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Abstract. In Introduction, we give the Alternative decision of David Hilbert’s first Problem.
Our paper contains demonstrative denying a hypothesis about the existence of a bijection between a
set of positive integers and its own subset. This statement is a basis of an alternative methodology,
in which a significant tool is the concept of C—(m, k)—pair of natural variables. We define e—
divergence and w-—convergence of number sequences with this methodology. In particular, the
equality lim,,_,.(a,+; — a, ) = 0 is a characteristic feature for a w—converging number sequence.
We proved that the set of Cauchy sequences coincides with the set of w—converging ones and,
hence, contains a subset of the infinite large sequences; everyone from them converges to
corresponding infinite large number (ILN). In particular, a harmonic series converges to the some
ILN, and the necessary attribute of some number series convergence is also a sufficient one.

Aunomayusi. Bo BBelNeHMHM Mbl JaeM aJIbTEPHATHBHOE pEIICHHWE IEePBOM MpPOoOIIEMbI
J. 'mnsOepra. Hama craTesi coepkHUT JoKa3aTeabHOE OTPHUIIAHUE THUIOTE3bl O CYIIECTBOBAHUU
OMEKIIMM MEX1y MHOXKECTBOM HAaTypalbHBIX YHCEN U €ro COOCTBEHHBIM IMOJAMHOMXECTBOM. DTO
YTBEPXKICHHUE SBIIAECTCS OCHOBOM aJbTEPHATHUBHOW METONOJIOTMHM, B KOTOPOH BaXKHBIM
UHCTPYMEHTOM siBJisietrcsi mousitue C—(M, x)-mapa HaTypaibHBIX TEPEMEHHBIX, OMPEICIICHbI e—
pacxooumocms U W—CX0O0UMOCMb YUCIOBBIX TOCIEI0BaTEIbHOCTEH B 3TOM Meronoioruu. B
YaCTHOCTH, PaBeHCTBO lim, . (ay41 — @y ) = 0 sBIseTCS XapaKTEPUCTUYCCKHM CBOMCTBOM LIS
W—CXOIALICHCST  YMCIOBOW  TOCJHENOBAaTENIBHOCTH. MBI JOKa3zalnM, 4YTO  MHOYKECTBO
nocjuenoBarenbHocTel Komm coBnagaer ¢ MHOXKECTBOM W—CXOASIIUXCS TOCIEJ0BATEILHOCTEN H,
CJIeZIOBATENbHO, COJIEPKUT MOAMHOXKECTBO OECKOHEUHBIX OOJIBIINX MOCIEI0BATENbHOCTEH, Kax/1as
U3 KOTOPBIX CXOAUTCS K COOTBETCTBYHOIIEMY OeckoHeuHO Ooubinomy uucay (ILN). B gactHoCcTH,
rapMOHUYECKUH pss cxonutest K Hekotopomy ILN, a HeoOX0oaMMBI MPU3HAK CXOIUMOCTH KaXKI0TO
YHCIIOBOTO psijia SBJISETCS TaKXKe TIOCTATOUHBIM.

Keywords: bijectivity criterion, continuum hypothesis, C—(m, k)—pair, Cauchy sequences, e—
divergence, w—convergence, infinite large number, alternative methodology, infinite larger number,
quantity m(x) of prime numbers, maximal prime, alternative number series, dogmas.

Kniouesvie cnosa:  xkpurepuii  OMEKTUBHOCTH, KOHTHHyym—Tumnore3a, C—(m, k)-mapa,
nocienoBarenbHocTH Komm, e—pacXxoauMocTb, W—CXOAMMOCTb, OSCKOHEYHO OOJIBIIME YHuCIa,
abTEPHATHBHAS METOJOJIOTHS, KOJMYECTBO T(X) BCEX MPOCTBIX YHCEN, HAaHOOJbIIEe MPOCTOE
YHCJIO0, 3HAKOTIEPEMEHHBIN YMCIIOBOU Psil, HEKOTOPBIE JOTMBI.
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Introduction
Now we shall consider that for arbitrary sets A, B there exists a set F(4, B) = {f|f: A — B} of
all mappings from A into B. A mapping ¢: A — B is named the surjective one if p(A) =B, i.e.

