
Corresponding Author: Abdollatif Sepahi

European Journal of Academic Essays 1(4): 68-75, 2014
ISSN: 2183-1904

www.euroessays.org

Multi-manned Assembly Line Balancing Problem

with Variable Task Times

 Abdollatif Sepahi,
1
, Seyed Gholamreza Jalali Naini

2

1,2Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
1Latif.sepahi@gmail.com

2sgjalalin@yahoo.com

__

Abstract: In many real world assembly lines the product is of large size and more than one worker operates on the same work-

piece in each station. In this paper the multi-manned assembly line (MAL) balancing problem is considered. Typically in the

literature of MAL it is assumed that the task times are deterministic and independent of other factors. However in real world

assembly lines it is common to expect a greater task time when the number of workers in a station increases. This situation hasn’t

been considered in the previous studies on MAL. In this paper it is assumed that task times are dependent on the concentration of

workers in the station. A mathematical formulation is presented to solve this problem with the objective of minimizing the

number of stations. Since the problem is NP-hard, four heuristic procedures are developed to solve this problem. Computational

results show the performance of these heuristics.

Keywords: Assembly line Balancing, Straight line, multi manned, optimization

__

1 Corresponding Author: Abdollatif Sepahi, Department of Industrial Engineering, Iran university of Science and Technology, Tehran, Iran,

1. Introduction

Assembly lines are flow based production systems used to

produce standardized commodities in high volume. These

systems even gain importance in producing low volume

customized products.

An assembly line consists of m workstations arranged along a

material handling equipment. Beginning from the first station

to the last station, work-pieces are moved through the line. In

each station a set of operations are performed on the work-

pieces regarding the cycle time (maximum available time in

each work-cycle). The decision problem of assigning tasks to

stations with the aim of optimizing some objective functions is

called assembly line balancing (ALB) problem. The most

studied problem in the field of ALB is called simple assembly

line balancing problem (SALBP) and has the following

assumptions [1]-[3]:

 Mass production of one homogenous goods

 Given production process

 Paced line with a fixed cycle time c.

 Every task j has a deterministic and numeral operation

time
jt

 No assignment limitations besides precedence

constraints

 Serial line layout with m stations

 Wholly stations are similarly equipped with respect to

machines and workers

 Maximize the line efficiency: sumt
Eff=

m×c
, in which m

is the number of stations and
n

sum j

j=1

t = t is the sum

of processing time of all tasks.

These assumptions are very restricting with respect to real

assembly line production systems. Therefore many researchers

have recently focused on identifying and modeling more

realistic situations in assembly lines. The resulting problems

are called generalized assembly line balancing problems

(GALBP).

Several generalizations have been studied for the ALBP.

Several cases of these generalizations are U-shaped assembly

lines balancing [4], considering parallel workstations [5],

considering process alternatives [6] and two sided assembly

lines [7]. Some recent surveys of generalized assembly line

models are [2], [3], [8]-[10].

European Journal of Academic Essays 1(4): 68-75, 2014

69

Multi-manned assembly line balancing problems (MALBP) are

a new type of GALBPs in which more than one worker can be

assigned to each station. This situation frequently occurs in

industries with large-sized products such as automotive

industries in which the product is of reasonable large size to

use multi-manned assembly line configuration [11].

Some advantages of multi-manned assembly lines over simple

assembly lines are reducing the length of assembly line, the

cycle time, the charge of tools and fixtures, material handling

and setup times [12]. These advantages have enough

motivation to use MAL configuration in producing large-sized

commodities.

