
Corresponding Author: Vasudha rani Vaddadi, GMRIT,Rajam, vasudharani.v@gmrit.org,+91 9177377469

European Journal of Academic Essays 1(5): 1-4, 2014
ISSN: 2183-1904

www.euroessays.org

Survey on Methodology & Examples of Mapper /

Reducer /Combiner for Big data

Vasudha rani Vaddadi
IT Department

GMRIT

Rajam, Andhra Pradesh, India

Vasudharani.v@gmrit.org

Abstract: Map-Reduce is one of the Big data technologies talks about distributed computations on massive amounts of data

and an execution environment for high scale data processing on clusters. Principle behind Mapper/ Reducer is the general

Divide and Conquer algorithm in many different domains. Map/Reduce is giving advantages over parallel databases include

storage-system independence and fine-grain fault tolerance for larger jobs. Map /Reduce parallelism is shown as combined

paradigm of Shared memory and data, message passing with pipelined implementation at a higher level. Hadoop is an Open

source. It is the Java-based implementation of MapReduce which is detailed discussed here. In this paper, methodology

behind Mapper/Reducer/Combiner required for big data with an example Web Search Engine is clearly demonstrated. Web

Search Engine working is compared having combiner and not having combiner .

Keywords:Mapper, Reducer ,Combiner , hadoop , HDFS. Message passing ,pipelining ,Shared Data

__

1. Introduction

Map Reduce being a higher level parallel programming

paradigm includes the capabilities of Message passing ,Data

Parallel ,pipeline work .Map/Reduce motivates to redesign

and convert the existing sequential algorithms to Map/Reduce

algorithms for big data so that the paper presents method of

map reduce for data analysis in an efficient manner reducing

the Time complexity. Map Reduce is a Programming model

used by Google and A combination of the Map and Reduce

models with an associated implementation ,used for

processing and generating large data sets. Map Reduce is

highly scalable and can be used across many computers.
Many small machines can be used to process jobs that

normally could not be processed by a large machine.

 Map Reduce has the implementation of Shared Memory

where in DATA is shared among the multiple processors and

the work is divided as work units w1,w2,w3 …..wn. In

sequence with message passing capability it has updated to

have both Partitioning the data as D1,D2,D3….Dn including

Partitioning of work with intermediate Key / Value pairs,

ends with finalized Key / Value pairs ,Starting pairs are sorted

by key,Iterator supplies the values for a given key to the

Reduce function.

Typically a function that: Starts with a large number of

key/value pairs , One key/value for each word in all files

being greped (including multiple entries for the same word)

– Ends with very few key/value pairs

 One key/value for each unique word across all the files with

the number of instances summed into this entry ,Broken up so

a given worker works with input of the same key.

Users specify the computation in terms of a map and a reduce

function, Underlying runtime system automatically

parallelizes the computation across large-scale clusters of

machines, and

Underlying system also handles machine failures, efficient

communications, and performance issues. Hadoop is a

framework written in Java for running applications on large

clusters of commodity hardware and incorporates features

similar to those of the Google File System (GFS) and of

the MapReduce computing paradigm. Hadoop’s HDFS is a

highly fault-tolerant distributed file system and, like Hadoop

in general, designed to be deployed on low-cost hardware. It

provides high throughput access to application data and is

suitable for applications that have large data sets.

One of the attractive qualities about the MapReduce

programming model is its simplicity: an MR program consists

only of two functions, called Map and Reduce, that are

written by a user to process key/value data pairs. The input

data set is stored in a collection of partitions in a distributed

http://en.wikipedia.org/wiki/Google_File_System
http://en.wikipedia.org/wiki/MapReduce
http://hadoop.apache.org/hdfs/docs/current/hdfs_design.html

European Journal of Academic Essays 1(5): 1-4, 2014

2

file system deployed on each node in the cluster. The program

is then injected into a distributed processing framework and

executed in a manner to be described. The Map function

reads a set of “records” from an input file, does any desired

filtering and/or transformations, and then outputs a set of

intermediate records in the form of new key/value pairs. As

the Map function produces these output records, a “split”

function partitions the records into R disjoint buckets by

applying a function to the key of each output record.

