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Abstract 
 

Control and eradication of a number of infectious diseases are primarily attributed to effective vaccination 

programs. A concerted effort is still imperative to develop novel vaccines and improve the immunogenicity of 

existing ones with regards to efficacy, immunogenicity and safety. Rational design of vaccines using subunit 

vaccines is a potentially safer alternative to conventional vaccines, yet they are poorly immunogenic without 

additional adjuvant. Using antigen carriers to enhance their immunogenicity in the forms of adsorption or 

encapsulation with a delivery system has been widely investigated as an alternative to currently available 

adjuvants. This review aims to elaborate on the existing nanotechnology being used to develop more 

immunogenic subunit vaccines, with focus on particulate delivery systems for development of prophylactic 

vaccine candidates. 
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Introduction 
 

Vaccination, in combination with good 

hygiene and clean water, has proven to be the 

most effective strategy for controlling the 

incidence of infectious diseases. Availability 

of effective vaccines and successful 

vaccination campaigns have significantly 

reduced the incidences of infectious diseases 

including diphtheria, tetanus, pertussis, 

mumps, rubella, hepatitis A and B in many 

countries (André, 2003) and successfully 

eradicated smallpox, whereas progress is also 

being made to continuously decrease the 

incidence of polio and measles (de Quadros, 

2002; Shahzad & Kohler, 2009). However, 

there are other diseases that are of public 

health importance for which effective vaccines 

are not available yet, such as tuberculosis, 

malaria, HIV and vaccine-preventable cancers 

as each of those diseases presents unique 

challenges in terms of pathogen complexities 

and immune correlates of protection 

(Crompton et al., 2010; Chhatbar et al., 2011; 

Rappuoli & Aderem, 2011; Kaufmann, 2012; 

Schlom, 2012; Vaughan & Kappe, 2012). It is 

therefore imperative that not only novel 

vaccines are discovered but also 

immunogenicity of existing vaccines is 

enhanced. 

Traditionally, live-attenuated organisms or 

whole-killed organisms are used as vaccines 

(Plotkin, 2005, 2009) and such vaccines are 

immunogenic as they induce strong, long-

lasting humoral and/or cell-mediated 

immunity. However there are a number of 

safety reasons associated with such 

formulations, including but not limited to 

reversion to more virulent strain and possible 

compromise of quality with temperature-

sensitive vaccines (Diminsky et al., 1999; 

Bolgiano et al., 2001; Boros et al., 2001). All 

of the above risks and issues associated with 

safety and efficacy of ‘traditional’ vaccines 

have shifted the focus of vaccine design 

towards rationally-designed vaccines, which 

centres on the development of subunit vaccines 

that include peptide- and protein-based 

vaccines. These subunit vaccines have the 

potential to be developed into safer and more 

immunogenic vaccines whilst also avoiding 

the risks commonly associated with 

conventional vaccines (Moyle & Toth, 2013). 

Proteins as vaccine candidate can be produced 

using various expression systems (Ledizet et 
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al., 2005; Wang et al., 2006; Coller et al., 

2011; Cox, 2012; Lobanova et al., 2012). 

Peptide epitopes when incorporated into a 

vaccine formulation can elicit antibody-

mediated humoral responses and/or T 

lymphocyte-mediated cellular responses 

(Ghosh & Jackson, 1999; Tian et al., 2001; 

Calvo-Calle et al., 2005; Jackson et al., 2006; 

Li et al., 2011; Christy et al., 2012; Huang et 

al., 2013).  

In spite of these advantages subunit 

vaccines have to offer, their immunogenicity is 

very poor and they require addition of adjuvant 

to successfully induce the desired immune 

responses. This is due to the fact that subunit 

vaccines lack the ‘danger signals’ to alert the 

immune system – in particular the antigen 

presenting cell (APC) – and they are also 

susceptible to proteases that in turn render 

their half-life to be relatively short. However, 

an issue commonly associated with adjuvants 

is that they are toxic, as such currently only a 

number of oil-water emulsion and aluminium-

based adjuvants have been licensed (Wilson-

Welder et al., 2009) and even such aluminium-

based adjuvants are lacking in their ability to 

mediate cellular immune responses despite 

their effectiveness in eliciting antibody-

mediated responses (McElrath, 1995; 

HogenEsch, 2002; Reed et al., 2009). 

