdermal 

iontophoretic transport of active materials 

(31) and to orient the vesicles for better 

specific interaction with target cells (32). 

Dicetyl phosphate (DCP) is the most used 

charged molecule introducing a negative 

charge in bilayers (33).   

 

Polyethoxylated molecules 

Solulan C24 (Fig. 6), a polyethoxylated 

derivative of CHOL has also been used as 

surface modification material which contains 

a PEG moiety with molecular weight of 

approximately 1000 Da (34). It has a steric 

stabilizing effect on the non-ionic surfactant 

vesicles (35). Solulan C24 also increases the 

elasticity of some vesicle bilayers (36).  

Yang et al. (37) used various molecular wei-

ghts of PEG-cholesterols (Chol–PEG
m
) for 

entrapping nimodipine in modified niosomes 

which showed greater accumulative release 

than that of plain niosomes over a period of 

24 h. Incorporation of PEG in niosomal 

formulations also led to more physical stab-

ility of vesicles. 

 

Methods of niosome preparation 
Generally there are two strategies for niosome 

or liposome preparation; the first set involves 
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dissolving the whole lipids in organic 

solvent(s) for molecular level mixing of the 

bilayer constituents, then removing the 

organic solvent and hydration of formed lipid 

thin films or surfaces by an aqueous medium. 

Film hydration (38), reverse phase evap-

oration (REV) (25, 39), ether injection (20, 

26, 40), dehydration rehydration (DRV) (41), 

and solvent evaporation from double 

emulsion droplets (42) are the most common 

methods in which an organic solvent is 

exploited. The second strategy involves the 

direct mixing of lipids and hydration medium, 

usually in high elevated temperature, which 

has the advantage of not having the hazardous 

effects of residual of organic solvents on 

entrapped substance or biologically applied 

environments. The widely used and well-

documented methods for vesicle production 

include heating and sonication of lipid (36), 

homogenization of lipids (43), lamellar liquid 

crystal transformation (44), heating (Mozafari 

method) (45), supercritical CO2 (46), inert gas 

bubble (47), microfluidic hydrodynamic 

focusing (48) and the electroformation of 

vesicles which utilizes alternating electric 

fields to generate vesicles in aqueous 

solutions of the amphiphilic molecules (49). 

 

Nano-niosomes in drug delivey 
Nano-niosomes are currently used as versatile 

drug delivery systems with many 

pharmaceutical applications, including for 

oral, pulmonary, transdermal, parenteral, 

vaginal, nasal and ophthalmic route of 

administration. 

  

Oral route 

The in vivo distribution study of Ginkgo 

biloba extract nano-vesicles composed of 

Tween 80/Span 80/CHOL showed that the 

flavonoid glycoside content in heart, lung, 

kidney, brain, and blood of rats treated with 

niosomal carrier system was greater than 

those treated with the oral Ginkgo biloba 

extract tablet (50). Mean particle size of 

mentioned niosomes was in nano size range 

(141 nm) which resulted in both altered 

pharmacokinetic      behavior    and    in   vivo  

distribution of the plant extract. Di Marzio et 

al. (51) prepared polysorbate 20 nano-

niosomes for oral delivery of unstable or 

poorly soluble drugs by film hydration 

associated with sonication in order to reduce 

the size down to sub-micron range. These 

vesicles were stable in different pH and in 

simulated gastrointestinal media with high 

mucoadhesion properties. 

 

Parenteral route 

Anticancer chemotherapy by using vesicular 

system have many benefits such as reduced 

organ toxicity (52), enhanced antineoplastic 

efficacy (53), prolonged circulation of 

vesicular carriers (54) and less mortality in 

patients (55). On the basis of these 

pharmaceutical and clinical facts, innovative 

niosomes made up of α,ω-hexadecyl-bis-(1-

aza-18-crown-6) (bola) (Fig. 2), Span 80 and 

cholesterol (2:5:2 molar ratio) were prepared 

as suitable delivery systems for the 

administration of 5-fluorouracil (5-FU) (54).  

Magnetic drug targeting to a specific organ or 

tissue is proposed on the assumption that 

magnetic fields are harmless to biological 

systems.  

On the basis of this hypothesis, Tavano et al. 

(56) prepared Tween 60 and Pluronic L64 

doxorubicin loaded magneto-niosomes with 

low toxicity and high targeting potential. 

Reducing the mean volume diameter and 

PEGylation of hydroxyl-camptothecin 

niosomes resulted in stealth effect and high 

antitumor activity of this chemotherapeutic 

agent (57). 

Ribavirin niosomes were prepared by thin 

film hydration method using Span 60, CHOL, 

and DCP for liver targeting purpose (58). The 

results showed that the niosomal formulation 

significantly increased ribavirin liver 

concentration (6 fold) in comparison with 

ribavirin-free solution. 