@ € Su(A,B). Amapping f € F(A, B) is said to be injective one if
f(a) = f(q) = q = a, here the q is a symbol of variable, (0.2)
i.e. f € In(A, B). A different yet equivalent definition of the injective mapping named an
injection too has the following kind: a # q = f(a) # f(q). If f € In(4,B) n Su(4,B) then
the f is said to be a bijective one, or a bijection, i.e. f € Bi(4, B). In this case we say the sets A
and B are bijective sets and write either A~B or |A| = |B|. By virtue of these definitions we have for
arbitrary sets A, B
Bi(A,B) = In(A,B) n Su(A, B). (0.2)
Theorem 0.1 Let
A=UigAyJ SN, AiNnA =0ati+j (0.3)
be any partition of the set A into not crossed subsets A;. Then a mapping f € F(4,B) Vi
defines a partial mapping f;: A; = B, and if Vi f; € In(4;, B) then f € In(4, B).
At the first we prove that f,(Ax) £ By c B = B;NB;=Qati,jk €]i+j by means
verification of an implication (01) and so on.
Theorem 0.2. (The bijectivity criterion). A mapping ¢: A — B is a bijection if and only if any
partition (0.3) of set A into not crossed subsets A; holds the following two conditions:
1) Vip; € In(4;,B), 2)if C £ U;e;B;,J © N, thenC = B. (0.4)
Sufficiencyd O of Proof. Now we must show the implication (0.4) = ¢ € (In(4,B) N
Su(A4, B)). At the first, Theorem 0.1 proves that ¢ € In(A, B). Now second condition in (0.4) holds
® € Su(4,B).
Necessity of Proof. At present we shall prove that ¢ € Bi(A, B) holds both 1) and 2) in the
condition (0.4). Let ¢ € In(A,B)and A = U;;A;,J ©€ N, A;nA; =@ati#j. Then we have
p(A) = <p(UiE,Ai)=UiE] @(4;). Let ¢; = (plAi:Ai - B, s0 @; € In(4;, B) and we have 1) from

(0.4). let 9;(A;)) £ B;c Band U;¢;B;, 2 C. Itis obvious that C € B. Now we shall show that an
existing of strong inclusion C < B contradicts to the mapping ¢ surjectivity. Let C* £ B\C # 0, so
Jcy € C* © B.Thus there exists apair {k,ay:k € ],a, € Ax} such that a, £ ¢~ 1(cy) € A.
Thus ¢y = @i (ay) € By, < C and, therefore ¢, & C*.

One of the first alternative variants of this theorem was published in [1, p. 92].

Theorem 0.2 has following below consequence as

Theorem 0.3 The infinite sets are divided into classes of equivalence as well as the finite sets
to within of one element.

Really, let A2 (BU{h},h¢B), A, 2B, A, 2{h}. Now Vf € F(4,B) f¢& In(4,B)
because there exists in B a pair {by, b1 }: f (b;) = by = f(h).

Theorem 0.3 gives the Alternative decision of David Hilbert’s first Problem which is the
Dedekind—Cantor’s Continuum Hypothesis (CH). We called R. Dedekind as co—author of the CH
on the basis of G. Cantor’s correspondence with him [2, pp 327-372]. Published correspondence
between G. Cantor and R. Dedekind contains XLIX letters, Cantor wrote 35 letters from them.

In the letter 11 (29.11.1873) Cantor wrote that no matter how he was inclined to think that any
one-valued correspondence between a set (n) and a set (x) can not be established, nevertheless he
can not to find a reason for this, although it is simple perhaps and namely that is what takes him ...

So now we think our Theorem 03 is the answer to Cantor on his address to Dedekind.

Here we followed to Paul Cohen’s forecast about continuum—hypothesis (CH) [3, 1V.13]: “A
point of view which the author feels may eventually come to be accepted is that CH is obviously
false”.

21


http://www.bulletennauki.com/

BIOJIVIETEHb HAYKH U ITIPAKTUKHN — BULLETIN OF SCIENCE AND PRACTICE
Hayunwiti acypran (scientific journal) Nel2 (oexabpw) 2016 2.
http://www.bulletennauki.com

Now there is the time and place to say some words about the finite and the infinite in
Mathematics without some dogmas too. Namely here we can note the priority of a concept of set
ordering before the concept of the finite—infinite, as it was done, for example, in our textbook
[4,3.5].

