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Abstract. Let (k, A) and (m, B) be two natural variables thatis k € A< N and m € B € N.
The pair (k,m) € (4, B) is said to be C-pair if 3 C € N: V (k,m) which are as the neighboring
elements in E2AUBCN,|k—m|<C. Further we prove (Theorem 3)V pair (k,m) €
(4,B) 3 C € N: this pair is C-pair. Let (k, A) be natural variable with unlimited step that is vV d>0
dn € N: k,,.1—k, > d. Theorem 3 implies that the (k, A) with unlimited step can be defined only
some subset N, € N and J & N\N, is any infinite set. That implies following conclusion (Statement
6). Let t(n) be a set of all prime numbers p: p< n. If ?llig} m(n) £ (o) £ Q now it is obvious that

| Q [<| N|. This theorem was known still Euclid more two thousand years ago. In turn the set of primes
is any sequence with unlimited step. Thus Theorem 3 proves an existence of infinite large number
m() = Q. G. Galilei has (Example 1) paid his attention into the mapping g: N - N, g(n) = n?. In
our time this fact is known as Galilei’s paradox. It is obvious that g(N) £ N, < N. At the second
hand, v d>0 3n € N: (n + 1)®> — n® > d. Injective mapping ¢: N —» N with 9(N) = N, c N is said
to be potentially antysurjective one (Definition I11). Let Q(n) be (Example 2) square n-matrix
(gk), gk 2 k/mwith 1 <k, m< n. The Q(n) contains n? of positive rational numbers ¢, with 1/n <
g < n. Everyone will easily believe that|Q*(n)| < n?, if we shall assume only distinct numbers
in Q" (n).The Q*(n) depends essentially on values of the function m(n), for example Q*(p) =
Q*(p — 1) + 2(p — 1). Now we accept Q* (n)=u(n)n?. If we assume a hypothesis that limp(n)=0,6,
then we have |Q*(N)|= 0,6|N|?. (Example3) Let (A)2 ¥  (n)~! be a harmonic series
(Example 3). We prove that (A) is the convergent series in addition to it converges to any infinite
large number Q, though it is well known, its sum is not limited by any finite number. See, please,
[1, 2].

Annomayus. Ilycts (k,A) u (m, B) cyTh 1Be HaTypajbHbIE NTepeMeHHbIe, Tak 4YTo k € A & N
u meBCN. Ilapa (k,m) € (A,B) uazsiBactcs C-napoii, ecmu 3 C € N: V (k,m), xotopbie
ABISIOTCA  cocequumu dyeMenTaMu B E 2 AUB C N, |k — m| < C. Jlanee Mbl J0Ka3bIBaeM
(Teopema 3) V napsi (k, m) € (A4, B) 3 C € N Takoe, uto 3Ta napa sisercs C-napoit. [Tycts (k, A)
OyzeT HaTypajJbHOH NepeMEHHOM ¢ HEOTpaHUYEHHBIM IIaroM, 3TO 03HAYaeT IO ONPEAEICHUIO, YTO
vV d>0 3n € N: k,,1—k, > d. Teopema 3 yrBepxkuaer, 4yTo HaTypanbHas nepemenHas (k,A) c
HCOTPAaHWYEHHBIM IIArOM MOXET OBITh OMNpE/eTeHa TOJNBKO Ha HEKOTOPOM COOCTBEHHOM
nogmHOkectBe Ny € N u | £ N\N, ecth OeCKOHEYHOE MHOXKECTBO, UTO BIICUYET CIICTYIOIICE
npemioxkenne (Yteepxkaenue 6). Ilycte m(n), mo omnpenencHUro, 03HAYaET MHOMXKECTBO BCEX
npocThIX uncen P< n. Tornaa npu npeaeabHOM Iepexoae MbI TIOITYYUM, YTO ;Iil_lgl m(n) £ (o) £ Q,