Mukherjee et al. (59) showed the superior 

stability and encapsulation efficiency of 

acyclovir in 200 nm niosomes in comparison 

to soya L-α-lecithin liposomes. They con-

cluded that niosome could be a better choice 

for intravenous delivery of acyclovir.  
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Figure 2.  Chemical structure of bolaform surfactants: (a) 

Bola A-16, (b) Bola C-16 (54).  

 

Ophthalmic route 

To minimize the problems associated with 

conventional eye drops, different ocular drug 

delivery devices have been investigated such 

as niosomes for brimonidine tartrate delivery 

in glaucoma management (60).  

 
Pulmonary route 

Drug delivery to lungs appears to be an 

attractive proposition on account of the large 

surface area of the alveolar region (61). 

Nanocarriers could be used for protection and 

more effective delivery of different 

therapeutics to respiratory tract. Proniosomes 

of the anti-asthma steroid beclometasone 

dipropionate were developed to generate 

niosomes that were suitable for aerosolization 

by eithr air-jet or vibrating-mesh nebulization 

methods (62). Proniosomes prepared by 

coating sucrose particles with Span 60/CHOL 

and nano-sized niosomes were produced by 

manual shaking of the resultant proniosomes 

in deionized water followed by sonication 

(median size 236 nm). 

 
Nasal route 

Priperm et al. (63) prepared melatonin 

encapsulated niosomes composed of Span 

60/CHOL/sodium deoxycholate. Size 

reduction of melatonin niosomes was 

performed by extrusion through 100 nm 

polycarbonate membrane and intranasally 

administered nanovesicles could distribute 

melatonin to the liver, hypothalamus and 

testis of male rats. 

 

Transdermal route 

Preparation of vesicles could be a versatile 

technique to enhance topical penetration of 

applied drugs trough natural barrier layer, 

stratum corneum. The ability of a particle to 

diffuse through the stratum corneum (for 

particles of the same charge) depends mainly 

on its size and viscoelastic properties (64). 

Alvi et al. (65) reported that vesiculization of 

5-FU not only improved the topical delivery, 

but also enhanced the cytotoxic effect of 5-FU 

in actinic keratosis and non-melanoma skin 

carcinoma. Mali et al. (66) used Span 60, 

Span 20, and Tween 20 with CHOL to 

prepare nano size vesicle of minoxidil. 

Niosome formulation prepared with 1:2 ratio 

of Span 60 and CHOL showed 17.21 ±3.2 % 

skin retention of minoxidil, which was six 

fold more than that of  minoxidil gel as 

control. By preparation of nano-niosomes, 

both poor water solubility and low skin 

penetration of minoxidil were addressed.  

A gel containing the novel Tween 61 elastic 

niosomes containing diclofenac diethyl-

ammonium have not only showed physical and 

chemical stability for 3 months, but also 

exhibited high fluxes through rat skin and high 

in vivo anti-inflammatory activity in rat ear 

edema assay (67). Honeywell-Nguyen and 

Bouwstra (68) prepared 95 to 110 nm L-595 

(sucrose laurate ester)/ PEG-8-L (octa-

oxyethylene laurate ester) nano-niosomes as 

excellent transdermal carrier for pergolide. 

In addition to nanovesicle encapsulation, 

some other methods were developed for 

enhancing transdermal transport of large 

molecules such as insulin. A combination 

techniques of charged nano-liposome encap-

sulation of insulin and iontophoresis through 

rat skins with microneedle-induced micro-

channels were resulted in 713.3 times higher 

transport of the protein than that of its passive 

diffusion (31). 
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Vaginal route 

Two kinds of entrapped insulin vesicles with  

Span 40 and Span 60 were prepared by lipid 

phase evaporation and sonication methods 

with particle sizes of 242.5 nm and 259.7 nm, 

respectively (69). They concluded that 

vaginally administrated nano-niosomes might 

be a good carrier for protein drugs such as 

insulin. 

 

Nano-niosomes as gene delivery vectors 
Bilayer vesicles are biodegradable, less toxic, 

less immunogenic and activating lower levels 

of complement than the viral vectors; 

therefore utilizing of these kind of gene 

carriers are more convenient and safer than 

the viral vectors. Huang et al. (70) used 

cationic niosomes of sorbitan monoesters for 

delivery of antisense oligonucleotides (OND) 

in a COS-7 cell line among them Span 40 and 

60 vesicles had more significant effect. 

