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Abstract
DNA damage is induced in many types of cells by internal and external cell stress. When DNA is damaged, DNA Damage Response (DDR) 

programs are activated to repair the DNA lesions in order to preserve genomic integrity and suppress subsequent malignant transformation. 
Among these programs is cell cycle checkpoint that ensures cell cycle arrest and subsequent repair of the damaged DNA, apoptosis and 
senescence in various phases of the cell cycle. Moreover, recent studies have established the cell differentiation checkpoint, the other type 
of the checkpoint that is specifically activated in the course of differentiation. We will discuss the evidences that support the link between 
DNA damage proteins and C2C12 cell differentiation.
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Genomic integrity is primordial to any organisms. It has been well 
illustrated that diverse stress from both intrinsic (ex. Reactive Oxygen 
Species (ROS)) and extrinsic (ex. ionizing radiation (IR), UV light, 
chemical) environment cause DNA lesions [1]. When DNA damage 
checkpoint is activated, proliferating cells arrest the cell cycle, allowing 
the damaged DNA to repair. This process is initiated by recruiting the 
MRN complex (MRE11-RAD50-NBS1) to DNA Double Strand Breaks 
(DSBs) and Single Strands Breaks (SSBs), followed by activation of Ataxia-
Telangiectasia Mutated (ATM) and Ataxia-Telangiectasia and RAD3-
Related (ATR), respectively. ATM and ATR phosphorylate a variety of 
their substrates, those including p53, MDM2, CHK2, 9-1-1- complex 
(RAD9, RAD1, HUS1), CHK1, etc [2-7]. 

Differentiation is the process in which cells become specialized from 
the precursor cells to specific cell type, such as neurons, lymphocytes 
and muscle through differentiation. A global reprogramming of gene 
expression and withdrawal from the cell cycle are required for the 
differentiation process [8]. Although it is not well understood how 
differentiation program proceeds under conditions of DNA damage, 
it is considered that it could not be completed without the repair 
of the DNA lesions. Therefore, it is assumed that if cells start the 
differentiation program prior the DNA was restored, it could lead to 
abnormally differentiated cells with compromised functions [9].

C2C12 cells have been widely used as an in vitro model to 
study myogenic differentiation process. These cells are derived 
from the mouse skeletal muscle C2 cell line, and they have similar 
characteristics to those of isolated human skeletal muscle cells 
[10,11]. Myogenic differentiation consists of a multistep processes that 
involves two major mechanisms. The first one consists of the induction 
of the muscle-specific genes expression by Myogenic Regulatory 
Factors (MRFs). MRFs induce the expression of, for example, Myf-5, 
MyoD, MRF4 and Myogenin. MyoD and Myf-5 which are primarily 
expressed in proliferating, undifferentiated myoblasts, allowing the 
differentiation program start, acting as a determination genes, while 
Myogenin expression is induced as a result of muscle differentiation 
(Figure 1) [12-14]. Transcriptional pathways regulated by multiple 
groups of muscle-specific transcription factors initiate the de novo 
synthesis of various muscle-specific proteins [15]. The second step 

in differentiation process is to make a commitment of myogenic cells to 
irreversible withdrawal from the cell cycle leading permanent G1 phase 
[16-18]. Withdrawal from the cell cycle causes morphological changes, 
mononucleated myoblasts alignment, and fusion of their membranes to 
form multinucleated myotubes, leading to the mature muscle fibers. 
Accomplishment of these two phases is essential for multinucleated 
myotubes formation.

It has been shown that during differentiation DNA Double 
Strand Breaks (DSBs) occur. For example, development of B 
lymphocytes requires the induction and consequent repair of DSBs 
during rearrangement of the antigen receptor genes [19]. Interestingly, 
there are some biochemical experiments indicating the link 
between modification of the DDR proteins and neuronal stem cell 
differentiation. IR-induced DSBs induce acetylation of p53 Lys320 in 
the Central Nervous System (CNS) [20,21], and acetylated p53 Lys320 
promotes neurite outgrowth in vitro and axon regeneration in vivo [22]. 
Of note, while these results show that DSBs promote cell differentiation 
of B lymphocyte and neurons, DDR-regulated differentiation checkpoint 
has been implicated by C2C12 myoblasts, which prevents the appearance 
of abnormally differentiated cells [9]. Thus, it detains the progression of 
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Figure 1. Myogenic differentiation. Satellite cells (muscle precursor 
cells) upon stimuli start to proliferate and differentiate into myoblasts 
(mononuclear cells). The myoblasts proliferate and fuse together to 
create myotubes over the course of several days. Additional myoblasts 
fuse to the existing myotubes in the late fusion step to produce larger 
myotubes. The differentiation process is regulated by many factors, 
differentiation markers changes during the course of differentiation 
expressing MyoD and Myf5 at the early steps of the process and 
Myogenin, MRF4 and pRb when the fusion already start. 
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that ATM inactivation. causes insufficient generation of dendritic cells 
from bone [63]. Taken together, these results provide a notion that 
inactivation of DDR proteins results in the abrogation of differentiation.
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differentiation until DNA is repaired during muscle differentiation under 
conditions of genotoxic stress. After serum withdrawal when C2C12 cells 
were exposed to genotoxic agents, like etoposide and IR, myotube 
formation is blocked by cell cycle arrest followed by c-Abl-dependent 
inhibition of MyoD activation. This inhibition of MyoD under genotoxic 
stress is independent of p53 and c-Jun. c-Abl can phosphorylate MyoD at 
N-terminal tyrosine (Tyr30) localized within the transactivation domain. 
Mutations on Tyr30 and Tyr212 to Phe do not interfere with MyoD 
functionality but mutants become resistant to inhibition of MyoD by 
DNA damage. Of note, removal of these agents from C2C12 cell culture 
leads to repair DNA and re-induction differentiation of C2C12 cells 
into myotubes, indicating that differentiation checkpoint is reversible.

