
On Neumann and Poincare Problems in A-harmonic Analysis

Artyem Yefimushkin

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine
Email: a.yefimushkin@gmail.com

Abstract The existence of nonclassical solutions is proved for the Neumann and Poincare problems
for generalizations of the Laplace equation in anisotropic and nonhomogeneous media in almost
smooth domains with arbitrary boundary data that are measurable with respect to logarithmic
capacity. Moreover, it is shown that the spaces of such solutions have the infinite dimension.
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1 Introduction

The classical boundary value problems of the theory of analytic functions, such as the Dirichlet, Hilbert,
Riemann, Neumann and Poincare problems, take a fundamental part in contemporary analysis and
applications to actual problems of mathematical physics. Note that these boundary value problems are
closely interconnected, see e.g. [1,2,3,4,5,6]. In this paper we continue the development of the theory of
the above boundary value problems for analytic functions in Jordan domains with measurable boundary
data and extend the theory to the more general class of quasiconformal functions.

It is well-known that the Neumann problem for Laplace equation has no classical solutions, generally
speaking even for some continuous boundary data, see e.g. [7]. The main goal of this paper is to show that
the Neumann problem with arbitrary boundary data that are measurable with respect to logarithmic
capacity has nonclassical solutions for the Laplace equation as well as for its generalizations. The result is
based on a reduction of this problem to the Riemann-Hilbert boundary value problem whose solution was
recently obtained in [6].

First of all recall a more general problem on directional derivatives for the harmonic functions in the
unit disk D = {z ∈ C : |z| < 1}, z = x+ iy. The classic setting of the latter problem is to find a function
u : D→ R that is twice continuously differentiable, admits a continuous extension to the boundary of D
together with its first partial derivatives, satisfies the Laplace equation

∆u := ∂2u

∂x2 + ∂2u

∂y2 = 0 ∀ z ∈ D

and the boundary condition with a prescribed continuous date ϕ : ∂D→ R:

∂u

∂ν
= ϕ(ζ) ∀ ζ ∈ ∂D

where ∂u
∂ν denotes the derivative of u at ζ in a direction ν = ν(ζ), |ν(ζ)| = 1:

∂u

∂ν
:= lim

t→0

u(ζ + t · ν)− u(ζ)
t

.

The Neumann problem is a special case of the above problem on directional derivatives with the
boundary condition

∂u

∂n
= ϕ(ζ) ∀ ζ ∈ ∂D

where n denotes the unit interior normal to ∂D at the point ζ.
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In turn, the above problem on directional derivatives is a special case of the Poincare problem with
the boundary condition

a · u + b · ∂u
∂ν

= ϕ(ζ) ∀ ζ ∈ ∂D

where a = a(ζ) and b = b(ζ) are real-valued functions given on ∂D.
Recall also that twice continuously differentiable solutions of the Laplace equation are called harmonic

functions. As known, such functions are infinitely differentiable and they are real and imaginary parts of
analytic functions.

2 Definitions and Preliminary Remarks

The partial differential equations in the divergence form below take a significant part in many problems
of mathematical physics, in particular, in anisotropic and inhomogeneous media. These equations are
closely interconnected with Beltrami equations, see e.g. [1].

Let D be a domain in the complex plane C and let µ : D → C be a measurable function with |µ(z)| < 1
a.e. Recall that a partial differential equation

fz̄ = µ(z) · fz (1)

where fz̄ = ∂̄f = (fx + ify)/2, fz = ∂f = (fx − ify)/2, z = x+ iy, fx and fy are partial derivatives of
the function f in x and y, respectively, is said to be a Beltrami equation. The Beltrami equation (1) is
said to be nondegenerate if ||µ||∞ < 1.

