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Abstract. In Introduction, we give the Alternative decision of David Hilbert’s first Problem. 

Our paper contains demonstrative denying a hypothesis about the existence of a bijection between a 

set of positive integers and its own subset. This statement is a basis of an alternative methodology, 

in which a significant tool is the concept of С–(m, k)–pair of natural variables. We define   e–

divergence and w–convergence of number sequences with this methodology. In particular, the 

equality lim𝑛→∞(𝑎𝑛+1 − 𝑎𝑛 ) = 0  is a characteristic feature for a w–converging number sequence. 

We proved that the set of Cauchy sequences coincides with the set of w–converging ones and, 

hence, contains a subset of the infinite large sequences; everyone from them converges to 

corresponding infinite large number (ILN). In particular, a harmonic series converges to the some 

ILN, and the necessary attribute of some number series convergence is also a sufficient one.  

 

Аннотация. Во введении мы даем альтернативное решение первой проблемы 

Д. Гильберта. Наша статья содержит доказательное отрицание гипотезы о существовании 

биекции между множеством натуральных чисел и его собственным подмножеством. Это 

утверждение является основой альтернативной методологии, в которой важным 

инструментом является понятие C–(m, к)–пара натуральных переменных, определены е–

расходимость и w–сходимость числовых последовательностей в этой методологии. В 

частности, равенство lim𝑛→∞(𝑎𝑛+1 − 𝑎𝑛 ) = 0  является характеристическим свойством для 

w–сходящейся числовой последовательности. Мы доказали, что множество 

последовательностей Коши совпадает с множеством w–сходящихся последовательностей и, 

следовательно, содержит подмножество бесконечных больших последовательностей, каждая 

из которых сходится к соответствующему бесконечно большому числу (ILN). В частности, 

гармонический ряд сходится к некоторому ILN, а необходимый признак сходимости каждого 

числового ряда является также достаточным. 
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Introduction 

Now we shall consider that for arbitrary sets 𝐴, 𝐵 there exists a set 𝑭(𝐴, 𝐵) ≜ {𝑓|𝑓: 𝐴 → 𝑩} of 

all mappings from 𝐴 into 𝑩. A mapping 𝜑: 𝐴 → 𝐵 is named the surjective one if BA  )( , i.e. 

𝜑 ∈ 𝑺𝒖(𝐴, 𝐵). A mapping 𝑓 ∈ 𝑭(𝐴, 𝐵) is said to be injective one if  

  𝑓(𝑎) = 𝑓(𝑞) ⇒  𝑞 = 𝑎, here the q is a symbol of variable,   (0.1) 

i. e. 𝑓 ∈ 𝑰𝒏(𝐴, 𝐵). A different yet equivalent definition of the injective mapping named an 

injection too has the following kind: 𝑎 ≠ 𝑞 ⇒ 𝑓(𝑎) ≠ 𝑓(𝑞). If 𝑓 ∈ 𝑰𝒏(𝐴, 𝐵) ∩ 𝑺𝒖(𝐴, 𝐵) then 

the 𝑓  is said to be a bijective one, or a bijection, i.e. 𝑓 ∈ 𝑩𝒊(𝐴, 𝐵). In this case we say the sets A 

and B are bijective sets and write either A~B or |𝐴| = |𝐵|. By virtue of these definitions we have for 

arbitrary sets 𝐴, 𝐵 

𝑩𝒊(𝐴, 𝐵) =  𝑰𝒏(𝐴, 𝐵) ∩ 𝑺𝒖(𝐴, 𝐵).     (0.2) 

Theorem 0.1 Let 

𝐴 = ⋃ 𝐴𝑖,𝑖∈𝐽 𝐽 ⊂ 𝑁, 𝐴𝑖 ∩ 𝐴𝑗 = ∅ at 𝑖 ≠ 𝑗      (0.3) 

be any partition of the set A into not crossed subsets 𝐴𝑖. Then a mapping 𝑓 ∈ 𝐹(𝐴, 𝐵) ∀𝑖 
defines a partial mapping 𝑓𝑖: 𝐴𝑖 → 𝑩, and if  ∀𝑖 𝑓𝑖 ∈ 𝑰𝒏(𝐴𝑖, 𝑩) then  𝑓 ∈ 𝑰𝒏(𝐴, 𝐵). 