Although MALs are very common in real world assembly line

systems, few studies have considered this problem. The most

similar problem considered in the literature of ALB is proposed

by Bartholdi, in which the two-sided line is considered [7]. In a

two-sided line there are two serial lines in parallel. Instead of

single stations, couples of adverse stations on either side of the

line work in parallel on the same work-piece. The difference

between this problem and the problem considered in this paper

is that in a two-sided line there are two workers in each station

and each worker is constrained to work on only one part of the

station. While in the problem considered in this paper there can

be more than two workers in each station and these worker can

perform tasks on either sides of the station. The problem

addressed in this study is different from problems that consider

cooperation of several workers on the same task and the same

product to reduce the cycle time. There are some studies

considering parallel stations in which several workers perform

the same tasks on different work-pieces [5], [13], [14]. This

situation is different from the MALs in which several workers

perform different tasks on the same work-piece. Dimitriadis,

considered the MALBP for the first time. He also developed a

heuristic assembly line balancing procedure to solve the

problem [11]. Cevikcan et al, proposed a mathematical

programming model for creating assembly physical multi-

manned stations in mixed model assembly lines. Since the

model proposed by them is NP-hard, they proposed a

scheduling-based heuristic to solve the problem [15]. Chang &

Chang, discussed a mixed-model assembly line balancing

problem with multi-manned workstations and developed a

mathematical model for the mixed-model assembly line

balancing problem with simultaneous production (MALBPS) to

decide the optimal number of workstations. They also

proposed a coding system, Four-Position Code (FPC), to re-

code the tasks to tackle this issue, and provided a computerized

coding program written in C++ to generate those FPCs [16].

Fattahi et al, presented a mixed integer programming model for

MALBP. They also developed an ant colony meta-heuristic

approach to efficiently solve the medium- and large-size scales

of this problem [12].

In this paper the MALBP is extended in such a way that task

time are dependent on the number of workers in the station. In

the previous studies on MALBP it is assumed that the number

of workers that can be assigned to a station is restricted by the

maximum feasible ‘worker concentration’. This quantity is

provided by the system modeler according to the product size.

But in many realistic situations the number of workers in the

station has a direct impact on the processing time of the tasks

assigned to the station. For example there may be a certain

number of a specific tool in a station, if the number of workers

exceed the number of tools, waiting time for the tool to be

released by other operators may be incurred. Another factor is

the required space to perform the tasks i.e. the task time may

increase if there is not enough space to perform the task. These

examples and many other realistic situations highlight the

importance of considering task times which are dependent on

the number of workers in the station. To the greatest of our

knowledge this kind of task times hasn’t been considered in

the literature of MALBP so far. To illustrate the model an

example is offered, this example is created from the well-

known example of Mertens. The precedence graph for this

instance is presented in fig.1 and the task times for each task

and number of workers in are presented in table 1. Cycle time

is assumed to be 6. In table 1 some task times for some number

of workers are greater than cycle time. This means that the task

cannot be accomplished with that number of worker

concentration in a station.

Fig. 1 precedence graph of Mertens instance

European Journal of Academic Essays 1(4): 68-75, 2014

70

Table 1 task times

task Number of workers in the station

 1 2 3

1 1 1 2

2 5 5 6

3 4 5 6

4 3 4 5

5 5 6 7

6 6 6 7

7 5 5 6

An optimum solution for this example is presented in fig. 2.

For each task, starting time and finishing time are shown

alongside its bar. Shaded rectangles indicate unavoidable

delay between two consecutive tasks, or idle time at the end

of the cycle time. Unavoidable delays occur when a worker

must wait until other work elements assigned to some other

workers are complete. For example in fig.2 starting time of

task 2 is delayed until task 1, which is predecessor of task 2,

is complete. As it can be seen from fig. 2 three stations and

6 workers are needed to perform the tasks in a multi-

manned assembly line system.

Fig. 2 Assignment of tasks to workers and stations in an optimum solution

The remainder of this paper is organized as follows: in

section 1 a mathematical formulation is proposed to solve

the problem. In section 2 heuristic algorithms are developed

to solve the problem. Computational results are presented in

section 4. The main conclusions of the paper and

suggestions for future research are presented in section 5.

2. Mathematical formulation

The notations used to formulate the problem are presented

in table 2.

Table 2 Notations used for the mathematical model

i, h task

J station

K worker

I Set of tasks

K Set of workers

J Set of workstations
*

i iP (P) Set of direct (all) predecessors of task i

*

i iF (F)

Set of direct (all) successors of task i

C Cycle time

M Number of stations

M A big positive number

MC Maximum concentration of workers in a station

N Number of tasks

ikp

Processing time of task i when there are k workers in the station

ijt Processing time of task i in station j.