Definition 0.1 A linearly ordered set is said to be as the finite set, if it is either empty, or a
singleton, or each its subset except trivial has two extreme elements: the smallest and the largest.
Linearly ordered set we call the infinite one, if at least one its subset has less than two extreme
elements.

1. C—exact pairs and the mapping ¢: N — N surjectivity

To begin with, we introduce a novel concept C —(m, k) — pair of natural variables. Let sets 4
c N and Bc N be infinite sets with either ANB=0ornB 2@ and E 2 AU B C N. Further,
Let ¥ £{(m, k): (m, k)€ (4,B)} < (4, B)} be the set of pairs neighboring in the E elements m and
k.

Definition 1.1 The pair (m, k) of natural variables meA and keB is said to be € —(m, k) —
pair if there exists such a number C € N\{1} that the every pair (m, k) € ¥ holds the inequality

lm —k| < C. 1)
Condition (1) has the following equivalent form of record:
aC,C >C,(Vke Bame€ A):k=m+pm),p(m)& Z,|p(m)| < C. (2)

Let as above the In(N,N) be a set of injective functions ¢: N—N. In this item we will
consider the functions @eln(N, N) on default. 4 sequence & = (1,n4,ny, ..., n;, ...) of natural
numbers n; is said to be a sequence with a limited step if there e@iStS such number C¢ € N that
Vi € N(§), where N(&) £ {i:dn; € £} S N, 0<n; —n;_1<C;, ny £ 1. Further, let a set N; be
defined as {1, 2, ..., n;}. The sequence ¢ and a mapping [1 ¢: N—N define two number
sequences

A
§; £ maxpcp {9(n) —n;} =0 and d;=|D; |20, D; £ N\o(N;). (3)

It is obvious that |D;| = |[N;\@(N;)| and then d; < 6;. Really, d; = 6; if and only if Vp,n; <
p< 8 +n,An<n;:p = ). In all other case we have the inequality d; < &§;. The mapping
@ NN defines a sequence {@,}n=q1 of integers @, = @(n)—n as well too. If for some
sequence & there exist both 8, = suppen(p(n) —n) and 8¢ £ supie n(z)(0;) then we have the
obvious inequality
8¢ < 6. (4)
Now we formulate the direct and obvious corollary of both the definition of set D; in (3) and
the mapping ¢: NN surjectivity as follows:
Statement 1.1 The necessary condition of the mapping ¢: NN surjectivity has the
following two equivalent forms:
Vie N(§)IjEN:D;ND;j=0and N; € Nyj. 5)
Below, for short we say “for almost all i” instead of the phrase “except for a final set of
indexes “i”” and we write by definition Vi. Now we describe the attributes of the surjectivity and
antisurjectivity of mapping ¢: N—>N.
Statement 1.2 Sufficient conditions of the surjectivity (a) and antisurjectivity (b) of the
mapping ¢: N—N have, accordingly, the following forms
Proof Each number d; determines a quantity of suclgelements n each of which belongs to
a subset N; and does not have a prototype ¢ 1(n) on N;. Therefore, an unboundedness of
sequences {d;} in (b) of (6) contradicts to the condition [J ¢( N) = N of a mapping ¢ surjectivity.
The condition (a) in (6) guarantees the existence of such number i, that for the mapping ¢ the
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following circuit of implications is valid:
Vi>igdi=0=>D;=0=0 ¢(N;)= N;>¢(N)=N.

We shall speak about an antisurjective injective mapping ¢: N—>N that it is potentially
impracticable on all set N. As the examples show, the conditions (6) are not necessary for the
surjectivity and antisurjectivity, accordingly, of the function ¢. In view of conditions (3)—(6)
everyone can prove following below statements easily.

Statement 1.3 The sequences {3,} and {d;}, ieN({), defined by means of the pair (§, ¢),

satisfy one and only one of the following three conditions:
(a) Vi eN@E): (§;=0) (d; =0),
(b) (3C1,C;, € 2C; €N): (Vi eN(§) (0<6; < ;) & (0 < d; < (), (7)

(c) IEN() (d; > ) & (§; > ).