At the first we prove that  𝑓𝑘(𝐴𝑘) ≜  𝐵𝑘 ⊂ 𝐵 ⇒ 𝐵𝑖 ∩ 𝐵𝑗 = ∅ at 𝑖, 𝑗, 𝑘 ∈ 𝐽 𝑖 ≠ 𝑗 by means 

verification of an implication (01) and so on. 

Theorem 0.2. (The bijectivity criterion). A mapping 𝜑: 𝐴 → 𝑩 is a bijection if and only if any 

partition (0.3) of set 𝐴 into not crossed subsets 𝐴𝑖  holds the following two conditions:  

1) ∀𝑖 𝜑𝑖 ∈ 𝑰𝒏(𝐴𝑖, 𝐵),  2) if   𝐶 ≜ ⋃ 𝐵𝑖,𝑖∈𝐽 𝐽 ⊂ 𝑁, then 𝐶 = 𝐵.   (0.4) 

 Sufficiency  of Proof. Now we must show the implication (0.4) ⇒ 𝜑 ∈ ( 𝑰𝒏(𝐴, 𝐵) ∩
𝑺𝒖(𝐴, 𝐵)). At the first, Theorem 0.1 proves that 𝜑 ∈ 𝑰𝒏(𝐴, 𝐵). Now second condition in (0.4) holds 

𝜑 ∈ 𝑺𝒖(𝐴, 𝐵). 
Necessity of Proof. At present we shall prove that 𝜑 ∈ 𝑩𝒊(𝐴, 𝐵) holds both 1) and 2) in the 

condition (0.4). Let 𝜑 ∈ 𝐼𝑛(𝐴, 𝐵) and 𝐴 = ⋃ 𝐴𝑖 ,𝑖∈𝐽 𝐽 ⊂ 𝑁, 𝐴𝑖 ∩ 𝐴𝑗 = ∅ at 𝑖 ≠ 𝑗. Then we have 

𝜑(𝐴) = 𝜑(⋃ 𝐴𝑖𝑖∈𝐽 )=⋃ 𝜑(𝐴𝑖)𝑖∈𝐽 .  Let   𝜑𝑖 ≜  𝜑|𝐴𝑖
: 𝐴𝑖 → 𝐵 , so 𝜑𝑖 ∈ 𝐼𝑛(𝐴𝑖 , 𝐵) and we have 1) from 

(0.4). let 𝜑𝑖(𝐴𝑖) ≜ 𝐵𝑖 ⊂ 𝐵 and   ⋃ 𝐵𝑖, ≜ 𝐶𝑖∈𝐽 . It is obvious that 𝐶 ⊆ 𝐵.  Now we shall show that an 

existing of strong inclusion 𝐶 ⊂ 𝐵 contradicts to the mapping  𝜑 surjectivity. Let 𝐶∗ ≜ 𝐵\𝐶 ≠ ∅, so 

∃𝑐0 ∈ 𝐶∗ ⊂ 𝐵. Thus there exists  a pair {𝑘, 𝑎0: 𝑘 ∈ 𝐽 , 𝑎0 ∈ 𝐴𝑘} such that 𝑎0 ≜ 𝜑−1(𝑐0) ∈ 𝐴𝑘. 

Thus 𝑐0 = 𝜑𝑘(𝑎0) ∈ 𝐵𝑘 ⊂ 𝐶 and, therefore  𝑐0 ∉ 𝐶∗.  
One of the first alternative variants of this theorem was published in [1, p. 92]. 

Theorem 0.2 has following below consequence as 

Theorem 0.3 The infinite sets are divided into classes of equivalence as well as the finite sets 

to within of one element. 

Really, let  𝐴 ≜ (𝐵 ∪ {ℎ}, ℎ ∉ 𝐵), 𝐴1 ≜ 𝐵,  𝐴2 ≜ {ℎ}.  Now ∀𝑓 ∈ 𝑭(𝐴, 𝐵) f∉ 𝑰𝒏(𝐴, 𝐵) 

because there exists in 𝐵 a pair {𝑏0, 𝑏1}: 𝑓(𝑏1) = 𝑏0 = 𝑓(ℎ). 
Theorem 0.3 gives the Alternative decision of David Hilbert’s first Problem which is the 

Dedekind–Cantor’s Continuum Hypothesis (CH). We called R. Dedekind as co–author of the CH 

on the basis of G. Cantor’s correspondence with him [2, pp 327–372]. Published correspondence 

between G. Cantor and R. Dedekind contains XLIX letters, Cantor wrote 35 letters from them.  