European Journal of Academic Essays 1(4): 68-75, 2014

71

0 1ijkx { , } Equals 1 if task i is assigned to worker k in station j.

0 1ihy { , } Equals to 1 if task i and h is assigned to the same worker and

task i is performed earlier than task h.

0 1jkw { , }

Equals to 1 if k th worker is used in station j.

sjkw

Equals to 1 if k workers are used in station j.

ist

Start time of task i

The problem is formulated as follows:

 mjk

j J k K

min j×x
 (1)

1

 ijk

j J k K

x i I (2)

 hjk ijk

j J k K j J k K

j×x j×x ii I, h P (3)

1

 i ij ijk

k K

st t C M (x) i I,j J (4)

1 1

 i h hjk ijk hj

k K k K

st st M x M x t ii I ,h P , j J (5)

1 1 1h i hjk ijk ih ijst st M (x) M (x) M (y) t

 * *

i i

i I,j J , k K

h {r|r I-(P F) i<r}

(6)

1 1i h hjk ijk ih hjst st M (x) M (x) M (y) t

 * *

i i

i I,j J , k K

h {r|r I-(P F) i<r}
 (7)

0

 ijk jk

i I

x N w j J,k K (8)

 jk jk

k k

k ws w j J (9)

1 j (k) jkw w j J,k K (10)

 ij ik jk

k K

t p ws i I,j J (11)

0ist i I (12)

0 1ijkx { , } i I,j J,k K (13)

0 1ihy { , }

 * *

i i

i I

h { r | r I (P F) i<r}

(14)

0 1jkw { , } j J,k K (15)

0 1jkws { , }

 j J,k K
 (16)

In this formulation (1) is the objective function to be

minimized, which is the number of stations. m is a fictitious

task that is successor of all tasks, therefore it is always

assigned to the last station. Therefore to minimize the number

of stations it is sufficient to minimize the index of the station to

which task m is assigned. Constraints (2) ensure that each task

i is assigned to only one worker and one station. Equations (3)

ensure that precedence constraints are observed. Constraints

(4) imply that all tasks must be finished before the end of the

cycle time. Equations (5) imply that if task h is a direct

predecessor of task i and they both are assigned to the same

station, then task i must be started after task h is finished. If

these tasks are not in the same station, equation (5) becomes

redundant. If tasks i and h don’t have any direct precedence

relations and are assigned to the same worker constraints (6)

and (7) become active. If i is assigned earlier than task h then

European Journal of Academic Essays 1(4): 68-75, 2014

72

1ihy so the equation (7) becomes redundant and equation

(6) leads to h i ijst st t this means that task h must start

after task i is finished. On the other hand if h is assigned earlier

than i then yih=0 and equation (6) becomes redundant and

equation (7) leads to: h i ijst st t .

The constraints (8) are

the worker constraints and imply that if the k th worker hasn’t

been assigned to the station j, no task can be assigned to it.

With constraints (9) number of wsjk is set to be 1 if the number

of workers in station j equal to k, otherwise it is set to be 0.

Constraints (10) ensure that the workers are loaded in

increasing order of their indexes. With (11) tij assumes the

processing time of task i in station j according to the number of

workers in the station. Constraints (12) ensure that starting

times are non-negative. Constraints (13) through (16) indicate

that variables xijk, yih, wjk and wsjk are binary variables.

3. Heuristic procedures developed

Since SALBP is known to be NP-hard [17], [18] and the

problem considered here is a generalization of SALBP.

Therefore the problem under consideration is also NP-hard. So

it is fully justified to develop heuristic algorithms in order to

obtain good solutions in a computational time short enough to

be applied in industrial real instances. In this section, four

heuristic procedures are developed to solve the problem

introduced in previous sections. All of these procedures are

based on priority rules. The general procedure for these

heuristics is as follows:

Step 1: Set station counter Sc=0, and available tasks

Avail_task= {1, 2… N}. Available tasks are the tasks that

haven’t been assigned to any worker in any station.

Step 2: Set the number of workers in the station Wn=1 and

previous number of tasks Temp_Tc=0.

Step 3: Set the current worker k=1 and task counter Tc=0.