Statement 1.4 For any injective mapping ¢: N—N there exists a sequence ¢ of such kind
that

S¢ = 8,. (8)

The corollary of Statements 1-45will be written below.

Theorem 1.1 The boundedness of a sequence {¢, } is a necessary condition of the injective
mapping @: N—N surjectivity, i. e. [ ¢( N) = N holds

lim, oo (0(n)/n) = 1. ©)

Theorem 1.2 The injective mapping: ¢*: N>N ¢* (k) £ m;, which defines some sequence

M* £ ¢*(N) = (my, my, ..., my_)

with an unlimited step s, £ my,; — my, is the antisurjective function or, in other words, it
will be impracticable on all set N.

Proof Let M* be sequence with an unlimited step then we have the following condition:

VC > 03k(C) € N(&): |mycyr1 — mio)| > C. (10)

Let now é*=Nso N(§*) = N, and by virtue of (3) we have n, = k + 1 hence &, = ¢*(n;) —
Ng.

Further 8p4q — O0x = Myyq — M=(Myypq — (kK + 1)) — (my, — k) = my; —my + 1. Now
with (10) we get following inequality for all k(C) € N: 8y cy+1 — Sx(c) +1 > C. Therefore we
have

8k(cy+1 > C + k) — 1. (11)

The inequality (11) proves an unboundedness of the sequence {8;} defined by means of this
pair (N, ¢*), which follows from the last inequality by virtue of arbitrariness of number C in (10).
Therefore, the mapping ¢*: N—>N, which defines the sequence M* in this theorem, is an
antisurjective one by virtue of (6), (7), (10) and (11).

Theorem 1.2 implies the following statement.

Theorem 1.3 Let A 2 {k} S N and B £ {m} € N be infinite subsets of set V. Then there
exists such number C > 0 that the pair (k, m) of natural variables k € A and m € B is C—(m, k)—pair
D).

As the examples show, the necessary conditions (5) and (9) of a surjectivity of an injection
¢: N—>N are independent ones, hence, any of these conditions cannot be sufficient. However, the
following statement below is valid.

Theorem 1.4 The joint realization of conditions (5) and (9) is a sufficient attribute of an
injection @: N—N surjectivity.
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2. The convergence of number sequences
A number sequence (a) 2 {a,}n=1 = (a1, a5, ..., ay, ...) is said to be a fundamental one, or
Cauchy sequence (CS) if
(Ve > 03 n(e) € N):(Vn,m = n(e)) la, — ap] <e&. (12)

The condition (12) is equivalent to the following limit equality:

lim,_.(a, — ay) =0. (13)
The condition (13) has (see [5, p. 355]) a more concrete form of record
lirnmin(m,n)—mO(an —ap) =0, (14)

Corollary of Theorem 1.3 The pair (m, n) of variables m and n on the conditions (12)—(14),
each of which defines Cauchy sequence, is C—(m, k)—pair.

The number sequence (a) is said to be converging to a finite number A, if lim(a,) =0.
Otherwise, i. e. if lim(a,) does not exist or it is equal (F+), the sequence (a) is said to be in the
traditional analysis divergent one (DS). It is obvious: {(a)} = {CS} U {DS}.

As well, how it is accepted in the classical analysis, there is

{CS}I{DS}=0. (15)

We introduce a following novel concept for a refutation of equality (15). Let A,B and
Y c (4, B) be as above in item 1.

Definition 2.1 The number sequence (a) is said to be e-divergent one (e-DS) if there are such
two infinite subsequences AC N and BC N with AnB=@¢ and 3 (6§ >0,n" € N):V(m, k) €
¥, m > n*, holds the inequality

la, —am = 6. (16)

The direct comparison both of conditions (12)—(14) and (16) gives

Theorem 2.1 Any number sequence is either Cauchy sequence, or an e-divergent one:

V(a) (a)e{CS}{e-DS} and {CS}{e-DS}=L. @an

It is easy to show, that

{e-DS}c{DS}. (18)

The example of the sequence (a) = {n% 0 < a < 1}5_, confirms the following strict
inclusion:

{e-DS}={DS}. (19)

Proof The Sequence (a) [Jis divergent one, as 0 < a <1 holds lim,,_.,n% = o. On the
other hand, by virtue of the Theorem (1.3) the pairl] (m, k) Lis any C—(n, m) —pairlJ (1) and [J

3(C>0 qk)eZ lqk)|<C)m=k+q(k)0.