In this connection, note that if f = u+ i · v is a regular solution of the Beltrami equation (1), then
the function u is a continuous generalized solution of the divergence-type equation

divA(z)∇u = 0 , (2)

called A-harmonic function, i.e. u ∈ C ∩W 1,1 and∫
D

〈A(z)∇u,∇ϕ〉 = 0 ∀ ϕ ∈ C∞0 (D) ,

where A(z) is the matrix function:

A =
( |1−µ|2

1−|µ|2
−2Imµ
1−|µ|2

−2Imµ
1−|µ|2

|1+µ|2
1−|µ|2

)
. (3)

.
As we see in (3), the matrix A(z) is symmetric and its entries aij = aij(z) are dominated by the

quantity
Kµ(z) = 1 + |µ(z)|

1 − |µ(z)| ,

and, thus, they are bounded if the Beltrami equation (1) is not degenerate.
Vice verse, uniformly elliptic equations (2) with symmetric A(z) and detA(z) ≡ 1 just correspond to

nondegenerate Beltrami equations (1) with coefficient

µ = 1
det (I +A) (a22 − a11 − 2ia21) = a22 − a11 − 2ia21

1 + TrA + detA , (4)

where I denotes identity 2× 2 matrix TrA = a22 + a11, see e.g. theorem 16.1.6 in [1]. Following [2], call
all such matrix functions A(z) of the class B. Recall that equation (2) is said to be uniformly elliptic, if
aij ∈ L∞ and 〈A(z)η, η〉 ≥ ε|η|2 for some ε > 0 and for all η ∈ R2.

Finally, recall that homeomorphic solutions of Beltrami equations (1) of class W 1,1
loc is said to be

quasiconformal mappings, see e.g. [8,9]. The images of the unit disk D = {z ∈ C : |z| < 1} under
quasiconformal mappings of C onto itself are called quasidisks, and their boundaries are called quasicircles
or quasiconformal curves. Recall that the bijective continuous image of a circle in C is called a Jordan
curve. As known, any smooth (or Lipschitzian) Jordan curve is a quasiconformal curve, see e.g. point
II.8.10 in [9].
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3 On Neumann and Poincare Problems for Harmonic Functions

Let us start with the unit disk because proofs in this case are more direct and clear.

Theorem 1. Let ν : ∂D → C, |ν(ζ)| ≡ 1 be a function of bounded variation, and let ϕ : ∂D → R be a
measurable function with respect to logarithmic capacity. Then there exist harmonic functions u : D→ R
such that

lim
z→ζ

∂u

∂ν
= ϕ(ζ) (5)

along any nontangential paths for a.e. ζ ∈ ∂D with respect to logarithmic capacity.

Proof. Indeed, by Proposition 6.1 in [6], there exists an analytic function f : D → C such that

lim
z→ζ

Re ν(ζ) · f(z) = lim
z→ζ

Re ν(ζ) · f(z) = ϕ(z) (6)

along any nontangential paths for a.e. ζ ∈ ∂D with respect to logarithmic capacity. Note that an indefinite
integral F of f in D is also an analytic function and, correspondingly, the harmonic functions u = ReF
and v = ImF satisfy the system of Cauchy-Riemann vx = −uy è vy = ux. Hence

f = F ′ = Fx = ux + i · vx = ux − i · uy = ∇u

where ∇u = ux + i · uy is the gradient of the function u in complex form. Thus, (5) follows from (6), i.e.
u is one of the desired harmonic functions because its directional derivative

∂u

∂ν
= Re ν · ∇u = Re ν · ∇u = 〈ν,∇u〉

is the scalar product of ν and the gradient ∇u is interpreted as vectors in R2.

Remark 1. We are able to say more in the case Re n · ν > 0 where n = n(ζ) is the unit interior normal
with a tangent to ∂D at the point ζ ∈ ∂D. In view of (5), since the limit ϕ(ζ) is finite, there is a finite
limit u(ζ) of u(z) as z → ζ in D along the straight line passing through the point ζ and being parallel to
the vector ν(ζ) because along this line, for z and z0 that are close enough to ζ,

u(z) = u(z0) −
1∫

0

∂u

∂ν
(z0 + τ(z − z0)) dτ .