In the letter II (29.11.1873) Cantor wrote that no matter how he was inclined to think that any 

one–valued correspondence between a set (𝑛)  and a set (𝑥)  can not be established, nevertheless he 

can not to find a reason for this, although it is simple perhaps and namely that is what takes him ...  
 

So now we think our Theorem 03 is the answer to Cantor on his address to Dedekind. 

Here we followed to Paul Cohen’s forecast about continuum–hypothesis (CH) [3, IV.13]: “A 

point of view which the author feels may eventually come to be accepted is that CH is obviously 

false”. 
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Now there is the time and place to say some words about the finite and the infinite in 

Mathematics without some dogmas too. Namely here we can note the priority of a concept of set 

ordering before the concept of the finite–infinite, as it was done, for example, in our textbook 

[4, 3.5].  

Definition 0.1 A linearly ordered set is said to be as the finite set, if it is either empty, or a 

singleton, or each its subset except trivial has two extreme elements: the smallest and the largest. 

Linearly ordered set we call the infinite one, if at least one its subset has less than two extreme 

elements.  
 

 1. C–exact pairs and the mapping 𝝋: 𝑵 → 𝑵 surjectivity  

To begin with, we introduce a novel concept 𝐶 −(𝑚, 𝑘) − 𝑝𝑎𝑖𝑟 of natural variables. Let sets А

N and В N  be infinite sets with either 𝐴 ∩ 𝐵 = ∅ or ∩ 𝐵 ⊇ ∅ and 𝐸 ≜ 𝐴 ∪ 𝐵 ⊆ 𝑵. Further, 

Let Ψ ≜{(m, k): (m, k)∈ (𝐴, 𝐵)} ⊂ (𝐴, 𝐵)} be the set of pairs neighboring in the 𝐸 elements m and 

k. 

Definition 1.1 The pair (m, k) of natural variables mA and kB is said to be 𝐶 −(𝑚, 𝑘) −
𝑝𝑎𝑖𝑟 if there exists such a number С ∈ 𝑵\{1} that the every pair (m, k) ∈ Ψ holds the inequality 

|𝑚 − 𝑘| < 𝐶.               (1) 

Condition (1) has the following equivalent form of record: 

∃𝐶,̃ 𝐶̃  ≥ 𝐶, (∀𝑘 ∈ 𝐵 ∃𝑚 ∈ 𝐴): 𝑘 = 𝑚 + 𝑝(𝑚), 𝑝(𝑚) ∈ 𝒁, |𝑝(𝑚)| < 𝐶̃.    (2) 
    

Let as above the 𝑰𝒏(𝑵, 𝑵) be a set of injective functions : 𝑵𝑵. In this item we will 

consider the functions In(N, N) on default. A sequence 𝜉 ≜ (1, 𝑛1, 𝑛2, … , 𝑛𝑖 , … ) of natural 

numbers  𝑛𝑖 is said to be a sequence with a limited step if there exists such number 𝐶𝜉 ∈ 𝑵 that  

∀𝑖 ∈ 𝑵(𝜉), where  𝑵(𝜉) ≜ {𝑖: ∃𝑛𝑖 ∈ 𝜉} ⊆ 𝑵, 0<𝑛𝑖 − 𝑛𝑖−1<𝐶𝜉, 𝑛0 ≜ 1. Further, let a set 𝑁𝑖 
be 

defined as {1, 2, …, 𝑛𝑖}. The sequence 𝜉 and a mapping : 𝑵𝑵 define two number 

sequences 

  𝛿𝑖 ≜ 𝑚𝑎𝑥𝑛≤𝑛𝑖
{𝜑(𝑛) − 𝑛𝑖} ≥ 0   and   𝑑𝑖


 |𝐷𝑖 |0,   𝐷𝑖 ≜ 𝑁𝑖\𝜑(𝑁𝑖).   (3) 

 

It is obvious that |𝐷𝑖| = |𝑁𝑖\𝜑(𝑁𝑖)| and then 𝑑𝑖 ≤ 𝛿𝑖. Really,  𝑑𝑖 = 𝛿𝑖 if and only if ∀𝑝, 𝑛𝑖 <
𝑝 <  𝛿𝑖 + 𝑛𝑖 , ∃𝑛 ≤ 𝑛𝑖: 𝑝 =  𝜑(𝑛). In all other case we have the inequality 𝑑𝑖 < 𝛿𝑖. The mapping 