Although in most cases antibody-mediated 

humoral responses would be sufficient, yet 

infections brought about by viruses, 

intracellular bacteria, or cancer need efficient 

cellular responses to clear. The aforementioned 

issues highlight the potential and feasibility of 

particulate antigen carriers for adjuvanting 

subunit vaccines as they are inherently 

immunostimulatory in nature and they provide 

a depot effect that prolong the exposure time 

of peptides and proteins to the immune cells 

(Tao Liang et al., 2006). Particulate delivery 

systems also offer safeguarding against 

degradation, facilitation of uptake by APC, 

feasibility of incorporation of additional 

immunostimulatory moieties that can further 

boost immunogenicity by direct targeting of 

APC. All of these features indeed make them a 

viable option to enhance the immunogenicity 

of subunit vaccines so both immunogenicity 

and safety are achieved. This review article 

aims to illustrate the recent developments in 

prophylactic vaccines that utilise particulate 

delivery systems. The basis of immune 

recognition on which vaccine design is based 

on as well as the interaction of these 

particulate carriers with immune cells will also 

be discussed. 

 

 

How the Immune System Works: 

Antigen Recognition, Processing and 

Presentation 
 

In order to appropriately select and assess 

which delivery systems are suitable, it is 

imperative to understand the basis of immune 

response induction and the correlates of 

protection (Oyston & Robinson, 2012). Such 

knowledge would form the basis for selection 

of the most fitting delivery system for optimal 

efficacy and immunogenicity.  

When infection occurs, foreign molecules 

at the site of infection are being recognised by 

the cells of the innate immune system and this 

recognition provide signalling to recruit 

inflammatory cells including macrophages and 

natural killer (NK) cells. This event is 

followed by phagocytosis by macrophages and 

immature dendritic cells (DC) that results in 

the release of pro-inflammatory cytokines and 

recruitment of more macrophages. Availability 

of pathogen-associated molecular patterns 

(PAMP) as a result of phagocytosis leads to 

their recognition by pattern recognition 

receptors (PRR) on the surface of DC –an 

important APC – and subsequent DC 

activation. Microorganisms have PAMP 

structures (Medzhitov & Janeway Jr, 1997; 

Aderem & Ulevitch, 2000; Takeda et al., 2003; 
Kaisho & Akira, 2004) that keep the immune 

system aware of foreign invasion by providing 

‘danger’ signals that will lead to innate 

immune system activation (Medzhitov & 

Janeway Jr, 1997). One family member of 

PRR is the Toll-like receptors (TLR) that are 

equipped to recognise PAMP as being foreign 

as they can distinguish between ‘self’ and 

‘non-self’ (Medzhitov & Janeway Jr., 1997; 

Medzhitov et al., 1997). Largely expressed in 

DCs and macrophages (Medzhitov, 2001), 

there are 10 functional members of human 

TLR family and 12 TLR members in mice 

(Kawai & Akira, 2010, 2011). Each TLR has a 

different function with regards to PAMP 

recognition (Akira et al., 2006) and they also 

have different ligands with distinct structure 

and origin (Medzhitov, 2001; Akira & Hemmi, 

2003). 
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Immature DCs play a role in detecting and 

capturing pathogens in the peripheral tissues 

and other sites of entry (Steinman, 1991). They 

function in the uptake of antigen that can occur 

by a number of mechanisms: phagocytosis, 

macropinocytosis and receptor-mediated 

endocytosis (Banchereau et al., 2000; 

Banchereau & Steinman, 1998). Following 

recognition of PAMP, DC undergoes a process 

called maturation. DC maturation can also be 

triggered by pro-inflammatory cytokines such 

as TNF-α or cross-linking of CD40 with CD40 

ligand (Reis e Sousa et al., 1999; Rescigno et 

al., 1999) in addition to the presence of 

microbial antigens. There are a number of 

changes that occur during DC maturation 

including the up-regulation of CCR7 and 

down-regulation of CCR6 that enables mature 

DCs to migrate to the draining lymph nodes 

(Sallusto et al., 1998; Forster et al., 1999). 