Consider two temporary sets of tasks Temp_task1 and

Temp_task2 and set Temp_task1=Avail_task. Set all of the

workers as empty i.e. no task has been assigned to them.

Step 4: Among tasks of Temp_task1, ones that are assignable

to worker k, select the task with the highest priority, according

to one of the priority rules which will be presented later in this

section. Assign it to worker k and delete it from Temp_task1

then set Tc=Tc+1. Repeat this process until there is no task

assignable to worker k. Then go to step 5.

Step 5: Set k=k+1. If k<=Wn then go to step 4, if not go to step

6.

Step 6: A trial station with Wn number of workers is complete.

If the number of tasks in this station, Tc, is more than Temp_Tc

and Wn+1 is not more than MC, maximum concentration of

workers in a station, then set Wn=Wn+1,

Temp_task2=Temp_task1 and Temp_Tc=Tc then go to step 3.

If Tc is more than Temp_Tc and Wn+1 is more than MC then

set Avail_task=Temp_task1 and go to step 7. Finally if Tc is

not more than Temp_Tc set Avail_task=Temp_task2 and go to

step 7.

Step 7: A station is completed and the number of workers and

the tasks assigned to each worker must be saved. If Avail_task

is empty return Sc and end the procedure, otherwise set

Sc=Sc+1 and go to step 2.

All of the heuristics presented in this paper use this procedure.

Four priority rules are used in this paper:

 Maximum task time

 Minimum task time

 Maximum value of

*

j

*

i V i

F

Max (F)
 where

*

jF is the

set of all successors of task j.

 Maximum value of

*

j j

*

i V i

t F

c Max (F)

Therefore four heuristic procedures are to be considered. For

the rest of this paper Max_t and Min_t are used to refer to the

heuristics that use the maximum and minimum task time

priority rules respectively. Also Max_s and Max_ts are used

for the heuristics that use the third and fourth priority rules.

4. Computational results

In this section performance of proposed heuristic procedures is

illustrated. Due to the innovative nature of the problem, there

are no existing methods to compare the results of the proposed

algorithms with. Therefore in this section, the results of the

proposed algorithms are compared with the exact approach and

since in most cases no exact solution is found, a lower bound

approach is implemented to be able to test the efficiency of the

algorithm. The tests are implemented in C++ language and run

on a PC with 2.4 GHz Intel Core i3 and 4 GB of RAM

memory.

In this section, at first the lower bound structure is explained. It

is assumed that the first task in the precedence graph is

predecessor of all other tasks. Similarly it is assumed that the

last task in the graph is successor of all of the other tasks. If

there is no such tasks, fictitious tasks is to be considered. To

obtain a lower bound on the number of stations, the longest

path, also called critical path, from the first task to the last task

is considered. In this paper critical path is computed by

considering the minimum value of processing time for each

task. The length of this path is a lower bound on the time

needed to produce one commodity, lessening or increasing the

number of workers in each station does not change this value.

Thus, the formulation for lower bound is:

1

1

 j

j critical path

number of stations

t

LB ()
c

To compare the heuristic algorithms different instances are

randomly generated from 25 different well-known precedence

networks available at www.assembly-line-balancing.de .These

instances are solved and their relative deviation from the lower

bound is computed using the following formula:

2
solAlgorithm LB

Relative Deviation= ()
LB

http://www.assembly-line-balancing.de/

European Journal of Academic Essays 1(4): 68-75, 2014

73

The results are presented in fig. 3. As it can be seen from this

figure Max_s has a better overall performance, in comparison

to other heuristics.

Fig. 3 Performance of heuristic algorithms with respect to the number of tasks

Therefore the Max_s algorithm finds better solutions than

the other heuristics. This encourages checking the

performance of Max_s more precisely. Specifically it is

interesting to illustrate the performance of the algorithm for

different problem characteristics such as order strength2

(OS) of the precedence network or time variability3 (TV) of

the instance. The performance of Max_s with respect to

these two characteristics is presented in figures 4 and 5. As

it can be from these figures, there is no significant trend for

the performance of Max_s with increasing these

characteristics. In fig. 4, the values of relative deviation for

values of OS between 0.22 and 0.50 are generally higher

than other values of OS. For other values of OS, Max_s

performs more efficiently. As it can be seen from fig. 5

values of relative deviation for TV between 13 and 25 are

higher than other values of TV. This implies that for vary

low or very high values of TV; Max_s performs better than

average values of TV.