: 𝑵𝑵 defines a sequence {𝜑𝑛}𝑛=1
∞  of integers    𝜑𝑛 ≜ 𝜑(𝑛) − 𝑛  as well too. If for some 

sequence  there exist both   𝛿𝜑 ≜ 𝑠𝑢𝑝𝑛∈𝑁(𝜑(𝑛) − 𝑛) and  𝛿𝜉 ≜ 𝑠𝑢𝑝𝑖∈ 𝑁(𝜉)(𝛿𝑖) then we have the 

obvious inequality     

 𝛿𝜉 ≤ 𝛿𝜑.           (4) 

Now we formulate the direct and obvious corollary of both the definition of set 𝐷𝑖 in (3) and 

the mapping : 𝑵𝑵 surjectivity as follows: 

Statement 1.1 The necessary condition of the mapping : 𝑵𝑵 surjectivity has the 

following two equivalent forms: 

∀𝑖 ∈  𝑵(𝜉) ∃𝑗 ∈ 𝑁: 𝐷𝑖 ∩ 𝐷𝑖+𝑗 = ∅ and   𝑁𝑖 ⊂ 𝑁𝑖+𝑗.         (5) 

Below, for short we say “for almost all i” instead of the phrase “except for a final set of 

indexes “i” and we write by definition  ∀̃i.  Now we describe the attributes of the surjectivity and 

antisurjectivity of mapping : 𝑵𝑵.  
Statement 1.2 Sufficient conditions of the surjectivity (a) and antisurjectivity (b) of the 

mapping : 𝑵𝑵 have, accordingly, the following forms  

(𝑎)∀̃i ∈N(𝜉) 𝑑𝑖 = 0,  (b)  ∀𝐶∃𝑖(𝐶) ∈ 𝑁(𝜉): 𝑑𝑖(𝐶) > 𝐶.     (6) 

Proof Each number  𝑑𝑖 determines a quantity of such elements   n   each of which belongs to 

a subset 𝑁𝑖  and does not have a prototype −1(𝑛) on 𝑁𝑖.   Therefore, an unboundedness of 

sequences {𝑑𝑖} in (b) of (6) contradicts to the condition ( 𝑵) = 𝑵 of a mapping  surjectivity. 

The condition (a) in (6) guarantees the existence of such number 𝑖0 that for the mapping  the 
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following circuit of implications is valid:  

∀𝑗 > 𝑖0 𝑑𝑗 = 0 ⇒ 𝐷𝑗 = ∅ ⇒ ( 𝑵𝒊) =  𝑵𝒊 ⇒ ( 𝑵) = 𝑵. 

We shall speak about an antisurjective injective mapping : 𝑵𝑵 that it is potentially 

impracticable on all set N. As the examples show, the conditions (6) are not necessary for the 

surjectivity and antisurjectivity, accordingly, of the function .   In view of conditions (3)–(6) 

everyone can prove following below statements easily. 

Statement 1.3 The sequences {δ
𝑖
} and {𝑑𝑖}, 𝑖𝑵(𝜉), defined by means of the pair (𝜉, ), 

satisfy one and only one of the following three conditions: 
 

         (a)       ∀̃i ∈N(𝜉): (𝛿𝑖 = 0)⇔ (𝑑𝑖 = 0),      

(b)    (∃𝐶1 , 𝐶2 ,   𝐶1 ≥ 𝐶2 ∈ 𝑵): (∀̃i ∈N(𝜉) (0<𝛿𝑖 < 𝐶1 ) ⇔ (0 < 𝑑𝑖 < 𝐶2 )),   (7) 

 

(c)      𝑖∈N(𝜉)  (𝑑𝑖 → ∞) ⇔ (𝛿𝑖 → ∞).      
 

Statement 1.4 For any injective mapping  :  NN there exists a sequence 𝜉 of such kind 

that  
 

  δ𝜉 = δ𝜑.        (8) 

The corollary of Statements 1–4 will be written below.  

Theorem 1.1 The boundedness of a sequence {φ
𝑛

} is a necessary condition of the injective 

mapping : 𝑵𝑵 surjectivity, i. е. ( 𝑵) = 𝑵 holds  

lim𝑛→∞(φ(𝑛) 𝑛⁄ ) = 1.         (9) 

Theorem 1.2 The injective mapping: 
∗: 𝑵𝑵 ∗(𝑘) ≜ 𝑚𝑘, which defines some sequence  

𝑀∗ ≜ ∗(𝑵) = (𝑚1, 𝑚2, … , 𝑚𝑘…) 

with an unlimited step  𝑠𝑘 ≜ 𝑚𝑘+1 − 𝑚𝑘, is the antisurjective function or, in other words, it 

will be impracticable on all set N. 