DCs also lose their phagocytic abilityand 

secrete large amounts of cytokines and 

chemokines essential for stimulation of T cells 

(Rescigno et al., 1999). Additionally, co-

stimulatory molecules such as CD80, CD86 

and CD40 as well as MHC class II molecules 

are up-regulated on the surface of DCs 

(Banchereau & Steinman, 1998; Mellman & 

Steinman, 2001). These changes prepare DCs 

for presentation of peptide fragments to T cells 

that lead to activation of naïve T cells. Mature 

DCs are able to prime naïve CD4
+
 and CD8

+
 T 

cells following recognition of antigen-MHC 

molecules complex by the T-cell receptors 

(TCR) with additional signalling from binding 

of CD40 to its ligand. Activated CD4
+
 T cells 

develop into three different subsets of T helper 

(Th) cells depending on the cytokines secreted 

by mature DCs, namely Th1-, Th2-, or Th17-

type T cells, which differ in the resulting 

immune responses.Activated CD8
+
 T cells 

obtain help from Th1 cells that secrete 

interferon-γ (IFN-γ) to differentiate into 

cytotoxic T lymphocytes (CTL) that kill 

infected cells. Figure 1 summarises the 

cascade of event involved in adaptive immune 

responses following activation of dendritic 

cells.

 

 
Figure 1. Activation of dendritic cells (DCs), T-helper (CD4) cells (Th cells) and CD8

+
 cytotoxic T 

lymphocytes (CTL). Activation (maturation) of DC through PAMP signaling (licensing); uptake of 

exogenous antigen, degradation and presentation of antigen by MHC. Naïve Th cells are activated by 

mature DC through TCR (T cell receptor) recognition of antigen presented in the context of MHC II, 

and co-stimulation (interaction of CD28 with CD80/CD86 of mature DC). Presentation of antigen in 

the context of MHC II by activated B cells (not shown) to activated Th cells leads to the generation of 

antibodies and memory B cells. Activation of naïve CTL by mature DC occurs through TCR 

recognition of antigen presented in the context of MHC I, which normally requires stimulation by 

activated Th cells and co-stimulation by interaction of CD137 with CD137L (adopted from Moyle & 

Toth, 2013). 



4 Annales Bogorienses, Vol. 17, No. 2, 2013 

Following capture and internalisation by 

DC, the antigen will then be processed into 

peptide fragments that will associate with 

MHC molecules before being transported to 

the cell surface for presentation to T cells. 

MHC molecules are highly polymorphic and 

as such enables the presentation of an array of 

different peptides. Depending on their origin, 

different antigens are presented in the context 

of MHC class I or II molecules. 

Endogenously-derived antigens such as those 

of tumour or viral origin are typically 

presented by MHC class I molecules to CD8
+
 

T cells (Rock & Goldberg, 1999; Grommé & 

Neefjes, 2002; Rock et al., 2004), while 

extracellular antigens derived from 

endocytosis or phagocytosis are presented by 

MHC class II molecules to CD4
+
 T cells 

(Villadangos, 2001; Watts, 2004). The MHC 

class I and II molecules have different 

preferred peptide lengths for processing. The 

class I molecules prefer peptides of 8-9 

residues in length (York et al., 2002; Rock et 

al., 2004). Peptides that result from 

degradation by the multi-catalytic and 

ubiquitous protease complex, the proteasome, 

range from 2-3 residues up to more than 20 

amino acid in length (Kisselev et al., 1999; 

Rock & Goldberg, 1999). Therefore, peptides 

that are longer than the preferred size undergo 

further trimming in the ER (Rock et al., 2004). 

On the other hand, the optimal peptide length 

for binding to class II molecules is 

approximately 18-20 amino acids long 

(O'Brien et al., 2008). 

Another mechanism of antigen presentation 

is known as ‘cross presentation’ where 

extracellular antigens are presented to CD8
+
 T 

cells in the context of MHC class I 

molecules.This mechanism is crucial for 

generation of cell-mediated immunity as well 

as for immune surveillance (Heath et al., 2004; 

Groothuis & Neefjes, 2005; Rock & Shen, 

2005). DC is the main immune cell responsible 

for cross presentation (Ackerman & Cresswell, 

2004; Heath et al., 2004) and antigens that can 

be cross presented include those derived from 

whole proteins, peptides, DNA, and RNA 

(Rock & Shen, 2005) as well as intracellular 

bacteria, parasites, immune complexes and 

soluble proteins (Heath et al., 2004). The exact 

mechanism of cross presentation is yet to be 

elucidated although a number of mechanisms 

have been proposed, including the endosome 

to ER pathway where antigens of endosome 

origin are degraded in the ER cytosol and the 

peptides are subsequently transported by TAP 

to MHC class I molecules (Shen & Rock, 

2006) and the phagosome-cytosol and 

phagosome-lysosome pathways that are 

usually associated with particulate antigens 

phagocytosed by DC and macrophages (Khor 

& Makar, 2008). 