Now we examine the function f: R, — R,, which is determined by the formula: f(x) =
(x + q(x))* —x*. The value f(k) = (k + q(k))* —k* of the function f at x=k coincides with a
difference (m®* —k%) at m = q + q(k). It is easy to show, that x — oo holds lim,_,,, f(x) = 0.
Hence, the inequality (1) will be violated, at least, for any one pair (mg,k,) € (4,B), my >
n*, ko > n*. Therefore, the sequence (n%)¢{e-DS}at O0<a<1.

Therefore, the strict inclusion (19) takes place instead of condition (18). And, hence, in view
of (19), we have the following inequality instead of (15)
{CS}{DS}>O. (20)
Now we introduce a concept which has fundamental importance in our theory.
Definition 2.2 The number sequence (a) is said to be w—convergent (w—CS) if this sequence
(a) satisfies following condition
either Ve > 03n(e) € N:Vn = n(e) |aps1 — ayl<e, or lim, (a1 —a,) =0. (21)
Our textbook [4, 7.1] contains full proofs following theorems.
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Theorem 2.2 Any Cauchy sequence (a) is w—convergent one, i. e. {CS}c{w-CS}.

Theorem 2.3 Any w—convergent sequence is the Cauchy one, i. e. {w—CS}<{CS}.

Theorems 2.2 and 2.3 compile the following statement:

Theorems 2.4 The set of Cauchy sequences coincides with the set of w-convergent
sequences:

{CS} = {w-CS}.

Theorems 2.4 follows directly from both Theorems 2.1 and Definition 2.1 and Definition 2.2
since those definitions holds {w—CS}}{e-DS}=C.

Corollary of Theorem 2.4. There exist Cauchy sequences which do not limited by the some
finite number.

The study of a sequence (a)2{Inn+ c, +v, } of the harmonious series sums (see [6, it. 388])

satisfies to condition (21), but its limiting value is more than any finite number. The corollary of
Theorem 2.4 motivates an introduction of the following concept.

Definition 2.3 The limit value of Cauchy sequence (a), which is not limited by any finite
number, is said to be an infinitely large number (ILN), defined by this sequence (a).

Let the symbol Q be denoted the set of all ILN. In the non-standard analysis the ILN are
named (see [7, Ch. 2.1]) as either non-standard, or impracticable, or actually infinite large, or
inaccessible numbers.

Proposition 2.1 The sequence (a) 2 {a,:a,, = n'"% a > 0} € CS}.

Proof a,.1 —a, = (n+ 1)17% — (n)1 %=
=mn+1)/(n+1D%n/n*<(n+1)/n*n/n*=1/n% - 0.
Theorem 2.5 An unlimited differentiated in +oco function f: R — R converges to
corresponding ILN Q(f) if and only if f'(c0) = 0.
Proof The passage to limit in mean value theorem which has been written down for function

f:
fn+1) = f)=f'"(t)((n+ 1) — n), n<t<n+1
makes up the proof of Theorem 2.5.
Now we shall receive an important on the Theory of numbers result by means of Theorem
2.5.

The quantity (x) of the prime numbers p,p < x, is defined as well know [8, 1.1.5] by the
asymptotic formula ©(x) = x/Inx + o(x/Inx)
We proved that there exists some ILN 2 Q. which defines the quantity of all prime numbers:
O, 2 limy_.,m(x), because limxﬂ,(n(x))' =0.
Hence we can say that there exists the corresponding ILN £ Q(7) for an estimate of maximal
prime number.
3. The convergence of alternative number series

Let's designate by the symbol Zn the sum of n the first members @; of the number sequence

@2(a,)(a, a,, ..., a,...): 2q ial+a2+---+an, and the symbol Sn denotes the value of the

sum X,. Thus
Zon =2, 8., S, =S, %a,,, neN. (22)
Definition 3.1 The pair of sequences (= )and(s,), defined by means of equations (22), is said
to be a number series defined by sequence (a), and we shall write

n+1 !