Proof Let 𝑀∗ be sequence with an unlimited step then we have the following condition: 

∀𝐶 > 0∃𝑘(𝐶) ∈ 𝑵(𝜉): |𝑚𝑘(𝐶)+1 − 𝑚𝑘(𝐶)| > 𝐶.               (10) 

Let now 𝜉∗=N so 𝑵(𝜉∗) = 𝑵, and by virtue of (3) we have 𝑛𝑘 = 𝑘 + 1  hence δ𝑘
∗ = ∗(𝑛𝑘) −

𝑛𝑘. 

Further δ𝑘+1
∗ − δ𝑘

∗ = 𝑚𝑘+1 − 𝑚𝑘=(𝑚𝑘+1 − (𝑘 + 1)) − (𝑚𝑘 − 𝑘) = 𝑚𝑘+1 − 𝑚𝑘 + 1. Now 

with (10) we get following inequality for all 𝑘(𝐶) ∈ 𝑵: δ𝑘(𝐶)+1
∗ − δ𝑘(𝐶)

∗ + 1 > 𝐶.  Therefore we 

have 

δ𝑘(𝐶)+1
∗ > 𝐶 + δ𝑘(𝐶)

∗ − 1.       (11) 

The inequality (11) proves an unboundedness of the sequence {δ𝑘
∗ }  defined by means of this 

pair (N, ∗), which follows from the last inequality by virtue of arbitrariness of number C in (10). 

Therefore, the mapping ∗: 𝑵𝑵, which defines the sequence 𝑀∗ in this theorem, is an 

antisurjective one by virtue of (6), (7), (10) and (11).  

Theorem 1.2 implies the following statement.  
 

Theorem 1.3 Let 𝐴 ≜ {𝑘} ⊆ 𝑵  and 𝐵 ≜ {𝑚} ⊆ 𝑵  be infinite subsets of set N. Then there 

exists such number 𝐶 > 0 that the pair (k, m) of natural variables 𝑘 ∈ 𝐴 and 𝑚 ∈ 𝐵 is С–(m, k)–pair 

(1). 

As the examples show, the necessary conditions (5) and (9) of a surjectivity of an injection  

: 𝑵𝑵 are independent ones, hence, any of these conditions cannot be sufficient. However, the 

following statement below is valid.  

Theorem 1.4 The joint realization of conditions (5) and (9) is a sufficient attribute of an 

injection : 𝑵𝑵 surjectivity.  
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2. The convergence of number sequences 

A number sequence (𝑎) ≜ {𝑎𝑛}𝑛=1
∞ ≜ (𝑎1, 𝑎2, … , 𝑎𝑛, … )  is said to be a fundamental one, or 

Cauchy sequence (CS) if 

 (∀𝜀 > 0 ∃ 𝑛(𝜀) ∈ 𝑁): (∀𝑛, 𝑚 ≥ 𝑛(𝜀)) |𝑎𝑛 − 𝑎𝑚| < 𝜀.    (12) 

     

The condition (12) is equivalent to the following limit equality: 

 lim𝑛→∞(𝑎𝑛 − 𝑎𝑚) = 0.       (13) 

The condition (13) has (see [5, p. 355]) a more concrete form of record 

limmin (𝑚,𝑛)→∞(𝑎𝑛 − 𝑎𝑚) = 0.              (14) 

Corollary of Theorem 1.3 The pair (m, n) of variables m and n on the conditions (12)–(14), 

each of which defines Cauchy sequence, is С–(m, k)–pair.  

The number sequence (a) is said to be converging to a finite number A, if 𝑙𝑖𝑚(𝑎𝑛) = 0 .  
Otherwise, i. е. if 𝑙𝑖𝑚(𝑎𝑛) does not exist or it is equal (∓∞), the sequence (a) is said to be in the 

traditional analysis divergent one (DS). It is obvious: {(𝒂)} = {𝑪𝑺} ∪ {𝑫𝑺}. 