rae oueBuaHO | |[<| N|. C apyroit CTOpOHBI, TaBHO W3BECTHO, YTO MHOXECTBO MPOCTHIX YHCEI
o0pa3yeT HaTypaJbHYIO IOCJEI0BATEIbHOCTh C HEOrpaHHMUEHHBIM marom u, no Teopeme 3, srta
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MOCJIEIOBATEIbHOCTh HE MOXKET ObITh ompezeneHa Ha BcéM MHoxkecTBe N. ClienoBaresbHO,
Teopema 3 onpenenser HeKOTOpoe GecKOHEUHO Gombmoe urnciao m(oo) = Q. T'.Tamuieii oOparu
cBOE BHMMaHue Ha oToOpaxenue g: N > N, g(n) = n?. B nHame Bpems 5TOT (aKT M3BECTEH Kak
napadoxc I'anuneo I'anunes. 3nech oueBuano, uto g(N) £ Ny c N.  C gpyroii croponsl, V d>0
In€N: (n+1)*>—n®*>d. UnsekrusHoe orobpaxenue f:N - N, rne f(N)=N;c N wu
NOAMHOXKECTBO Ny  ABIAETCA OECKOHEYHBIM MHOXECTBOM, HA3bI6ACMCA  NOMEHYUATbHO
anmuctopvexkmusnvim  omoopasicenuem (Onpenenenune ). Ilycte Q(n) Oymer (Ilpumep 2)
kBafpatHoii N-marpuueii (qk),qX 2 k/m u 1<k, m<n. Tabmuma Q*(n) comepxur n?
HOJIOKHUTENIBHBIX PAllMOHATBHBIX uucen (, rae 1/n < g < n. Kaxaplit MOKeT JIerko yOeJuTcst B TOM,
uto |Q*(n)| < n?, ecnu MBI OyaeM paccMaTpUBaTh TOIBKO HepaBHble unciaa B Q1 (n). MuoxkecTBo
uncen Q*(n) cymecTBeHHO 3aBMCHT OT 3Hauenuii Qymkuuu T(n), mampumep, Q1 (p) =
Qt(p—1)+ 2(p — 1). Teneps MbI npeanonoxkum, uro Q*(n)=u(n)n? u, xpome TOro, NpumMeM
runoresy, uro limu(n)=0,6. Torma mel momyuum i MHoxkectBa QT (N) ciemyromyro OLEHKY
|QT(N)|~ 0,6|N|?. Haxkomnel, Mbl paccMOTpUM rapMoHuueckuii psaa (A)2 Yo (n)~! (Ilpumep 3),
rJI¢ MBI JTOK@XeM, 9TO 3TOT psia (A) SBISETCS CXOMAIIAMCS YHCIOBBIM PSOM M CXOMSAIIAMCS K
HEKOTOPOMY OECKOHEUYHO GoJbIIoMy ducay (;, X0oTsa ¢ XV Beka MHOTO pa3 JA0Ka3aHo, 9YTO CyMMa
rapMOHHYECKOTO Psijia HE OTPaHMYCHA HU KaKUM JEHCTBUTEILHBIM YUCIIOM. HekoTopslii MaTepua
ATOM cTathu Oosiee (MIu MeHee) MoApoOHO M3J0okeH HaMu B [1] u (B [2]).

Keywords: natural variable, C-pair, Galilei’s paradox, the prime numbers, the harmonious
series convergence.

Kniouesvie cnosa: HatypanbHas nepemMeHHas, C-napa HaTypajbHBIX IEPEMEHHBIX, IapaJoKC
I'. Ianunest, npocTble Yucia, CXOAUMOCTb TAPMOHUYECKOTO Psijia.

1. G. Galilei’s paradox

Properties of infinity, surprising and not clear from the point of view of all final, were incentive
motive of our research. Really, properties of infinity in the analysis: a+oo=c0, axoo=00, cotoo=c0,

coxoo=00, 00" =oo and others are not intelligible in the finite arithmetic. Moreover, the equalities

Z @ "=o0= Z n* deprive concept of infinity of any definiteness and structure that increases a

risk of any mistakes occurrence in proofs of statements about infinite. In the beginning of XVII
century G. Galilei has opened as if quantities of natural numbers and their squares are equal. On this
basis he approved, that «...properties of equality, and also greater and smaller size have no place there
where it is a question of infinity, and they are employ only to finite quantities» [3, p. 140-146].
Below we follow this thesis and at the first we check a surjectivity of all injective mappings of set N
of natural numbers and its infinite subsets which everyone accepted as obvious by default in the
traditional analysis.

2. The properties of injective mappings N—N

Let ANB @ and E2 AUBCN.