However, positively charged particulates are 

prone to nonspecific interactions with plasma 

proteins, which resulted in destabilization, 

dissociation, and rapid clearance of 

gene/carrier complexes (71). For preparation 

of an effective non-phospholipid vesicular 

gene delivery vector, Huang et al. (72) 

hypothesized using PEGylated cationic 

niosomes. They used DSPE-mPEG 2000 for 

PEGylation of cationic niosomes and the 

resultant OND-vesicle complexes showed a 

neutral zeta potential with particle size about 

300 nm. These complexes had less serum-

protein binding affinity and particle 

aggregation in serum (72). On the other hand, 

the PEGylated niosomes showed a higher 

efficiency of OND cellular uptake in serum 

when compared with cationic niosomes. A 

new arising problem was reported by 

Manosroi et al. (73) which was the lower 

stability of luciferase plasmid (pLuc) 

encapsulated in Span 60 or Tween 

61/dimethyl dioctadecyl ammonium bromide 

(DDAB)/CHOL in comparison to cationic 

liposomes. However DDAB/Tween 61/CHOL 

nanovesicles, made an effective cationic 

vector for pLuc delivery following the 

application of iontophoresis on the stratum 

corneum of rat skin (74). Later, this research 

team reported (75) successful transdermal 

absorption, gene expression and stability of 

tyrosinase plasmid (pMEL34)-loaded 

DDAB/Tween 61/CHOL nanovesicles as a 

promising topical delivery in vitiligo therapy. 

They also successfully expressed human 

tyrosinase plasmid (pAH7/Tyr) and increased 

melanin production in tyrosinase gene 

knocked out human melanoma (M5) cells and 

in tyrosine-producing mouse melanoma 

(B16F10) cells by loading the plasmid in elastic 

cationic niosomes (76).  

 

Niosomes in vaccine delivery  

Protein subunit vaccines 

Development of new safe and effective 

vaccines is an important goal for many 

research groups in all over the world. Subunit 

proteins or DNA of various organisms are 

safer than live organism-based vaccines even 

they may show less efficacy. The use of 

adjuvanted systems have proven to enhance 

the immunogenicity of these subunit vaccines 

through protection (i.e. preventing degra-

dation of the antigen in vivo) and enhanced 

targeting of these antigens to professional 

antigen-presenting cells (77). Brewer and 

Alexander (78) reported the first application 

on niosome antigen delivery for immunization 

of Balb/c mice against bovine serum albumin 

(BSA). They deduced that niosomes were 

potentially better stimulators of the Th1 

lymphocyte subset than was Freund's 

complete adjuvant and by inference, potent 

stimulators of cellular immunity. Hassan et al 

(79) showed better immunogenicity with 

herpes simplex virus 1 antigen encapsulated 

in l-mono palmitoyl glycerol (MP)/-

CHOL/DCP niosomes in mice. On the other 

hand, partial protection against homologous 

(type 2 herpes simplex virus HSV-2) 

challenge infection afforded to mice by HSV-

2 antigen encapsulated niosomes (80) shows 

the importance of composition and method of 

niosomal adjuvant formulations. Yoshioka et 

al (81) formulated Span/CHOL/DCP nio-

somes containing tetanus toxoid (TT) 
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emulsified in an external oil phase to form a 

vesicle-in-water-in-oil (v/w/o) formulation. 

Initial studies of the system in vivo using 

cottonseed oil as the external oil phase, 

showed enhanced immunological activity 

over the free antigen or vesicles.  

Encapsulation of BSA or haemagglutinin 

(HA) in v/w/o emulsion was also reported by 

Murdan (82). Immunogenicity studies showed 

that the v/w/o gel as well as the water-in-oil 

(w/o) gel as control, possess immunoadjuvant 

properties and enhance the primary and 

secondary antibody titres (of total IgG, IgG1, 

IgG2a and IgG2b) to HA antigen. Chambers et 

al (83) reported a single subcutaneous dose of 

killed Mycobacterium bovis BCG in Brij
®

 52-

based nano-niosomes (Novasome
TM

) 

protected guinea pigs from lethal tuberculosis. 

Vangala et al. (84) incorporated three 

different protein antigens in positively 

charged niosomes made from MP/CHOL/ 

α,α´-trehalose 6,6´-dibehenate (TDB) or 

MP/CHOL/TDB/dimethyl-

dioctadecylammonium (DDA). Antigens 

encapsulation led to increase in size of 

vesicles from submicron to larger (1-2.7 µm) 

ones which may be due to the high molecular 

weight of antigens, in addition to their high 

hydrophobic nature, causing the association 

of the proteins with the hydrophobic regions 

of the vesicle bilayers and possibly 

encouraging a degree of vesicle fusion or 

influencing the packing arrangements of the 

surfactants. Their results suggest that both 

DDA- and MP-based vesicular systems may 

be useful in enhancing the immunogenicity of 

the subunit vaccines, especially with the 

subunit antigen Ag85B-ESAT-6 against 

tuberculosis, for which a high cell-mediated 

Th1 immune response is essential (85). 