Thus, at each point with the condition (5), there is the directional derivative

∂u

∂ν
(ζ) := lim

t→0

u(ζ + t · ν)− u(ζ)
t

= ϕ(ζ) .

In particular, in the case of the Neumann problem, we have by Theorem 1 and Remark 1 the following
significant result.

Theorem 2. For each function ϕ : ∂D → R that is measurable with respect to logarithmic capacity,
one can find harmonic functions u : D→ C such that, for a.e. point ζ ∈ ∂D with respect to logarithmic
capacity, there exist:

1) the finite radial limit
u(ζ) := lim

r→1
u(rζ)

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t · n)− u(ζ)
t

= ϕ(ζ)

3) the nontangential limit
lim
z→ζ

∂u

∂n
(z) = ∂f

∂n
(ζ)

where n = n(ζ) denotes the unit interior normal to ∂D at the point ζ.
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Recall that a Jordan domain is called Lipschitzian if its boundary is bilipschitzian image of a circle. It
is clear that such curve is rectifiable, and rectifiable curves have tangent to almost all points with respect
to the length measure. A Jordan domain is called almost smooth if it is Lipschitzian and has tangent to
almost all points with respect to logarithmic capacity.

Theorem 3. Let D be an almost smooth Jordan domain in the complex plane C, ν : ∂D → C, |ν(ζ)| ≡ 1
be a function of bounded variation and let ϕ : ∂D → R be a function that is measurable with respect to
logarithmic capacity. Then there exist harmonic functions u : D → R such that

lim
z→ζ

∂u

∂ν
= ϕ(ζ) (7)

along any nontangential paths for a.e. point ζ ∈ ∂D with respect to logarithmic capacity.

Proof. The case of almost smooth Jordan domains D reduces to the case of the unit disk D in the following
way. First of all, by the Riemann theorem one can find conformal mapping ω of the domain D onto D,
see e.g. Theorem II.2.1 in [10]. Then by Caratheodory theorem ω is extended to a homeomorphism of D
onto D, see e.g. Theorem II.C.1 in [11].

As it was noted in Section 2, the boundaries of Lipschitzian domains are quasiconformal curves. Thus,
by the reflection principle for quasiconformal mappings, involving the conformal reflection (inversion)
with respect to the unit circle in the image and a quasiconformal reflection with respect to ∂D in the
preimage, we are able to extend ω to a quasiconformal mapping Ω : C→ C, see e.g. I.8.4, II.8.2 and II.8.3
in [9]. It is clear also that N := ν ◦Ω−1|∂D is a function of bounded variation, VN (∂D) = Vν(∂D).

The logarithmic capacity of a set coincides with its transfinite diameter, see e.g. [12] and the point
110 in [13]. Moreover, quasiconformal mappings are Hölder continuous on compacta, see e.g. Theorem
II.4.3 in [9]. Hence the mappings Ω and Ω−1 transform sets of logarithmic capacity zero on ∂D into sets
of logarithmic capacity zero on ∂D and vice versa.

The function Φ := ϕ ◦Ω−1|∂D is measurable with respect to logarithmic capacity. Indeed, under the
given mappings any sets that are measurable with respect to logarithmic capacity are transformed into
sets that are measurable with respect to logarithmic capacity because any such a set can be represented in
the form of the union of a sigma-compact set and a set of logarithmic capacity zero and, under continuous
mappings, the compact sets are transformed into compact sets and the latter sets are measurable with
respect to logarithmic capacity.

Next, by the Lindelöf lemma arg [ω(ζ)− ω(z)]− arg [ζ − z]→ const as z → ζ for every point ζ ∈ ∂D
with a tangent to ∂D, see e.g. Theorem II.C.2 in [11]. Hence nontangential paths in D to ζ ∈ ∂D are
transformed under the mapping ω into nontangential paths in D to ξ = ω(ζ) ∈ ∂D for a.e. ζ ∈ ∂D with
respect to logarithmic capacity. And vice versa, nontangential paths in D to ξ ∈ ∂D are transformed
under the mapping ω−1 into nontangential paths in D to ζ = ω−1(ξ) ∈ ∂D for a.e. ξ ∈ ∂D with respect
to logarithmic capacity.