Fig. 4 Performance of Max_s with respect to OS

2 Order strength is the ratio of the number of all precedence relations to

its maximum possible number
3 Time variability is the ratio between the maximum and minimum task

time. in this study, the original TV of the instance is used.

Fig. 5 Performance of Max_s with respect to TV

A final experiment is designed to illustrate the performance

of Max_s. Another data set is generated using a selection of

well-known instances for SALBP-1. In order to facilitate

comparison of the proposed algorithm with other future

algorithms, the task times are assumed to be equal to the

corresponding SALBP instance if there is one worker in the

station and
i,k+1 ikp =p +1; for k>1 . The results are

presented in Table 3. The optimum numbers of stations for

Mertens and Bowman examples are obtained through by

solving the mathematical model using Lingo 11. For other

examples a lower bound is computed using equation (1).

European Journal of Academic Essays 1(4): 68-75, 2014

74

Table 3 Results of Max_s for a selection of well-known instances

Author Tasks Cycle

time

OptiMAL

number of

stations for

SALBP

OptiMAL number

of stations (or a

lower bound of

it)

Obtained

number

of

stations

Obtained

number of

workers

Maximum

concentration of

worker in each

station

CPU time

(s)

MERTENS 7 6 6 4 4 6 4 0.000

 7 5 3 4 5 4 0.000

 8 5 3 3 6 4 0.000

 10 3 3 3 3 4 0.000

 15 2 2 2 3 3 0.000

BOWMAN8 8 20 5 4 4 6 4 0.000

JAESCHKE 9 6 8 5 6 8 4 0.000

 7 7 4 6 7 4 0.000

 8 6 4 6 6 4 0.000

 10 4 3 4 5 4 0.000

 18 3 2 3 3 4 0.000

JACKSON 11 7 8 4 6 9 4 0.000

 9 6 3 5 7 4 0.000

 10 5 3 4 7 4 0.000

 13 4 2 4 6 4 0.000

 14 4 2 3 4 4 0.000

MANSOOR 11 48 4 2 4 5 4 0.000

 62 3 2 3 4 4 0.000

 94 2 1 2 4 4 0.000

MITCHELL 21 14 8 6 7 10 4 0.000

 15 8 5 7 10 4 0.000

 21 5 4 5 6 4 0.000

 26 5 3 4 6 4 0.000

 35 3 3 3 4 3 0.000

HESKIA 28 138 8 4 4 10 4 0.000

 205 5 3 3 7 4 0.001

 216 5 3 3 7 4 0.000

 256 4 2 3 6 4 0.001

 324 4 2 2 6 4 0.000

SAWYER30 30 25 14 4 9 17 6 0.000

 27 13 4 8 17 5 0.000

 30 12 4 8 15 5 0.000

 33 11 3 7 15 5 0.000

 36 10 3 7 13 5 0.001

KILBRID 45 56 10 3 6 16 6 0.001

 57 10 3 6 15 6 0.000

 62 9 3 5 15 5 0.000

 69 8 2 5 12 5 0.001

 79 7 2 4 11 5 0.000

TONGE70 70 160 23 8 11 29 5 0.001

 168 22 8 11 27 5 0.000

 176 21 7 11 28 5 0.001

 185 20 7 11 26 5 0.001

 195 19 7 12 28 5 0.000

ARC83 83 3786 21 11 14 27 4 0.001

 3985 20 11 14 25 4 0.002

 4206 19 10 12 23 4 0.001

 4454 18 10 12 24 4 0.001

 4732 17 9 11 23 4 0.002

ARC111 111 5755 27 11 14 34 5 0.002

 5785 27 11 14 35 5 0.002

 6016 26 11 13 37 5 0.003

 6267 25 10 13 34 5 0.003

 6540 24 10 13 33 5 0.003

As it can be seen from this table the CPU times are very low

and for instance for less than 28 tasks the CPU time is less

than one millisecond. This implies the time efficiency of the

proposed algorithm. Another observation is the significant

improvement in the number of stations in comparison to

SALBP-1, despite the fact that there is a penalty on the task

times when the number of workers increases in each station.

