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Abstract In this paper, we obtain an anisotropic general Bianchi type cosmological model in the
presence of a bulk viscous fluid. The exact solution of Einstein’s field equations is obtained by
utilizing a special form of time-varying deceleration parameter that gives an early decelerating
and late-time accelerating model of the universe. The physical and geometrical features of the
cosmological model are discussed during the evolution of the universe. We observed that the universe
accelerates in time and asymptotically tends towards a static homogeneous universe.
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1 Introduction

The evolution of spatially homogeneous and isotropic cosmological models filled with perfect fluid has been
extensively studied by several cosmologists. It is certainly of interest to study cosmologies with a richer
structure both geometrically and physically than the standard perfect fluid Friedmann-Robertson-Walker
(FRW) models. The adequacy of isotropic cosmological models for describing the present state of the
universe is no basis for expecting that they are equally suitable for describing the early stages of evolution
of the universe when radiation in form of photons as well as neutrinos decoupled and the matter behaved
like a viscous fluid. The observed physical phenomena such as the large entropy per baryon and the
remarkable degree of the isotropy of Cosmic Microwave Background Radiation (CMBR) reveal the
importance of dissipative effects in cosmology. Dissipative effects including both bulk and shear viscosities
play significant roles to study early evolution of the universe. According to the grand unified theory(GUT),
the phase transition and string creation are also believed to evolve viscous effects.

In recent years the introduction of viscosity in the cosmic fluid content has been found useful in
explaining many important physical aspects of the dynamics of homogeneous cosmological models. Eckart
[1] developed first relativistic theory of non-equilibrium thermodynamics to study the effect of viscosity.
Weinberg [2] derived general form for bulk and shear viscosities and used them to evaluate the cosmological
entropy prediction rate. Misner [3, 4] studied the effect of viscosity on the evolution of the universe and
suggested that the strong dissipation, due to neutrino viscosity may considerably reduce the anisotropy
of the black-body radiation.

Murphy [5] developed a uniform cosmological model filled with a fluid which possesses pressure and
bulk viscosity exhibiting the interesting feature that the big-bang type singularity appears in the infinite
past. Grφn [6] investigated a viscous fluid model of the inflationary universe. Production of entropy and
viscous damping of anisotropy inhomogeneous cosmological models of Bianchi type I spaces have been
studied by Caderni and Fabbri [7]. Pradhan and Pandey [8], Pradhan and Singh [9], Peebles [10], Bali
and Pradhan [11], Singh et al.[12], Dunn and Tupper [3], Coley and Tupper [14], Banerjee and Santos [15,
16] discussed cosmological models under the influence of both bulk and shear viscosities. Goener and
Kowalewsky [17] presented a method for constructing anisotropic viscous fluid cosmological models of
Bianchi type-I satisfying the barotropic equation of state. Verma and Shri Ram [18] discussed a Bianchi
type III anisotropic cosmological model filled with bulk viscous fluid with time varying gravitational
and cosmological constants. Shri Ram and Verma [19] obtained hypersurface-homogeneous cosmological
models with time-varying gravitational and cosmological constants. Shri Ram et al. [20] investigated
spatially homogeneous Bianchi type-V cosmological models with viscous fluid and heat flow in Lyra’s

122 Advances in Astrophysics, Vol. 1, No. 2, August 2016

AdAp Copyright © 2016 Isaac Scientific Publishing



geometry. Singh et al.[21] derived Bianchi type-V viscous fluid cosmological models with time varying
cosmological term by assuming the rate of shear scalar and scalar expansion to be a suitable function of
the average scale factors.

In this paper, we examine the possibility of a general Bianchi type cosmological model filled with
bulk viscous fluid. The paper is organized as follows. The metric and field equations are given in Sect.2.
Solutions of the field equations are presented in Sect.3 by assuming a special form of time-varying
deceleration parameter. The geometrical and physical features of the model are discussed in Sect. 4. Some
concluding remarks are given in Sect. 5.

2 The Metric and Field Equations

We consider the general Bianchi type space-time in orthogonal form represented by the line-element

ds2 = dt2 −A2dx2 −B2e−2xdy2 − c2e−2mxdz2 (1)

where A, B and C are functions of cosmic time t and m is a constant. From Eq.(1), we can obtain special
classes of Bianchi models as follows: type-III for m = 0, type-V for m = 1, type-VI0 for m = −1 and
type-VIh for all other values of m where m = h − 1 [22]. Bianchi type space-times provide spatially
homogeneous and anisotropic models of the universe as compared to the homogeneous and isotropic FRW
models. From these models the process of isotropization of the universe is studied through the passage of
time. The simplicity of the field equations and relative ease of the solutions of Bianchi space-times are
useful in constructing models of spatially homogeneous and anisotropic cosmologies.