 

 

Particulate Vaccine Delivery Systems 
 

Adjuvants are defined as molecules, 

compounds or macromolecular complexes that 

are able to augment antigen-specific immune 

responses with regards to their magnitude and 

duration (Wack & Rappuoli, 2005). Adjuvants 

exert their effects by a number of mechanisms, 

either by providing a depot effect to ensure 

prolonged exposure to APC (for aluminium- or 

emulsion-based adjuvants), promoting antigen 

uptake by APC (for particulate adjuvants) or 

targeting APC by means of compounds that 

bind to receptors on APC surface (for example 

TLR ligands) with a common aim of a more 

efficient antigen processing and presentation 

(Marciani, 2003). Particulate antigen carriers 

are especially attractive as they boast all of the 

above characteristics of adjuvant. To date there 

are numerous particulate delivery systems that 

are being investigated in vaccine formulations, 

some of which have been approved for human 

use and more are in pre-clinical and clinical 

trials (Kushnir et al., 2012; Correia-Pinto et 

al., 2013). 

At the central of immune response 

induction is DC as the only APC capable of 

efficiently activating naïve T cells to 

subsequently activate the adaptive immune 

responses. It is therefore a very important cell 

to target in vaccination (Belz et al., 2004) and 

the rationale behind formulation of subunit 

vaccines with particulate delivery system. The 

hallmark of particulate delivery system is 

indeed their particulate nature that mimics 

pathogens with regards to their size, shape and 

molecular structure (Bachmann & Jennings, 

2010).The similar sizes and structure with 

pathogens facilitate better uptake by APC of 

antigens associated with particulate carriers 

compared to soluble antigens. Soluble antigens 

are internalised mostly via endocytosis, 

whereas uptake of particulate antigens are 

usually mediated by phagocytosis (Burgdorf & 

Kurts, 2008). Phagocytosis by DC delivers 
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antigenic cargo into early phagosomes, which 

are important organelles that can facilitate 

cross presentation of antigen for presentation 

in the context of MHC class I molecules 

(Ackerman et al., 2003). This highlights the 

potential of particulate carriers to direct the 

immune response towards cell-mediated 

response, opposite to soluble antigens which 

are usually associated with induction of 

humoral responses. 

Other attractive features of particulate 

antigen carriers are that they are amenable to 

insertion or fusion of different protein 

antigenic sequences within its structure as well 

as to chemically-conjugated antigens on its 

surface. These features highlight their 

versatility in terms of the feasibility of not only 

carrying a variety of antigen cargos but also 

tailoring specific types of immune responses. 

As such there are different kinds of delivery 

systems being investigated, each with their 

own characteristics and advantages. 

 

Liposome 

Liposomes are spherical structures made of 

phospholipid bilayers encapsulating an 

aqueous centre. Liposomes are safe and well-

tolerated, biodegradable as they are composed 

of lipid bilayers that are naturally found in cell 

membranes, exhibit low reactogenicityand 

very versatile in terms of the types of lipid 

components and methods of vesicle 

preparation to cater for specific 

physicochemical properties as desired (Watson 

et al., 2012). Liposomes have been reported as 

potent enhancer of immune responses when 

used in delivery of protein (Leserman, 2004; 

Hansen et al., 2008; Thueng-in et al., 2010), 

DNA vaccine (Nakanishi et al., 1999; Wang et 

al., 2010b), peptide epitopes (Ludewig et al., 

2000; Chikh & Schutze-Redelmeir, 2002) and 

cancer vaccine (Zhang et al., 2013). Schematic 

representation of subunit vaccine delivery by 

liposome is shown in Figure 2. 