By the Theorem 1 one can find a harmonic function U : D→ R such that

lim
w→ξ

∂U

∂N
(w) = Φ(ξ) (8)

along any nontangential paths to a.e. point ξ ∈ ∂D with respect to logarithmic capacity. Moreover, in the
simply connected domain D, one can find a harmonic function V : D→ R such that g := U + i · V is a
single-valued analytic function in D.

Let F be an indefinite integral of the analytic function g′ · (ω−1)′ in D and let f := F ◦ ω. Then F
and f are also single-valued analytic functions in D and D, correspondingly, and elementary calculations
show that

f ′ = F ′ ◦ ω · ω′ = F ′ ◦ ω · (ω′ ◦ ω−1) ◦ ω = [F ′/(ω−1)′] ◦ ω = g′ ◦ ω .

Thus,
∂f

∂ν
= ν · f ′ = ν · g′ ◦ ω = ∂g

∂N
◦ ω ,

where ν = ν(ζ), ζ ∈ ∂D, and N = N (ξ), ξ = ω(ζ) ∈ ∂D. Hence, for u := Re f , we have the equality

∂u

∂ν
= ∂U

∂N
◦ ω

Advances in Analysis, Vol. 1, No. 2, October 2016 117

Copyright © 2016 Isaac Scientific Publishing AAN



and, consequently, u is a desired harmonic function by (8).

By Theorem 3, arguing similarly to Remark 1, we have the following significant result on the Neumann
problem.

Theorem 4. Let D be an almost smooth Jordan domain in the complex plane C and let a function
ϕ : ∂D → R be measurable with respect to logarithmic capacity. Then one can find harmonic functions
u : D → C such that for a.e. ζ ∈ ∂D with respect to logarithmic capacity, there exist:

1) the finite normal limit
u(ζ) := lim

z→ζ
u(z)

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t · n) − u(ζ)
t

= ϕ(ζ)

3) the nontangential limit

lim
z→ζ

∂u

∂n
(z) = ∂u

∂n
(ζ) .

4 On Neumann and Poincare Problems for A-harmonic Functions

Theorem 5. Let D be an almost smooth Jordan domain in C, A(z), z ∈ D, be a matrix function of the
class B ∩ Cα, α ∈ (0, 1), ν : ∂D → C, |ν(ζ)| ≡ 1, be a function of bounded variation and let a function
ϕ : ∂D → R be measurable with respect to logarithmic capacity. Then there exist A-harmonic functions
u : D → R of the class C1+α such that

lim
z→ζ

∂u

∂ν
(z) = ϕ(ζ) (9)

along any nontangential paths for a.e. ζ ∈ ∂D with respect to logarithmic capacity.

Proof. By remarks in Section 2, a desired function u is a real part of a solution f of the class W 1,1
loc for

corresponding Beltrami equation with µ ∈ Cα, see e.g. Theorem 16.1.6 in [1]. By Lemma 1 in [2] µ is
extended to a Hölder continuous function µ∗ : C→ C of the class Cα. Hence also, for every k∗ ∈ (k, 1),
there is an open neighborhood U of D∗ such that |µ(z)| < k∗. Let D∗ be a connected component of U
containing D.