 As well, how it is accepted in the classical analysis, there is  

{CS}{DS}=.       (15) 

We introduce a following novel concept for a refutation of equality (15). Let  𝐴, 𝐵 and 

Ψ ⊂ (𝐴, 𝐵) be as above in item 1.  

Definition 2.1 The number sequence (a) is said to be e–divergent one (e–DS) if there are such 

two infinite subsequences А N and В N  with 𝐴 ∩ 𝐵 = ∅ and  ∃ (𝛿 > 0, 𝑛∗ ∈ 𝑁): ∀(𝑚, 𝑘) ∈
Ψ, 𝑚 > 𝑛∗,  holds the inequality 

|𝑎𝑛 − 𝑎𝑚 ≥ 𝛿.            (16) 

The direct comparison both of conditions (12)–(14) and (16) gives  

Theorem 2.1 Any number sequence is either Cauchy sequence, or an e–divergent one:  

(a) (a){CS}{е–DS} and {CS}{е–DS}=.              (17) 

It is easy to show, that 

{e–DS}{DS}.               (18) 

The example of the sequence (𝒂) ≜ {𝑛𝛼, 0 < 𝛼 < 1}𝑛=1
∞  confirms the following strict 

inclusion: 

{e–DS}{DS}.               (19) 

Proof The Sequence (а s divergent one, as  0 < 𝛼 < 1 holds  lim𝑛→∞ 𝑛𝛼 = ∞.  On the 

),( km  C−(𝑛, 𝑚) −  

∃ (𝐶 > 0, 𝑞(𝑘) ∈ 𝑍, |𝑞(𝑘)| < 𝐶): 𝑚 = 𝑘 + 𝑞(𝑘)  
 

 Now we examine the function  𝑓: 𝑅+ → 𝑅+, which is determined by the formula:  𝑓(𝑥) =
(𝑥 + 𝑞(𝑥))𝛼 −𝑥𝛼. The value 𝑓(𝑘) = (𝑘 + 𝑞(𝑘))𝛼 −𝑘𝛼 of the function f at x=k coincides with a 

difference  (𝑚𝛼 −𝑘𝛼)  at  𝑚 = 𝑞 + 𝑞(𝑘). It is easy to show, that 𝑥 → ∞  holds lim𝑥→∞ 𝑓(𝑥) = 0.   
Hence, the inequality (1) will be violated, at least, for any one pair (𝑚0, 𝑘0) ∈ (𝐴, 𝐵),  𝑚0 >
𝑛∗, 𝑘0 > 𝑛∗. Therefore, the sequence (𝑛𝛼){e–DS} at 10  .  

 

Therefore, the strict inclusion (19) takes place instead of condition (18). And, hence, in view 

of (19), we have the following inequality instead of (15) 

{CS}{DS}.             (20) 

Now we introduce a concept which has fundamental importance in our theory.  

Definition 2.2 The number sequence (a) is said to be w–convergent (w–CS) if this sequence 

(a) satisfies following condition  

either   ∀𝜀 > 0 ∃𝑛(𝜀) ∈ 𝑁: ∀𝑛 ≥ 𝑛(𝜀) |𝑎𝑛+1 − 𝑎𝑛|< 𝜀, or  lim𝑛→∞(𝑎𝑛+1 − 𝑎𝑛) = 0.    (21) 

Our textbook [4, 7.1] contains full proofs following theorems.  
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Theorem 2.2 Any Cauchy sequence (a) is w–convergent one, i. е. {CS}{w–CS}. 

Theorem 2.3 Any w–convergent sequence is the Cauchy one, i. е. {w–CS}{CS}. 

Theorems 2.2 and 2.3 compile the following statement: 

Theorems 2.4 The set of Cauchy sequences coincides with the set of w–convergent 

sequences:  

{CS} = {w–CS}. 

Theorems 2.4 follows directly from both Theorems 2.1 and Definition 2.1 and Definition 2.2 

since those definitions holds {w–CS}}{е–DS}=. 

Corollary of Theorem 2.4.  There exist Cauchy sequences which do not   limited by the some 

finite number. 

The study of a sequence (а)

 {lnn+

eC +
n } of the harmonious series sums (see [6, it. 388]) 

satisfies to condition (21), but its limiting value is more than any finite number. The corollary of 

Theorem 2.4 motivates an introduction of the following concept. 

Definition 2.3 The limit value of Cauchy sequence (а), which is not limited by any finite 

number, is said to be an infinitely large number (ILN), defined by this sequence (а). 