Definition 1. The pair (m, k) of natural variables meA and keB is said to be C-pair if there
exists a number C>0 and inequality

Im-k | <C @)

is true for everyone pair (m, K) of elements m and k which are neighbouring ones in E.
The condition (1) of C-pair (m, k) is equivalent with q(k), p(m)e€ Z, |q(k) < C,| p(m)|<C
to each of two following ones:
DNvVvmeAIkeBm=k+q(k).2)Vke Bam € A:k = m + p(m). 2
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Below we prove Theorem 3: V (m, k)3C°of this kind, that this pair (m, n) is C° — pair atm,
N — oo. This statement is one of constituent parts of alternative methodology. Any mapping f: N —
N defines a sequence {a,}n=; 2 (@) £ (a,) of natural numbers a,,where 2 f(n),n € N. Now we
consider the injective mapping ¢: N - N by default. Let & 2 (1,n4,ny,...,n;, ...) be a strictly

monotonous sequence, N(§) 2 {i:3n; €} S N and N; 2 (1,n4,ny, ..., ny). Further, letA;,, ﬁ
N i1\ Ni . The sequence ¢ breaks up the set N into not crossed pieces: N =U A;, we shall name this
partition by &—partition of set N. Sequence ¢ and mapping ¢: N — N define three sequences (di), (
9;), ie N(&) and (¢,,) of natural (integer) numbers atie N(§), n € N, by formulas:

d; 21D;120, D; = Nj\p(N;), ;= Max{gpn)-N}0. @, L¢(n)-n. 3)

In (3) symbol |M| designates a quantity of elements of set M and, generally, ¢, € Z. Let Dy

So(N\N,; and d 2|D; |20, then di =d; <§;. Really dj =6 if and only if {
p: N <p<d;,vn<n p=oe((n)}=9. Otherwise, dj < §;.

Figure 1 illustrates the mapping ¢: N—N with (m)é p.

Figure 1. The mapping ¢: N—N with (m)é p.

Here p, € D, s,, s, €D;, 8; = p, —N;. Now we emphasize, that Vie V(&) the number

dj= |Di| =d; defines a quantity of "holes" in the Nj é{1, 2,...,nj}, which is a quantity of those

elements of a subset N; £ (1,n4,n,, ...,n;), everyone of them has no prototype on N;. Now we
formulate almost obvious fairly

Statement 1. If 3, éSUIE){(p(n) — N} and for any sequence & &, = _ S;EJJ(F;){Si}, then O; <9,
ne le

However, there exists such &- partition of N with ¢: N — N of this kind so we have

5.8, “

Statement 2. Necessary condition of surjectivity for every injective mapping ¢: N — N has
following two equivalent forms

VieN() I je N: D, "Dy, =@and N; (N, ;). (5)

+]
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e Let ¢(N) = N. Then the condition 3j € N: D; N D;,; = @ and N; € ¢ (N;,;) follows from
inclusion N; € ¢(N) and finiteness of set Nj. Further we shall prove implication (Di NDy,j =
@) = (N; € ¢(N;4;)). Really,inclusion ¢~ (D;) c N;,; follows from both then D; € ¢ (N4 )
and definition of set D;, ;. Then D; c ¢(N;,;). Besides by definition of set D; we have inclusion
N\D; € @(N;) € ¢(N;4;).Hence  N; € ¢(Ni, ;). Return  implication (N; € ¢(Ny,;)) = (D; N
D;y; = @) is proved similarly. m

Below the phrase «for almost all i» designates «for exceptions of finite set of indexes i» and we
write "Vi"by definition.

Sufficient condition of surjectivity (a) and antysurjectivity (b) of mapping ¢ are written in
terms of sequence (d;) below as consequence of both Statement 2 and definition of the (d;).

Statement 3. Sufficient conditions of surjectivity (a) and antysurjectivity (b) of injective
mapping ¢: N — N have, accordingly, following form:

eThe condition (6a) guarantees an existence of number i, such so for ma{pping @ there exist
the following chain of implications:

Vi>iy dj=0=D; =0 = ¢(N;)=N; = ¢(N) = N . The condition (6b) approves

limitlessness of sequence (d;), 1€ N(§), which contradicts to the surjectivity of injective mapping
@: N — N, as each number d; is equal by definition to quantity of elements n of set D; each of them
has no prototype ¢~ (n) in N;. m

As show examples, conditions (6a) and (6b) are not necessary, accordingly, for surjectivity (a)
and antysurjectivity (b) of mapping ¢: N — N. We say about the injective antysurjective mapping,
that it is potentially not realizable on all set N.