Next, there is a quasiconformal mapping h : D∗ → C a.e. satisfying the Beltrami equation (1) with
the complex coefficient µ∗ := µ∗|D∗ in D∗, see e.g. Theorem V.B.3 in [8]. Note that the mapping h has
the Hölder continuous first partial derivatives in D∗ with the same order of the Hölder continuity as µ,
see e.g. [14] and also [15]. Moreover, the mapping h is regular, i.e. its Jacobian

Jh(z) 6= 0 ∀ z ∈ D∗ , (10)

see e.g. Theorem V.7.1 in [9]. Thus, the directional derivative

hω(z) = ∂h

∂ω
(z) := lim

t→0

h(z + t · ω) − h(z)
t

6= 0 ∀ z ∈ D∗ ∀ ω ∈ ∂D

and it is continuous by the collection of the variables ω ∈ ∂D and z ∈ D∗. Thus, the functions

ν∗(ζ) :=
|hν(ζ)(ζ)|
hν(ζ)(ζ) and ϕ∗(ζ) := ϕ(ζ)

|hν(ζ)(ζ)|

are measurable with respect to logarithmic capacity, see e.g. 17.1 in [16].
The logarithmic capacity of a set coincides with its transfinite diameter, see e.g. [12] and the point

110 in [13]. Moreover, quasiconformal mappings are Hölder continuous on compacta, see e.g. Theorem
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II.4.3 in [9]. Hence the mappings h and h−1 transform sets of logarithmic capacity zero on ∂D into sets
of logarithmic capacity zero on ∂D∗, where D∗ := h(D), and vice versa.

Further, the functions N := ν∗ ◦ h−1|∂D∗ and Φ := (ϕ∗/hν) ◦ h−1|∂D∗ are measurable with respect to
logarithmic capacity. Indeed, a measurable set with respect to logarithmic capacity is transformed under
the mappings h and h−1 into measurable sets with respect to logarithmic capacity because such a set can
be represented as the union of a sigma-compactum and a set of logarithmic capacity zero and compacta
are transformed under continuous mappings into compacta and compacta are measurable with respect to
logarithmic capacity.

Recall that the distortion of angles under quasiconformal mappings h and h−1 is bounded, see e.g.
[17,18,19]. Thus, nontangential paths to ∂D are transformed into nontangential paths to ∂D∗ for a.e.
ζ ∈ ∂D with respect to logarithmic capacity and inversly.

By Theorem 3, one can find a harmonic function U : D∗ → R such that

lim
w→ξ

∂U

∂N
(w) = Φ(ξ) (11)

along any nontangential paths for a.e. ξ ∈ ∂D∗ with respect to logarithmic capacity.
Moreover, one can find a harmonic function V in the simply connected domainD∗ such that F = U+iV

is an analytic function and, thus, u := Re f = U ◦ h, where f := F ◦ h, is a desired A-harmonic function
because f is a regular solution of the corresponding Beltrami equation (1) and also

uν = 〈 ∇U ◦ h , hν 〉 = 〈 ν∗ · ∇U ◦ h , ν∗ · hν 〉 = 〈 ∂U
∂N

◦ h , ν∗ · hν 〉 = ∂U

∂N
◦ h · Re (ν∗hν),

i.e. condition (9) holds along any nontangential paths for a.e. ζ ∈ ∂D with respect to logarithmic
capacity.

The following statement concerning the Neumann problem for A-harmonic functions is a special
significant case of Theorem 5.

Theorem 6. Let D be an almost smooth Jordan domain in C, the interior unit normal n = n(ζ) to ∂D
have bounded variation, A(z), z ∈ D, be a matrix function of class B ∩ Cα, α ∈ (0, 1) and let a function
ϕ : ∂D → R be measurable with respect to logarithmic capacity. Then there exists an A-harmonic function
u : D → R of class C1+α such that for a.e. ζ ∈ ∂D with respect to logarithmic capacity there exist:

1) the finite normal limit
u(ζ) := lim

z→ζ
u(z)

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t · n) − u(ζ)
t

= ϕ(ζ)

3) the nontangential limit
lim
z→ζ

∂u

∂n
(z) = ∂u

∂n
(ζ) .

In particular, in the unit disk D, the unit interior normal n = n(ζ) to ∂D has bounded variation and,
thus, the conclusions 1-3 of the latter theorem hold.

5 On the Dimension of Spaces of Solutions

Theorem 7. The spaces of solutions in Theorems 1-6 have the infinite dimension.