This split function is typically a hash function, though any

deterministic function will suffice. Each map bucket is

written to the processing node’s local disk. The Map function

terminates having produced R output files, one for each

bucket. In general, there are multiple instances of the Map

function running on different nodes of a compute cluster.

We use the term instance to mean a unique running

invocation of either the Map or Reduce function. Each Map

instance is assigned a distinct portion of the input file by the

MR scheduler to process. If there are M such distinct portions

of the input file, then there are R files on disk storage for each

of the M Map tasks, for a total of M × R files; Fij , 1 _ i _ M,

1 _ j _ R. The key observation is that all Map instances use

the same hash function; thus, all output records with the same

hash value are stored in the same output file. The second

phase of a MR program executes R instances of the Reduce

program, where R is typically the number of nodes. The input

for each Reduce instance Rj consists of the files Fij , 1 _i _

M. These files are transferred over the network from the Map

nodes’ local disks. Note that again all output records from the

Map phase with the same hash value are consumed by the

same Reduce instance, regardless of which Map instance

produced the data. Each

Reduce processes or combines the records assigned to it in

some way, and then writes records to an output file (in the

distributed file system), which forms part of the

computation’s final output.The input data set exists as a

collection of one or more partitions in the distributed file

system. It is the job of the MR scheduler to decide how many

Map instances to run and how to allocate them to available

nodes. Likewise, the scheduler must also decide on the

number and location of nodes running Reduce instances. The

MR central controller is responsible for coordinating the

system activities on each node. A MR program finishes

execution once the final result is written as new files in the

distributed file system.

2. Hadoop

 Hadoop is an Open source. It is the Java-based

implementation of MapReduce. Use HDFS as underlying file

system. Hadoop implements a computational paradigm

named Map/Reduce, where the application is divided into

many small fragments of work, each of which may be

executed or reexecuted on any node in the cluster. In

addition, it provides a distributed file system (HDFS) that

stores data on the compute nodes, providing very high

aggregate bandwidth across the cluster. Both Map/Reduce

and the distributed file system are designed so that node

failures are automatically handled by the framework.

Hadoop's Distributed File System is designed to reliably

store very large files across machines in a large cluster. It is

inspired by the Google File System. Hadoop DFS stores

each file as a sequence of blocks, all blocks in a file except

the last block are the same size. Blocks belonging to a file

are replicated for fault tolerance. The block size and

replication factor are configurable per file. Files in HDFS are

"write once" and have strictly one writer at any time.

Hadoop Distributed File System – Goals:

• Store large data sets

• Cope with hardware failure

• Emphasize streaming data access

The Hadoop Map/Reduce framework harnesses a cluster

of machines and executes user defined Map/Reduce jobs

across the nodes in the cluster. A Map/Reduce computation

has two phases, a map phase and a reduce phase. The input

to the computation is a data set of key/value pairs.Tasks in

each phase are executed in a fault-tolerant manner, if node(s)

fail in the middle of a computation the tasks assigned to them

are re-distributed among the remaining nodes. Having many

map and reduce tasks enables good load balancing and

allows failed tasks to be re-run with small runtime overhead.

Hadoop Map/Reduce – Goals:

• Process large data sets

• Cope with hardware failure

• High throughput

3. Mapper /Reducer Methodology

Map Reducer consists Shared memory –Partitioning the

work means Different parts of the work will be done on

same data by different processors.

 Figure 1: Shared Memory

Map reduce Supports Message Passing means Different

Parts of the work will be done Different data by different

Processors.

European Journal of Academic Essays 1(5): 1-4, 2014

3

 Figure 2: Message Passing

In the Implementation of Mapper Reducer Technology, Data

is shared among the processors and even work is also shared

among all the processors in pipelined manner. And the

Architectural diagram is given below.