There are a number of key parameters in 

the design of liposomal vaccines, some of 

which are method of antigen attachment, 

vesicle size and charge (Watson et al., 2012), 

as well as lipid composition, lamellarity, 

pegylation and the type of targeting moiety 

(Giddam et al., 2012). Liposomes can be made 

from lipids that are positively or negatively 

charged to produce cationic or anionic 

liposomes, respectively (Ulrich, 2002). There 

are various methods by which antigen can be 

incorporated into liposomes (Giddam et al., 

2012). Soluble antigens can be encapsulated in 

the aqueous core, embedded within the lipid 

bilayer or absorbed on the lipid membrane 

surface; peptide antigens can be coupled to the 

membrane; and charged antigens can be 

associated electrostatically with oppositely-

charged membrane.  

 

 
Figure 2. Schematic representation of subunit 

vaccine antigen delivered by liposome. 

Liposome particles can be armed by targeting 

molecule e.g. antibody fragments for targeting 

to APC, and stabilizing agents such as 

polyethyleneglycol (PEG). 

 

A number of studies showed that the 

resulting immune response against liposomal-

associated antigens is influenced by the 

positioning of antigens. In general, conjugation 

of antigen on liposome surface promotes better 

antibody-mediated immune response 

compared to encapsulated antigen, whereas no 

significant differences were observed between 

these two methods of antigen association with 

regards to cell-mediated immunity (Shahum & 

Therien, 1994, 1995; Chen & Huang, 2008). 

This is perhaps due to ease of recognition of 

antigen by B cells when it is located on the 

surface of liposomes (White et al., 1995). 

Additionally, vesicle size also affects the 

resulting immune response where vesicles 

sized between 250-700nm elicit better Th1-

skewed response (Mann et al., 2009; 
Henriksen-Lacey et al., 2011). Moreover, one 

factor that significantly determines the 

immunogenicity of liposomal antigens is the 

surface charge of lipid membranes, where 

charged liposomes are better than neutral ones 

in eliciting antibody and cell-mediated 

responses with positively-charged liposomes 

being the most potent inducer of immune 
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responses (Nakanishi et al., 1999; Badiee et 

al., 2009). 

 

Virus-like Particles (VLP) 

Virus-like particles (VLP) are non-

infectious particles formed by self-assembly of 

envelope and/or capsid proteins of viruses and 

thus they mimic the overall structure of virus 

without the infectious genetic material 

(Ludwig & Wagner, 2007; Noad & Roy, 

2003). Preparation of VLPs from a number of 

viruses such as human papillomavirus (HPV), 

hepatitis B and C virus, human 

immunodeficiency virus (HIV) as well as 

influenza viruses have been documented (Liu 

et al., 1998; Yao et al., 2003; Mihailova et al., 

2006; Szécsi et al., 2006; Karpenko et al., 

2007; Kang et al., 2009a). VLPs can be 

produced using various expression systems, 

such as bacterial, yeast, insect and mammalian 

cells (Watanabe et al., 2001; Zheng et al., 

2004; Mena et al., 2006; Santi et al., 2008; 

Baek et al., 2012). An example of VLP 

assembly from HPV is depicted in Figure 3. 

 

 
Figure 3. Assembly of human papillomavirus 

(HPV)-like particle. Interaction of five L1 

proteins, the major viral capsid protein, yields 

a L1-pentamer (capsomer). 72 of these 

pentamers and L2 proteins, the minor capsid 

protein, assemble to a virus-like particle (VLP) 

mimicking the outer shell of an authentic 

virion (adopted from Schiller & Lowy, 2012). 

 

Immunogenicity of VLP is mainly 

attributed to their particulate structure that is 

preferred for uptake by APC and their high 

density display of epitopes (Grgacic & 

Anderson, 2006; Roy & Noad, 2008). As a 

vaccine VLP can induce both humoral and 

cellular responses (Sailaja et al., 2007; Quan et 

al., 2008; Song et al., 2010b) as well as 

providing protective immunity following their 

administration (Kang et al., 2009b; Song et al., 

2010a; Hossain et al., 2011) via stimulation of 

APC that subsequently prime naïve T cells 

(Moron et al., 2002; Lenz et al., 2003; 

Buonaguro et al., 2006). Their superior 

immunogenicity as vaccines, their non-

infectious and particulate nature have 

prompted the utilisation of VLPs as antigen 

delivery systems as well (Garcea & Gissmann, 

2004; Teunissen et al., 2013). Additionally, 

their wide range of target pathogens and 

versatility in production systems have led to a 

number of candidates undergoing clinical trial 

with a handful of VLP-based vaccines already 

entering the market (Kushnir et al., 2012). 