25


http://www.bulletennauki.com/

BIOJIVIETEHb HAYKH U ITIPAKTUKHN — BULLETIN OF SCIENCE AND PRACTICE
Hayunwiti acypran (scientific journal) Nel2 (oexabpw) 2016 2.
http://www.bulletennauki.com

> (a)= anan— a, éal+a2+---+an+---é(A)- (23)
Here and below the summation at symbol X is supposed formally from 1 up to oo, that means
an unlimited opportunity of transition from the = _tothe = __

Definition 3.2 The number series (A4) is said to be convergent to the number A, if the number

sequence (s, ) of the values s_ of partial sums Zn converges to this number A. In this case number
A is said to be the sum of series (4), and we write lims_ = A.

The equalities (23) can be written easily in the following way:
(A)=3a, =(a +8, ++8,)+ (2, 8)= X +py. (24)

The value of the infinite sum 2 >," 8, in (21), which is called n-th rest of series (4),

shall be denoted by a symbol r,.

Statement 3.1 The necessary feature of some number series convergence, i.e. lima, = 0, is
also a sufficient one.

Really, lima, = lim(S,, — S,_1) = 0 is a characteristic criterion (21) of w—convergence of a
number sequence (S,,), therefore 7, — 0. A reverse implication (r;, = 0) = (a,, — 0) is obvious.

The number series (4)=),, @, is said to be an alternative one, if its quantities of both

positive and negative addends are not limited.
Theorem 3.1 The number series (B), being any permutation of alternative series (4) which
converging to some number 4 not absolutely, converges to the same number 4.

Proof Let a convergent to number B number series[] B = ij = 2+ 5n [Ibe resulted by means
of a mapping ¢: N — N, o(k)=j, where a, 2 b- from the series (4):

A=Z, +p, = Za +Za + 282Z% +o(n )+pk(n)a (25)

n+1 k(n)+1
where the k(n) denotes a max{k: a, 2 bj , J<n}. Step by step we shall carry out the mapping

@: N — N and simultaneously build both the sequence (L,) of the partial sums X, of series

~

(B) and the sequence (§n) of these sums values S,. We shall receive the following bellow
equality on n—th step from the identity S a, =Y a, in view of (23):

>a, = ko TPk =2, T6(N) +py=Z, + o(N) +P() (26)

where the sum 6(n)= z:((: 18, with n, <k(n) contains those terms of the partial sum Zk(n)

of series (4), which don’t belong to the partial sum X, of series ( B (n)), and o(n) = Z:((:il a, . Thus
with (26), we have [1Vn € N the following equalities:

Py —o(N) =5, =&, =, +o(n) =2 T 5(n). (27)

If we denote by §(n) and s(n) in (26) respectively the values of the sums &(n) and o(n),
then we will obtain the number equalities equivalent of (25):

S, +s(n)=S5,+5(n), r, —s(n) =T, —5(n). (28)
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Since lima, =0, lims(n) =0, lim ey = 0 at N — oo follows from the convergence of series

(A), then we have Iim ¥, =lim5(n) from the second equality in (28). Now from the first equality in
(28) we receive the following result: lims, = limS, +1ims(n), i. e. lim f =4—B at N — . Thus, in
view of S, 5B, s, —4 , we have the required implication: ( ¥, =0, r, >0)=(B=4).

In the general case, at s, —A and T, >0 the equivalence (S~n —-B) < (¥, »(A-B))
follows from equality (28), thus we have

Theorem 3.2 If the sequence (X,) of the sum X, was constructed arbitrarily from the
members of convergent to number A alternative series (4) and the sequence (S;) of the sums 2,

values S: converges to number B, then the sequence (l'n*) of the values of respective rests p:

converges to number 4—B (compare [9, pp 232-233]).

Some results of this paper can be found in the text—book [10], which was published without
the consent of the authors, it is readily available, but contains many publishing typos and
inaccuracies.
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