Let the symbol  be denoted the set of all ILN. In the non–standard analysis the ILN are 

named (see [7, Ch. 2.1]) as either non–standard, or impracticable, or actually infinite large, or 

inaccessible numbers.  

Proposition 2.1 The sequence (а) ≜ {𝑎𝑛: 𝑎𝑛 = 𝑛1−𝛼, 𝛼 > 0} ∈ CS}. 
 

Proof 𝑎𝑛+1 − 𝑎𝑛 = (𝑛 + 1)1−𝛼 − (𝑛)1−𝛼=  

    = (𝑛 + 1) (𝑛 + 1)𝛼⁄ −𝑛 𝑛𝛼⁄ <(𝑛 + 1) 𝑛𝛼⁄ −𝑛 𝑛𝛼⁄ = 1 𝑛𝛼⁄ → 0. 
Theorem 2.5 An unlimited differentiated in ±∞ function 𝑓: 𝑹 → 𝑹  converges to 

corresponding ILN Ω(𝑓) if and only if 𝑓′(∞) = 0. 
Proof  The passage to limit in mean value theorem which has been written down for function 

f:  

𝑓(𝑛 + 1) − 𝑓(𝑛)=𝑓′(𝑡)((𝑛 + 1) − 𝑛),  n<t< n+1 

makes up the proof of Theorem 2.5.  

Now we shall receive an important on the Theory of numbers result by means of Theorem 

2.5.   
 

The quantity 𝜋(𝑥) of the prime numbers 𝑝, 𝑝 < 𝑥, is defined as well know [8, 1.1.5] by the 

asymptotic formula 𝜋(𝑥) = 𝑥 𝑙𝑛𝑥⁄ +  𝑜(𝑥 𝑙𝑛𝑥⁄ )  

We proved that there exists some ILN ≜ Ω𝜋 which defines the quantity of all prime numbers:  

 Ω𝜋 ≜ limx→∞𝜋(𝑥), because limx→∞(𝜋(𝑥))
′

= 0. 

Hence we can say that there exists the corresponding ILN ≜ Ω(𝜋) for an estimate of maximal 

prime number.  

3. The convergence of alternative number series 

Let's designate by the symbol n  the sum of n the first members ia  of the number sequence 

(a)

 ( na )


 (  ,,,, naaa 21

): n naaa 


21 , and the symbol nS  denotes the value of the 

sum n . Thus  

 1n n +
1na  , 1nS nS +

1na , nN.        (22) 

Definition 3.1 The pair of sequences )( n and )( nS , defined by means of equations (22), is said 

to be a number series defined by sequence (a), and we shall write  
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)(a

 



1n na

 na ≜   naaa 21


 (А).      (23) 

Here and below the summation at symbol  is supposed formally from 1 up to , that means 

an unlimited opportunity of transition from the 
n  to the 

1n
.  

Definition 3.2 The number series (А) is said to be convergent to the number A, if the number 

sequence (
nS ) of the values 

nS  of partial sums n  converges to this number A. In this case number 

A is said to be the sum of series (А), and we write ASn lim . 

The equalities (23) can be written easily in the following way: 

(А)= na =  )( naaa 21 (


1n ia )

 n + n .              (24) 

The value of the infinite sum 
n


 



 1nk ka  in (21), which is called n–th rest of series (А), 

shall be denoted by a symbol 𝑟𝑛.  

Statement 3.1 The necessary feature of some number series convergence, i.e. lim 𝑎𝑛 = 0, is 

also a sufficient one. 

Really,  lim 𝑎𝑛 = lim(𝑆𝑛 − 𝑆𝑛−1) = 0 is a characteristic criterion (21) of w–convergence of a 

number sequence (𝑆𝑛), therefore   𝑟𝑛 → 0. A reverse implication  (𝑟𝑛 → 0) ⇒ (𝑎𝑛 → 0) is obvious. 
 

The number series (А)=


1i ia  is said to be an alternative one, if its quantities of both 

positive and negative addends are not limited.  

Theorem 3.1 The number series (B), being any permutation of alternative series (A) which 

converging to some number A not absolutely, converges to the same number A. 