 Figure 3: Map reduce = Shared Memory +

 Message Passing

4. Map Reduce Architecture

 Figure 4: Map Reduce Architecture

 For the Mapper Reducer Data should be given , upon which

Mapper is assigned with certain work and reducer is

assigned with certain work. All the mappers will be working

at the same time for solving any problem ,So no of

processors required is the no of mappers maintained. And for

the task of reducer the same processors can be used and

applied on the output data from Mappers.

5. Mapper/Reducer Example

Example for Map Reduce: Web Mining:

 Web searcher for data obviously go with a web search

engine like Google. To understand its process clearly we can

start with an example of counting words in group of

documents.

Need to calculate computing frequency of words using Map

Reduce.

If the task given searching data which performs word

count on web data (web Intelligence) using Map Reduce

Architecture. Mapper is given with set of Documents ,In

finding the word count , for a word search needs to happen

in all the documents and is maintained as (Did , Conid) -

(word , count) which gives the word count information in

respective documents. Similarly all the mappers will do the

concerned work for concerned documents in the format (Did

, Conid) information to the Reducer. Work of Reducer is to

combine the information for the same word from different

mappers and results the words and counts.

 Did: Document id

 Conid: Contents

 Wd: Word

 Countid : Count occurrence

 Of the word.

 Mapper:

 (Did , Conid) -> Map(Wd ,Countid)

 Reducer:

 Wd ,FUN(countid1,…..CountidN…….)

 <-- Reduce (Wd , [….Countid ….]

 Map –Reduce Platform responsible for routing pairs to

reducers  all pairs the same key values end up at the same

reducers. Map reduce essentially sorts the values to finally

end up in the correct reducers. Map reduce reads data from a

file System or data base and writes fresh data it’s a batch

process always processes more data very different from

querying data from Data Base.

European Journal of Academic Essays 1(5): 1-4, 2014

4

 Figure 5: Working Example

Mapper reducer without combiner and with Combiner Phase

can be implemented. We can have Calculations over how

much data is created at each phase . After mapper phase the

same sized data is generated because each word is entered

every time it is seen. If word count is summed up before

moving onto the reduce phase. Process of reduce phase

operation partially as a part of mapper process is called

Combine before emitting for sorting by reducer.

6. Conclusion & Future work

 My Conclusion is that map reduce is the better

method for Parallel processing of big data in the clustered

environment takes less processing time and Fault

Tolerant.

In order to go for big data analytics , detailed knowledge

of methodology with examples of map reduce is a key

area to learn.

 It has been proved in this paper for the application of

web mining with clear explanation of its methodology.

Showing the results graphically will be the extension of

my work.

 This paper has discussed the methodology of Map

Reduce with a good example of web mining .In

continuation to this learning Hadoop famework

implementation leads us to work in the area of Big data.

And more analysis can be done in terms of time

complexity and Graphs can be drawn. Map Reduce in

combination with Hadoop having lot of its applications in

the ares of marketing ,Banking Data ,Cricket information ,

Sales information etc…

References

 [1]. Jongwook Woo, Yuhang Xu, “Market Basket

Analysis Algorithm with Map/Reduce of Cloud Computing,”

.April 2011.

[2]. Apache Hadoop Project, http://hadoop.apache.org/,

[3]. “Data-Intensive Text Processing with MapReduce”,

Jimmy Lin and Chris Dyer, Tutorial at the 11th Annual

Conference of the North American Chapter of the

Association for Computational Linguistics (NAACL HLT

2010), June 2010, Los Angeles, California.

[4]. Ping ZHOU †, Jingsheng LEI, Wenjun YE ,

“Large-Scale Data Sets Clustering Based on MapReduce and

Hadoop”, Journal of Computational Information Systems 7:

16 (2011) 5956-5963.

http://hadoop.apache.org/