Vangala et al. (86) also reported DDA 

formulations incorporating TDB which 

showed markedly increased hepatitis B 

surface antigen specific splenocyte 

proliferation and elicited cytokine production 

concomitant with a strong T cell driven 

response, delineating formulations that may 

be useful for further evaluation of their 

clinical potential. Ferro and Stimson (87) used 

a gonadotrophin releasing hormone (GnRH) 

analogue, GnRH-glycs, linked to different 

carrier molecule and encapsulated in NSV 

formulations to immune-neutralisation of 

GnRH in male Sprague-Dawley rats. The 

results were encouraging to use NSVs as a 

non toxic immune adjuvant. Then, a modified 

GnRH peptide (CHWSYGLRPG-NH2) was 

conjugated to TT and formulated with 

different adjuvants such as C18EO2/CHOL-

/DCP niosomes (88). The best castration 

effect, depicted in production of IgG2b 

antibody, was not as well by nano-niosomes 

as compared to sustained release poly(lactide-

co-glycolide)/triacetin (PLGA) formulation.  

A promising immunization effect was 

reported by Lezama-Davila (89) in C57BL/10 

mice immunized with L. m. mexicana 

leishmanolysin (gp63). 

For developing non parenteral niosomal 

vaccines, Rentel et al. (90) prepared sucrose 

ester niosomes for encapsulation of 

ovalbumine and administered the vesicular 

formulations through oral route in Balb/c 

mice. Significant increase in antibody titres 

was observed following oral vaccination with 

less hydrophilic vesicular formulation. 

Chattaraj and Das (91) entrapped hema-

gglutinin antigens from three different 

influenza A strains in Span 4o or 60 niosomes 

for nasal mucosal delivery. 

BSA-loaded niosomes composed of Span 

60/Span 85/CHOL/stearylamine were coated 

with a modified polysaccharide O-palmitoyl 

mannan (OPM) for targeting them to 

Langerhan’s cells, the major antigen 

presenting cells found in abundance beneath 

the stratum corneum (21). Measuring serum 

IgG titre and its subclasses (IgG2a/IgG1 ratio) 

elicited a significantly higher serum IgG titre 

upon topical application of mannosylated 

niosomes as compared with topically applied 

alum adsorbed BSA (P < 0.05). The 

mannosylated niosomes also were used orally 

for induction of the oral mucosal 

immunization against TT (92). Coating with 

OPM was carried out to protect antigen 

encapsulated vesicles from bile salts 

dissolution and enzymatic degradation in the 
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gastrointestinal tract and to enhance their 

affinity toward the antigen presenting cells of 

Peyer’s patches. On the other hand, Gupta et 

al. (93) showed topically given TT containing 

transfersomes, after secondary immunization, 

could elicit immune response (anti-TT-IgG) 

that was equivalent to the one that produced 

following intramus-cularly alum-adsorbed 

TT-based immu-nization. The immunity 

response of Span 85/CHOL niosomes was 

weaker than trans-fersomes.  

 

DNA vaccines 

DNA entrapment in liposomes may be due to 

protection of genetic material in biological 

milieu, promoted greater homoral and cell-

mediated immune responses against the 

encoded antigen in immunized mice (94). 

Parentral (95), topical (96) and oral (21) 

administration capability of NSV/DNA 

formulations made these systems as new non-

toxic and effective vaccine delivery tools.  

Perrie et al. (95) reported the entrapment of 

nucleoprotein expressing plasmid of H3N2 

influenza virus in NSVs and subcutaneous 

injection of the formulations resulted in better 

immunization of treated mice in comparison 

to naked DNA. Encapsulation of plasmid 

pRc/CMV-HBs(S) expressing sequence 

coding for the small proteins of the hepatitis 

B virus, HBsAg, in mannolysated niosomes 

signified the potential of these vesicles as 

DNA vaccine carrier and adjuvant for 

effective oral immunization against hepatitis 

B (21). Vyas et al. (96) formulated Span 

85/CHOL niosomes encapsulating DNA 

encoding HBsAg and applied them topically 

in Balb/c mice. Elevation of serum anti-

HBsAg titer and cyokines level (IL-2 and 

IFN-γ) indicated the efficacy of used topical 

vesicular vaccine delivery.  

Recently, we reported the different positively 

charged micron-sized niosomal formulations 

containing sorbitan esters, CHOL and CTAB 

for the entrapment of autoclaved Leishmania 

major (ALM) (32). Inspite of large diameter 

of prepared vesicles, the results obtaind 

showed that the niosomes containing ALM 

have a moderate effect in the prevention of 

cutaneous leishmaniasis in BALB/c mice. 
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