Not only c-Abl, but also several DDR proteins have been implicated 
to be involved in the differentiation checkpoint, including ATM [23-
25] and NBS1 [26,27], etc. Upon DNA stress, ATM autophosphorylates 
its own Ser1981, leading to dimer dissociation and, subsequently, 
phosphorylation of H2AX and a number of transducers and effectors 
of DNA damage-activated pathways [28,29]. For example, ATM 
activates CHK2 kinase by phosphorylating its Thr68 [30-32]. Activated 
CHK2 coordinates a number of cellular processes by phosphorylating 
downstream effectors, such as CDC25A, CDC25C, BRCA1, PML1, and 
bRYEFp53, resulting in cell cycle arrest or apoptosis [32-34]. On 
the other hand, ATM directly phosphorylates p53 at Ser15, causing 
inhibition of p53-MDM2 interaction and promoting p53-dependent gene 
expression [35-37].

Larsen et al. demonstrated that this DDR pathway is activated at 
the early stages of differentiation of C2C12 cells [38]. Phospho H2AX 
(g(γ)H2AX)  co-localizes to the actual site of DSBs, recruiting and/or 
stabilizing multiple protein complexes involved in DNA damage signaling 
[28-30,39,40]. They have demonstrated that, when differentiation is 
induced, H2AX foci appear in 12h, but most of the signals disappear 
in 48h. These results indicate that differentiation signals damage DNA 
during myoblast differentiation. C2C12 myoblasts express wild-type p53 
(wtp53) protein, and it has been shown that p53 is activated during 
differentiation in these cells, suggesting the potential role of the 
protein in muscle differentiation [41-44]. This model has been supported 
by the results using immortal and primary myoblasts. Thus, expression of 
dominant negative p53 (DNp53) proteins in those cells inhibits terminal 
differentiation. Although it is well documented that spontaneous 
apoptosis occurs at myogenic differentiation, the mechanism is largely 
unclear [39,45-48]. Interestingly, DNp53 expression does not affect the 
cell cycle withdrawal and apoptotic death associated with differentiation 
process [41,42]. Other studies have also illustrated the possible link 
of p53 to muscle differentiation. Porrelo et al. have shown that p53 
activated in response to DNA damage is rapidly stabilized, binding DNA 
to the Rb promoter, increasing its expression and inducing muscle 
differentiation but it is really dependent on the cell differentiation status 
[42]. In early differentiation (when cells are myoblasts) pRb inhibits DNA 
synthesis by binding to E2F resulting in repression of cyclin E/cdk2, 
cyclin D/cdk4 and 6, and cyclin A/cdk2 complexes [49-53]. On the other 
hand, when cells are in the late differentiation state (myotubes), pRb 
can promote differentiation binding to MyoD inducing the expression 
of differentiation makers like Myogenin and MRF4 [54-58] (Figure 2). 
These results indicate that p53 playing roles in not only inducing genes 
involved in growth arrest, apoptosis and DNA repair, but also regulating 
genes whose expression are critical for differentiation [59-62].

In summary, myogenic differentiation consists of multistep, including 
appearance and repair of DSBs. When DSBs are generated, DDR proteins 
are activated to properly ensure the DNA repair before proceeding 
differentiation, guarantying the correct formation of differentiated cells 
without compromised genome. Of note, our recent findings showed 

 

Figure 2: Schema explaining the role of DDR in myogenic differentiation. 
Differentiation generates DSBs and the DDR is activated. ATM 
phosphorylates p53 which could stop the cycle until the DNA damage 
is repaired activating p21, CDks and generating a G0/G1 arrest. 
If the DNA damage is not repaired, cells undergo to apoptosis. 
Finally, p53 plays a role in differentiation through Rb phosphorylation 
which could activates differentiation or stop it depending on the cell 
differentiation status.
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