Their versatility as antigen carrier has been 

shown in a variety of cargos such as peptide 

epitopes (Gilbert et al., 1997; Liu et al., 2000; 
Woo et al., 2006; Cheong et al., 2009; 

Krammer et al., 2010) and DNA vaccines 

(Karpenko et al., 2007; Jariyapong et al., 

2013).  

VLP can be used to display different 

peptides on their surface without interfering 

with their assembly (Peabody et al., 2008; 

Takahashi et al., 2008; Caldeira et al., 2010). 

The peptide epitope can also be incorporated 

within the VLP to substitute certain epitopes 

creating a chimeric VLP, such as in the 

construction of hepatitis B virus surface 

antigen VLP (Cheong et al., 2009) and simian 

virus 40 VLP (Kawano et al., 2014) containing 

embedded influenza virus CTL epitopes. A 

number of studies have demonstrated that 

VLPs are potent DC stimulator (Lenz et al., 

2003; Sailaja et al., 2007) and also showed 

how administration of antigen-VLP complexes 

resulted in induction of high titers of antigen-

specific antibodies (Slupetzky et al., 2007; 
Caldeira et al., 2010; Krammer et al., 2010), 

CTL responses and protective immunity ( Liu 

et al., 2000; Cheong et al., 2009; Kawano et 

al., 2014). Other studies also showed that VLP 

as antigen carrier can elicit mucosal and 

systemic immune responses against the antigen 

(Richert et al., 2012; Rivera-Hernandez et al., 

2013) which correlate to their potential as 

inducer of mucosal immunity and facilitator of 

intranasal vaccine delivery. 

 

Polymeric Nanoparticles  

Vast numbers of synthetic polymers have 

been used as biomaterials for production of 

nanoparticles, such as poly(ethylene glycol) 

(PEG) (Vila et al., 2004a), poly(D,L-lactic-

coglycolic acid) (PLGA) (Elamanchili et al., 

2004; Sapin et al., 2006; Hamdy et al., 2011; 
Prasad et al., 2011; De Temmerman et al., 
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2012; Colonna et al., 2013), poly(D,L-lactide-

co-glycolide) (PLG) (Vila et al., 2004a; 

Rajkannan et al., 2006; Singh et al., 2006), 

poly(g-glutamic acid) (g-PGA) (Akagi et al., 

2005; Matsuo et al., 2007; Shima et al., 2013; 

Toita et al., 2013), and polystyrene (Minigo et 

al., 2007). Out of these synthetic polymers, 

PLGA and PLG have received considerable 

attention and are the most investigated 

materials for particulate delivery systems as 

their biocompatibility and biodegradability are 

outstanding (Panyam & Labhasetwar, 2003; 

Peek et al., 2008; Danhier et al., 2012).  

Natural polysaccharide-based polymers 

have also been utilised in preparation of 

delivery systems, which include chitosan 

(Nagamoto et al., 2004; Vila et al., 2004b; 
Amidi et al., 2010; Chua et al., 2011; Gordon 

et al., 2012), alginate (Mata et al., 2011; Li et 

al., 2013), inulin (Layton et al., 2011), 

pullulan (Dionísio et al., 2013). Chitosan in 

particular has been intensively investigated as 

they are non-toxic, highly biocompatible and 

biodegradable, and amenable to various 

modification of shapes and sizes (Amidi et al., 

2010; Chua et al., 2011). Numerous studies 

have demonstrated increased immunogenicity 

of antigen delivered in chitosan nanoparticles 

(Prego et al., 2010; Zhao et al., 2011; 
Tafaghodi et al., 2012) and that these 

nanoparticles are indeed favoured for uptake 

and presentation by APC (Koppolu & 

Zaharoff, 2013).  

 

 
Figure 4. A. Chemical structure of chitosan. 

B. Schematic representation of a protein (e.g. 

BSA, in red) loading patterns in chitosan-

based microspheres prepared a) by one-step 

crosslinking with glutaraldehyde or b) by two-

step crosslinking with p-phtaldehyde and 

glutaraldehyde (adopted from  Wei et al., 

2008). 