5. Conclusions and future research

European Journal of Academic Essays 1(4): 68-75, 2014

75

In this paper the MAL model presented by Dimitriadis [11],

is extended in such a way that task times are assumed to be

dependent on the number of workers in the station. A

mathematical formulation is presented to solve this problem

with the objective of minimizing the number of stations.

Since the problem is NP-hard, four heuristic procedures are

developed to solve this problem. These heuristics are based

on the priority rules and the computational results show that

the Max s heuristic performs better than other heuristics.

Developing other heuristic or meta-heuristics such as

genetic algorithms to solve the introduced model and

considering multiple-objective optimization problem by

taking into account several other criteria, such as load

balancing and smoothing are recommended for future

research in this area.

References

[1] Baybars, I. (1986). A survey of exact algorithms for

the simple assembly line balancing problem.

Management Science, 32, 909–932.

[2] Scholl, A., Becker, C. (2006). State-of-the-art exact

and heuristic solution procedures for simple assembly

line balancing. European Journal of Operational

Research, 168, 666-693.

[3] Scholl, A. (1999). Balancing and sequencing assembly

lines, 2nd edn. Physica, Heidelberg.

[4] Miltenburg, J., Wijngaard, J. (1994). The U-line line

balancing problem. Management Science, 40, 1378–

1388.

[5] Buxey GM. (1974). Assembly line balancing with

multiple stations. Management Science, 20, 1010–21.

[6] Pinto, P.A., Dannenbring, D.G., Khumawala, B.M.

(1983). Assembly line balancing with processing

alternatives: an application. Management Science, 29,

817–830.

[7] Bartholdi, J.J. (1993). Balancing two-sided assembly

lines: A case study. International Journal of Production

Research, 31, 2447–2461.

[8] Erel, E., Sarin, S.(1998). A survey of the assembly line

balancing procedures. Production Planning and

Control, 9, 414–434.

[9] Rekiek, B., Dolgui, A., Delchambre, A., Bratcu, A.

(2002). State of art of optimization methods for

assembly line design. Annual Reviews in Control, 26,

163–174.

[10] Boysen N., Fliedner M., Scholl A. (2007). A

classification of assembly line balancing problems. Eur

J Oper Res 183:674–693

[11] Dimitriadis, SG. (2006) Assembly line balancing and

group working: a heuristic procedure for workers’

groups operating on the same product and workstation.

Comput Oper Res 33:2757–2774.

[12] Fattahi, P., Roshani, A., Roshani, A. (2011). A

mathematical model and ant colony algorithm for

multi-manned assembly line balancing problem. Int J

Adv Manuf Technol, 53, 363–378.

[13] Pinto, PA., Dannenbring, DG., Khumawala, BM.

(1981) Branch and bound and heuristic procedures for

assembly line balancing with paralleling of stations.

International Journal of Production Research,19, 565–

76.

[14] Akagi, F., Osaki, H., Kikuchi, S. (1983). A method for

assembly line balancing with more than one worker in

each station. International Journal of Production

Research, 21, 755–70.

[15] Cevikcan E., Durmusoglu BM., Unal ME. (2009). A

team-oriented design methodology for mixed model

assembly systems. Comput Ind Eng, 56,576–599.

[16] Chang H. J., Chang T. M. (2010). Simultaneous

Perspective-Based Mixed-Model Assembly Line

Balancing Problem. Tamkang Journal of Science and

Engineering, 13 (3), 327_336.

[17] Ege, Y., Azizoglu, M., Ozdemirel, NE. (2009).

Assembly line balancing with station paralleling.

Comput Ind Eng. doi:10.1016/j.cie.2009.05.014.

[18] Yeh, DH., Kao, HH. (2009). A new bidirectional

heuristic for the assembly line balancing problem.

Comput Ind Eng. doi:10.1016/j. cie.2009.05.004.