We assume the matter content of the universe to be a bulk viscous fluid represented by the energy-
momentum tensor

T ji = (ρ+ p̄) vivj − p̄δji (2)
where p̄ is the effective pressure given by

p̄ = p− ξvi;i. (3)

Here ρ is matter energy density, p the isotropic pressure, ξ is the coefficient of bulk viscosity and vi is
four velocity vector of the fluid satisfying vivi = 1. A semicolon denotes covariant differentiation. Since
the bulk viscous pressure represents only a small correction to the isotropic pressure, it is reasonable to
assume that the inclusion of viscous term in the energy momentum tensor does not change fundamentally
the dynamics of the cosmic evolution.

For the metric (1), Einstein’s field equations

Rij −
1
2Rgij = −Tij (4)

together with Equations(2) and (3), in comoving coordinates vi = (0, 0, 0, 1), lead to the following system
of highly non-linear equations:
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C
= 0 (9)

where an overdot denotes differentiation with respect to t.
For the general Bianchi model(1), we define physical parameters that are of observational importance.

The spatial volume V and the average scale factor a are given by

V = a3 = ABC. (10)
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The expansion scalar θ, shear scalar σ and mean Hubble parameter are given by

θ = vi;i =
(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
, (11)

σ2 = 1
2

[
H2

1 +H2
2 +H2

3
]
− 1

6θ
2 (12)

where H1 = Ȧ
A , H2 = Ḃ

B , H3 = Ċ
C are directional Hubble parameters.

An important observational quantity is the deceleration parameter q

q = −aä
ȧ2 . (13)

The sign of q indicates whether the model inflates or not. The positive sign of q corresponds to standard
decelerating models whereas the negative sign indicates inflation.

Einstein’s field equations are a system of highly non-linear differential equations and there is no
standard method of solving them. In order to obtain physically realistic solutions, one has to make certain
valid assumptions generally on the basis of physics of the problem or simply for mathematical convenience.
One of them is the condition on the deceleration parameter. So far some authors proposed constant as
well as time-dependent forms of q and derived expressions for the average scale factor a, which are further
used for solving the field equations. It has been observed that the cosmological models based on constant
deceleration parameter by Berman [23] and linearly varying deceleration parameter proposed by Akarsu
and Dereli [24] are either decelerating or accelerating. But for an universe which was decelerating in the
the past and accelerating at present time, the deceleration parameter must show signature flipping (Riess
et al. [25], Amendola [26]). Cunha and Lima [27] favored past deceleration and recent acceleration with
high degree of statistical confidence lever by analyzing three SNe type Ia samples. In order to match this
observation, Singh and Debnath [28] defined a special form of time-varying deceleration parameter for
FRW model as

q = −1 + n

an + 1 (14)

where n > 0 is a constant. Solution of equation(14) is given by

H = ȧ

a
= k(1 + a−n) (15)

where k is a constant of integrating. Integrating equation(15), we obtain the average scale factor a as

a =
(
eknt − 1

)k/n
. (16)

Without loss of any generality, we can take k = 1 and so

a = (ent − 1)1/n (17)

A similar form of q has also been proposed by Banerjee and Das [29] in the case of Robertson-Walker
space-time. Singh [30] investigated a cosmological model of Bianchi type-I with both deceleration and
acceleration by using the special form a in equation(17). Again using the same form of a, he has discussed
a cosmological scenario in the case of Bianchi type-V space-time with perfect fluid source and time-
dependent cosmological term that describes an early deceleration and late-time acceleration [31]. Adhav
et al.[32] derived early decelerating and late-time accelerating anisotropic cosmological models of Bianchi
types I, III, V, VI0 and Kantowski-Sachs space-time with perfect fluid obeying the variable equation of
state parameter. From equation(14), we observed that q = n− 1 when a = 0, q = 0 for an = n− 1 and
q < 0 for an > n− 1. We assume that a = 0 at t = 0. Therefore, the universe begins with a decelerating
expansion and the expansion changes from decelerating phase to an accelerating one.

Equations(5)-(8) can be expressed in terms of q, H, σ2 as follows:

p̄ = H2(2q − 1)− σ2 + (m2 +m+ 1)
3A2 , (18)
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ρ = H2 − σ2 − (m2 +m+ 1)
A2 . (19)

In the next section, we obtain solutions of the field equations (5)-(9) by utilizing the special form of a in
equation(17) which give a class of decelerating and late time accelerating models for different values of m.