Theoreml. Sequences (d;) and (6;), i € N(§), defined by the pair (¢, @), satisfy to one and only to
one of three following conditions:

@VieNE): (8 =0)&(d, =0). (7a)
) 3C,. Cy. Co<Crem: (VIE N(E) (0<8; <C;)&(0<d; <Cy)), (76)
(©)ieNE) (d; = 2) < (8 > ). (7¢)

A consequence of Statements 1-3 and Theorems 1 is written down below.
Statement 4. Necessary attribute of surjectivity of an injection ¢:N — N has the following
form in terms of sequence (6;):

(VE, 3C;): vieN() 0<3,; <C,. (8)

One more necessary and more effective attribute of the surjectivity of injection ¢: N - N in
view of the equality (4) gives

Theorem 2. The boundedness of sequence (¢,,) of the integers ¢, 2 @(n) —n,n € N ,isa
necessary condition of the injective mapping ¢: N — N surjectivity that has form ¢(N) = N and
following limiting kind:

lim (p(n):n) = 1. 9)
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Existence of limit (9) follows from a necessary condition (5) of the surjectivity of injective
mapping ¢@:N — N. As show the examples, necessary conditions (8) and (9) of surjectivity of an
injection ¢ are independent ones and, hence, any of these conditions cannot be sufficient. The
sequenceé = (1, ny,ny, -+, n;, -+ ) is said to be the sequence with the limited step if 3C>0 such,
soVi,i € N(&), Ny, —N;<C.

Statement 5. Injective mapping ¢*: N — N is impracticable on all set N, if it defines any
sequence &* = (1,my,my,...), m;y1 > m;, with unlimited step or, in other words, this mapping ¢*
is antysurjective one.

The statement 5 implicates the following statement.

Theorem 3. LetA £ {n}cN and B £ {m}cN be infinite subsets of set N. Then there is a
number C € N such so the pair (n, m) of variables n and m is C-pair variables (1).

Statement 6. Let t(n) be a set all prime numbers p: p< n. If %Hg}l (n) £ m(c0) £ Q then | Q

|<| N|that it is obvious. In turn it is well known the set of primes is any sequence with unlimited step,
thus the function t(n) does not defined on all set N.

The following below the statement is consequence of all proved above propositions.

Theorem 4. There does not exist any bijiction between set N of natural numbers and its own
subset A c N.

The proved above propositions allow us divide all injective mappings ¢: N = N onto six not
crossed classes.

Definition 1. The injection ¢: N — N is said to be precisely surjective one if there exists such
&- partition of set N that Vi eN(¢) 6; = 0.

Definition I1. The injection ¢: N — N is said to be potentially surjective one if it is satisfied
following two conditions: for some sequence ¢ £ (1,n4,n,,...,n;, ...) there is a numberC(¢) > 0
of this kind a) Vie N(§) 0 < 6; < C(¢),b)3j € N(§):D; N Dy, j = @.

Definition I11. The injective mapping ¢: N = N is said to be potentially antysurjective
one if following conditions are satisfied:a)3 &- partition of set N:the sequence (6;),i €
N(¢)defined by the pair (£, ¢)is unlimited, b) Vi EN(§)3j € N():D; N Dy j = 0.

Definition IV. The injective mapping ¢: N - N is said to be C-finite antysurjective one if a)
the sequence (8,),i € N(§), defined by the pair ( ¢), is bounded one and b) 3(C, iy, Ny:C >
0,ip €N(§),N, € N): Vi > iy N, € D;, [N,| < C.

Definition V. The injection injective mapping ¢: N — N is said to be tw-antysurjective one if
a) the sequence (9,),i € N(§), isunlimitedone, and b) 3(C,ip, Ny:C > 0,iy EN(E), N,
N): Vi> iy N, c D;,|N,| = C.

It is obvious that N, N ¢(N) = @.

Definition VI. The injective mapping ¢: N — N is said to be total antysurjective one if the
N, = N\@(N) is an infinite set.

3. The examples
Example 1. (G. Galilei’s paradox). It is obvious, the mapping @:N — N with @(n) £ n? is
total antysurjective one, that is there exists N,: N, N @(N) = @ and N, is any infinite subset of
set N.
Example 2. Let Q,, be the square table-matrix (Table 1).

So we have both the size of matrix Q,, is (Qn>é (n,n)and g}, £ i/m, 1<i<n, 1<m<n.