Proof. In view of the equivalence of the problem on the directional derivatives to the corresponding
Riemann-Hilbert boundary value problem established under the proof of Theorem 1, the conclusion of
Theorem 7 follows from Theorem 8.2 in [6] because Theorems 2-6 are successively reduced to Theorem 1.

Acknowledgement. I would like to thank Professor Vladimir Ryazanov for his scientific supervision.

Advances in Analysis, Vol. 1, No. 2, October 2016 119

Copyright © 2016 Isaac Scientific Publishing AAN



References

1. K. Astala, T. Iwaniec, and G. Martin, Elliptic partial differential equations and quasiconformal mappings in
the plane. Princeton University Press, 2009, vol. 48.

2. V. Gutlyanskii, V. Ryazanov, and A. Yefimushkin, “On the boundary-value problems for quasiconformal
functions in the plane,” Journal of Mathematical Sciences, vol. 214, no. 2, pp. 200–219, 2016.

3. V. Ryazanov, “On the Riemann-Hilbert problem without Index,” Ann. Univ. Bucharest, Ser. Math, vol. 5, pp.
169–178, 2014.

4. ——, “Infinite dimension of solutions of the Dirichlet problem,” Open Math.(the former Central European J.
Math.), vol. 13, pp. 348–350, 2015.

5. ——, “On Neumann and Poincare problems for Laplace equation,” Analysis and Mathematical Physics, pp.
1–5, 2016. [Online]. Available: http://dx.doi.org/10.1007/s13324-016-0142-8

6. A. Yefimushkin and V. Ryazanov, “On the Riemann-Hilbert problem for the Beltrami Equations,” Contempo-
rary Mathematics, vol. 667, pp. 299–316, 2016.

7. S. G. Mikhlin, Partielle Differentialgleichungen in der mathematischen Physik. Akademie-Verlag, Berlin,
1978.

8. L. V. Ahlfors, Lectures on quasiconformal mappings. Van Nostrand, 1966.
9. O. Lehto and K. Virtanen, Quasiconformal mappings in the plane. Springer-Verlag, 1973, vol. 126.

10. G. M. Goluzin, Geometric theory of functions of a complex variable. Amer. Math. Soc., Providence, 1969.
11. P. Koosis, Introduction to Hp spaces. Cambridge University Press, 1998, vol. 115.
12. M. Fekete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen

Koeffizienten,” Mathematische Zeitschrift, vol. 17, no. 1, pp. 228–249, 1923.
13. R. Nevanlinna, Eindeutige analytische Funktionen. Ann Arbor, Michigan, 1944.
14. T. Iwaniec, “Regularity of solutions of certain degenerate elliptic systems of equations that realize quasicon-

formal mappings in n-dimensional space,” Differential and Integral Equations. Boundary-Value Problems, pp.
97–111, 1979.

15. ——, “Regularity theorems for solutions of partial differential equations for quasiconformal mappings in
several dimensions,” Dissertationes Math. (Rozprawy Mat.), 1982.

16. M. Krasnoselskii, P. Zabreiko, E. Pustylii, and P. Sobolevskii, Integral operators in spaces of summable
functions. Noordhoff International Publishing, Leiden, 1976.

17. S. Agard, “Angles and quasiconformal mappings in space,” Journal d’Analyse Mathématique, vol. 22, no. 1,
pp. 177–200, 1969.

18. S. Agard and F. Gehring, “Angles and quasiconformal mappings,” Proceedings of the London Mathematical
Society, vol. 3, no. 1, pp. 1–21, 1965.

19. O. Taari, “Charakterisierung der Quasikonformitat mit Hilfe der Winkelverzerrung,” Annales Academiae
Scientiarum Fennicae, Ser. A, vol. 390, pp. 1–43, 1966.

120 Advances in Analysis, Vol. 1, No. 2, October 2016 

AAN Copyright © 2016 Isaac Scientific Publishing

http://dx.doi.org/10.1007/s13324-016-0142-8