Proof Let a convergent to number B  jbB 
 nn  ~~

of a mapping : NN  , (k)=j, where 
ka


 jb  from the series (A):  






 
1)(

)(

nk
i

nk

n
i

n

jnn aaaA
11

)()( nkn n  ,      (25) 

where the )(nk  denotes a max{k: 
ka


 jb , jn}. Step by step we shall carry out the mapping 

: NN   and simultaneously build both the sequence ( n
~

) of the partial sums n
~

 of series 

(B) and the sequence ( nS
~

) of these sums values nS
~

. We shall receive the following bellow 

equality on n–th step from the identity  ia  ia  in view of (23):  

 ia    nknk  ≡ )()( nkn n  = n

~
)()(~

nkn  ,           (26) 

where the sum  




)(
)(~ nk

ni ni
an
1  with )(nkni   contains those terms of the partial sum  nk  

of series (А), which don’t belong to the partial sum n
~

 of series ( B (n)), and  


)(
)(

nk

ni ian
1 . Thus 

with (26), we have ∀𝑛 ∈ 𝑵  the following equalities: 

)(nn  = )(~~ nn  ,  )(nn  = n

~
)(~ n .       (27) 

If we denote by 𝑠̃(𝑛) and 𝑠(𝑛)  in (26) respectively the values of the sums )(~ n  and )(n , 

then we will obtain the number equalities equivalent of (25):  

 nsSn  = nS
~

)(~ ns , )(nsrn  = )(~~ nsrn  .             (28)  
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Since 0nalim , 0)(lim ns , 0)(lim nkr  at n follows from the convergence of series 

(А), then we have )(~lim~lim nsrn   from the second equality in (28). Now from the first equality in 

(28) we receive the following result: 
nSlim = nS

~
lim + )(~lim ns , i. е.,

nr
~lim =АB  at n . Thus, in 

view of nS
~
В, 

nS А , we have the required implication: (
nr

~ 0, 
nr 0)(В=А).  

In the general case, at 
nS А and nr 0 the equivalence ( nS

~
В)  (

nr
~ (А–В)) 

follows from equality (28), thus we have  

Theorem 3.2 If the sequence (
n ) of the sum 

n  was constructed arbitrarily from the 

members of convergent to number A alternative series (A) and the sequence )( 

nS  of the sums 
n  

values 


nS  converges to number B, then the sequence (


nr ) of the values of respective rests 
n  

converges to number A–B (compare [9, pp 232–233]). 

Some results of this paper can be found in the text–book [10], which was published without 

the consent of the authors, it is readily available, but contains many publishing typos and 

inaccuracies. 
 

Список литературы / References: 

1. Sukhotin A. M. About a some false promise // Ukrainian Mathematical Congress 

(UMC’2001), International Conference on Functional Analysis, August 21— August 26, 2001, 

Kiev, Ukraine: Abstracts. Kiev: Institute of Mathematics, Ukrainian National Academy of Sciences, 

2001. P. 92. 

2. Cantor G. The works on the sets theory: Translation from Germany. Moscow, Nauka, 1985. 

430 p. (In Russian). 

3. Cohen P. J. Set theory and continuum hypothesis. Princeton–New Jersey–Toronto–New 

York: D. Van Nostrand Company, 1958. 

4. Sukhotin A. M.  The beginning of high Mathematics. Tomsk: Publishing house TPU, 2008. 

164 p. (In Russian). 

5. Weisstein, Eric W. CRC Concise Encyclopedia of Mathematics. 2nd ed. London–New 

York: Chapman&Hall/CRC, 2002.  

6. Fikhtengolts, G M. Course of differential and integral calculus. Moscow: Science, 1967. 

V. 2. (In Russian). 

7. Gordon, E. I., Kusraev, A., Kutateladzе, S. S. The Infinitezimal analysis. Crandal R., 

Pomerace C. Prime numbers. A Computation Perspective: Second Edition. Springer, 2005. 663 p. 

V. 1. Novosibirsk: Publishing house of Institute of Mathematics, 2001. (In Russian). 

8. Crandal R., Pomerace C. Prime numbers. A Computation Perspective: Second Edition. 

Springer, 2005. 663 p.  

9. Riemann, B. Works. Leningrad: GosTexIzdat, 1948. (In Russian). 

10. Сухотин А. М., Тарбокова Т. В. Высшая математика. Альтернативная методика 

преподавания: учебное пособие для прикладного бакалавриата. М.: Юрайт, 2016. 224 с.  
 

 

Работа поступила  

в редакцию 22.11.2016 г.  

 Принята к публикации 

26.11.2016 г. 

  

http://www.bulletennauki.com/