Chitosan-based delivery systems have been 

shown to be a viable platform for development 

of mucosal vaccines with strong and long-

lasting immune responses (van der Lubben et 

al., 2001; Nagamoto et al., 2004; Vila et al., 

2004b) due to the chitosan’s ability to facilitate 

transport of peptides and proteins across 

mucosal barriers (Amidi et al., 2006; Illum et 

al., 2001). Pulmonary administration of 

chitosan nanoparticles containing DNA 

vaccine encoding T cell epitopes from 

Mycobacterium tuberculosis resulted in higher 

IFN-γ production compared to soluble form of 

plasmid DNA and when intramuscular 

administration was used (Bivas-Benita et al., 

2004). N-trimethyl chitosan (TMC), a more 

soluble chitosan derivative, has also been 

developed and investigated as a delivery 

system (Amidi et al., 2006; Sayın et al., 2008). 

TMC is also found to be viable for intranasal 

administration of vaccines and enhances 

immunogenicity of its encapsulated antigen 

(Amidi et al., 2007; Verheul et al., 2008). 

 

 

Targeting Particulate Delivery Systems 

to Dendritic Cells 
 

The highly immunogenic nature of 

particulate delivery systems is evident in the 

resulting antigen-specific immune responses 

following their administration. However, with 

regards to developing better vaccines, utilising 

additional ligands or molecules for direct 

targeting to DC has proven to be an efficient 

means to further augment the resulting 

immune responses. DC-targeting ligands allow 

for direct DC activation, ensuring the cascade 

of events leading to activation of adaptive 

immunity. Improved immunogenicity may 

translate to lower doses required, which would 

be beneficial in the event where vaccine 

demands increase significantly such as in a 

pandemic setting. 

In the case of VLP as vaccines, 

incorporation of DC-targeting ligands 

evidently is an efficient approach to further 

enhance their immunogenicity. For example, 

incorporation of CD40 ligand into chimeric 

simian immunodeficiency virus-like particles 

(SIVLP) enhanced their immunogenicity 

(Skountzou et al., 2007) and a more recent 

study using CD40 ligand into SIVLP 

demonstrated a significant increase in DC 

maturation markers (CD83, CD40, and CD86) 
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and cytokines indicating the activation of DCs, 

as well as overall increase in the magnitude of 

humoral and cellular responses against SIV 

(Zhang et al., 2010). DC-stimulating cytokines 

such as Flt3 ligand and granulocyte 

macrophage colony-stimulating factor (GM-

CSF) when inserted into budding VLP also 

successfully increased VLP immunogenicity 

by virtue of triggering DC activation (Sailaja 

et al., 2007). Other studies showed that 

incorporation of TLR ligands into VLP 

resulted in strong antibody responses (Wang et 

al., 2008), as well as cellular responses and 

protective immunity (Wang et al., 2010a; 

Schneider-Ohrum et al., 2011). 

This approach has been shown to be 

feasible as well in improving the 

immunogenicity of liposome-associated 

antigens. For example, cationic liposomes 

complexed with either a TLR3 or TLR9 

agonist have successfully delivered their cargo 

to be cross presented resulting in cellular 

response (Zaks et al., 2006). Cell-mediated 

immunity against M. tuberculosis was also 

obtained following administration of liposome 

that incorporated mycobacterial heat shock 

protein 65 and IL-12 (Yoshida et al., 2006). A 

more recent study using a TLR3 agonist-

incorporated cationic liposomes demonstrated 

that such liposomes generated a much better 

tumour-specific cell-mediated immune 

response and IFN-γ production compared to 

the same liposome without the TLR3 agonist 

(Wang et al., 2012).  

 

 

Concluding Remarks 
 

The potential of particulate delivery 

systems for adjuvanting subunit vaccines is 

evident in numerous studies. With a variety of 

delivery system to choose from, we can select 

the most appropriate antigen carrier with 

regards to the type of resulting immune 

responses we desire. This is especially 

important for diseases that require cell-

mediated immunity as only a few adjuvants are 

capable of eliciting cellular responses. 

Improvement in formulation and addition of 

immunostimulatory molecules provides an 

alternative to formulate an even more 

immunogenic delivery system. 
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