3 Solutions of Field Equations

Equation(9), on integration, yields
Am+1 = BCm (20)

where the constant of integration is taken unity. Substituting equation (20) in equation(10), we obtain

V = B
m+2
m+1C

2m+1
m+1 . (21)

We assume a relation between the metric function C and the spatial volume V of the form C = V b,
where b is a constant. Then equation(10) gives

B = V
m+1−b−2mb

(m+2) . (22)

Combining equations(20), (21) and (22), we obtain

A = V
m+1−b+bm2
(m+1)(m+2) , (23)

B = V
m+1−b−2bm

(m+2) , (24)

C = V b. (25)

In terms of the average scale factor a given in equation(17), these solutions can be written explicitly
in term of cosmic time t as

A = (ent − 1)l1 , (26)

B = (ent − 1)l2 , (27)

C = (ent − 1)l3 (28)

where l1 = 3(m+ 1− b+ bm2)/n(m+ 1)(m+ 2), l2 = 3(m+ 1− b− 2mb)/n(m+ 2), l3 = 3b/n satisfying

l1 + l2 + l3 = 3
n
. (29)

Hence, the metric of our solutions can be written in the form

ds2 = dt2 − (ent − 1)2l1dx2 − (ent − 1)2l2e−2xdy2 − (ent − 1)2l3e−2mxdz2. (30)

For the cosmological model equation(30), the physical and kinematical parameters have the following
values :

θ = 3ent

(ent − 1) , (31)

σ2 = [n2(l21 + l22 + l23)− 3]e2nt

2(ent − 1)2 , (32)

H = ent

(ent − 1) , (33)

q = −1 + ne−nt. (34)

From equations(18) and (19), the energy density and effective pressure are obtained as

ρ = [5− n2(l21 + l22 + l23)]e2nt

2(ent − 1)2 − (m2 +m+ 1)
(ent − 1)2l1

, (35)
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p̄ = 4nent − [3 + n2(l21 + l22 + l23)]e2nt

2(ent − 1)2 + (m2 +m+ 1)
3(ent − 1)2l1

. (36)

In order to determine the bulk viscosity coefficient ξ, we assume that the isotropic pressure and energy
density satisfy the equation of state

p = γρ, 0 ≤ γ ≤ 1. (37)

Then, from equations(31)-(36), we obtain

ξ = [3(3− γ) + 2(2− 3γ)n2(l21 + l22 + l23)]ent

18(ent − 1) − (1− 3γ)(m2 +m+ 1)e−nt

9(ent − 1)2l1−1 . (38)

4 Physical and Geometrical Features

We now discuss the physical and geometrical features of the cosmological model given in equation(30). We
observe that the spatial volume is zero at t = 0. At this epoch the physical parameters ρ, p, θ and σ2 tend
to infinity. Therefore the universe starts evolving with big-bang singularity at t = 0. As time increases
the energy density and pressure are decreasing functions of time which ultimately tend to constants as
t→∞. The expansion scalar and shear scalar also tend to constants and ratio σ

θ does not tend to zero as
for large time. Thus the model is anisotropic for all times.

The deceleration parameter is positive for t < 1
n logn and is negative for t > 1

n logn. Therefore, the
universe begins with decelerating expansion and the expansion in the model changes from the deceleration
to acceleration at time t = 1

n logn which indicate that the deceleration parameter has a signature flip at
the epoch t = 1

n logn. The signature flip in q is essential for the conclusion that the present universe is
accelerating (Padmanabham and Raychoudhan [33]). Thus, this model leads to a cosmological scenario
in accordance with the well known features of modern cosmology as an initial phase with decelerating
expansion followed by accelerating one at late time.

From equation[17] we observe that final stage of the universe is neither accelerating or decelerating
but approaches an asymptotically static homogeneous universe for specific values of the parameter which
could play a vital role in the future evolution of the universe [34, 35].

The bulk viscosity coefficient is initially very large and is a decreasing function of time which ultimately
tends to a constant for large time. The effect of bulk viscosity is to produce a change in perfect fluid and
hence exhibits the essential influence on the character of the solution. This effect is clearly visible in the
expression of isotropic pressure.

5 Conclusion and Perspectives

We have investigated a general Bianchi type cosmological model filled with bulk viscous fluid by assuming
a time dependent form of the deceleration parameter that yields a special form of the average scale factor
of the model. The model represents an expanding, shearing and non-rotating universe which starts from a
big-bang singular state at t = 0 with decelerating expansion and after a lapse of finite time the expansion
in the model changes from decelerating phase to an accelerating one. The anisotropy in the model is
maintained for all time. The bulk viscosity coefficient is infinite at the beginning of the model and it
decreases to become a constant at late-time. We can derive the cosmological models for Bianchi types-III,
V, VI0 and VIh for m = 0, 1,−1 and other values respectively where h = m− 1.

It is worthy to mention that the assumption of the time-varying deceleration parameter in equation(14)
as a function of time is ad hoc in the sense that it does not result from any known theory. However, it
provides a solution which presents an appropriate description of the universe consistent with observations.
The cosmological model presents a unified description of the evolution of the universe which evolves with a
decelerating expansion and expands with acceleration till late time. Recent observational data (Permutter
et al.[36]; Riess et al.[37, 38]; Knop et al. [39]; Tegmark et al. [40]; Spergel et al. [41]) strongly suggest
this late time acceleration. Thus, the cosmological model obtained in this paper presents an appropriate
description of the universe which is consistent with observations.
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