Let Q*(n) be the quantity of various positive rational numbers q € Q,,. It is obvious that
vn, 1 <n, n < Q*(n) <n?The Q*(n) is depended essentially on values of a function 7 (n) which
defines a quantity of primary numbers p, p < n. For example,

Vpen(n) Q*(p) =Q* (p — D+2(p-1).
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Table 1.
1 2 3 4 5 n
1/2 1 3/2 4/2 5/2 n/2
1/3 2/3 1 4/3 5/3 n/3
Qn= 1/4 2/4 3/4 1 5/4 n/4
1/5 2/5 3/5 4/5 1 n/5
1/n 2/n 3/n 4/n 5/n 1

Let symbol {%} be an integral part of n/m, n/mé&N. Then we have both

2 2 2 2 2
{B} > (B—lj = [Bj — 2F;]+1 and {B} < (BJ . By this way we obtain estimation of

quantity Q*(n) of the positive rational numbers q in table Q,, in the following form:

n2(1-pin)=A(n)+ ¥ (n))+ z(n)<0* (W <n’(1-pn)+ ¥ (n)). (10)

Here p(n)2 > P>, m2 2+ > (PN)™ . The series Ypen(eoyp~ L divergent by Euler (comp.
pex(n) pen(n)

Example 3). Also it is easy to prove, that ¥.,eq ()P~ < 0.5.

The function ¥ () is defined in an inequality (10) with following expression:

1 n n k+1
Yiy=——-D | — || — [+--+ (-
n? 2 Pi, || P, :

ngpn
Pi, || P, Pi,

The exact value of number Q*(n) is defined under the formula Q*(n)=1+2Q;5 (n), here Qf (n)
means a quantity of various rational numbers g > 1 in matrix Q,,. A number Q; (n) is calculated
under the obvious recurrent formula Qf (n) =Q{ (n — 1) + AQ{ (n) and

AQF(n) =n——— 2 — S St A L+ (D ————, n=p"p) o ek (11
Qi (n) P1 P2 Pk Pib2  P2P3 Pk—1Pk =D P1P2Pk-1Pk Pi'Py o Pi-p Py (1)

There symbols p;,ps, ..., Px—1, Px  designate in the formula (11) various prime dividers of the
number n. Let Q*(n) £ u(n)n? . We shall note some of properties of the function u: N - R. The
function u not monotone decreases on the set N: for all prime numbers p, p= 3, u(p) = Umax the
function u strictly decreases almost on all set m(n) without the second from each pair prime numbers-
twins and without the any ones.

If n lays between consecutive prim numbers p; and p,, p; < n < p,, almost for all compound
n except for degrees of some prime numbers, so we have

u(py) > u(n) < u(p,). Now we illustrate the properties of function u: N - R comparative
estimations of some values of this function:

1:0,629696< 1(47)<0,629697, 0,62765<1(49)<0,62766, 0,627625< 14(53)<0,627626, that is
H(AT)>1(49)=14(7%)>1(53);
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0,610<4(58)<0,611, 0,623<(59)<0,624, 0,611<24(60)<0,612, 0,624<1(61)<0,625, 0,619<1(62)<0,620,
0,618<14(63)<0,619,

that is 1(58)<u(59)>1(60), 14(60)<p(61)>14(62) and 14(62)>14(63);

0,619<44(79)<0,620, 0,621<u(83)<0,622, 0,620<u(103)<0,621, that is
1(79)<w(83), but we have £(83)>4(103).

Now if we accept a hypothesis limu(n)~0,6 for functionu:N — R then we have the
approximate equality: |Q*| = 0,6|N|? by means of limiting transition in (11). This equality is
consistent with Theorems 2-4 and gives an explanation of Galilee’s paradox.

Example 3. Let (A)2 Y2, (n)~! be harmonic series. Then we have,

Sm 2 Y™ n7l=lnm + Cotyy, Sk 2 YX_ n'=lnk + C,+yy, +1, — 0

and C, = 0,57721566490 ... is Euler’s constant. Let further, m > k, for example. Let Ry ,,, £
Sm — S = In(m/k) + ym — vx. Hence, the rest r;, of the (A) is defined by following equality r;, =
rlliirlo Ry m - Now we have Ill_)ngo T = klgg (lim Ry, ,). Here the pair (k, m) is C-pair variables (see (2),

m—oo

so it is possible to accept m = k + q(k),0 < q(k) < C. Therefore
lim7, = lim (lim Ry, ,) = lim (in((k + q(k))/k) + Yierp — ¥i) = 0.

m—oo

Thus, the rest r, of harmonious series aspires to zero, and, hence, a harmonious series
converges, though, as is well known, its sum is not limited by any finite number. Therefore, a series
Y pern(eoyp~ " from Example 2 converges also.
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