
Corresponding Author: Mishra Sambit Kumar 

European Journal of Academic Essays 1(3): 89-93, 2014 
ISSN: 2183-1904 
www.euroessays.org 

 

 

Implementation of query optimization techniques in 

distributed environment through genetic algorithm  

 
Mishra Sambit Kumar 1, Pattnaik Srikanta (Dr.)2,  Patnaik Dulu(Dr.)3 

 

 
1. Associate Professor 

Department of Computer Sc.&Engg. 

Ajay Binay Institute of Technology, Cuttack, Odisha, India 

sambit_pr@rediffmail.com 

 
2.  Professor, S.O.A. University, Bhubaneswar, Odisha, India 

srikantapatnaik@hotmail.com 
3. Principal, Government College of Engineering, Bhawanipatna, Odisha, India 

patnaik_d@yahoo.com 

____________________________________________________________________________________ 

Abstract 

 
In distributed databases, usually the cost of optimization increases while consulting the underlying data sources in the query 

optimization process. The query optimizer may handle the data sources and the optimization techniques adopted are required 

to be implemented to all relevant cost information with minimal communication. It is understood that query optimization 

issues depend upon relations i.e. cardinality,  size of a tuple and  fraction of tuples participating in a join with another relation. 

Also it is seen that the query optimization issues depend upon   attribute comprising with cardinality of domain, actual number 

of distinct values and Common assumptions. The query optimization task involves with selecting the plans and sub plans, 

evaluating the size of plans and sub plans along with cost of plans and sub plans. In many cases the  query execution cost is 

measured in conceptual units. But In a distributed database, the query execution costs must be divided into multiple 

dimensions. In this paper it is intended to discuss the approaches of query optimization and enumerate the query optimization 

techniques in distributed environment. As it has been seen that selecting the optimal execution strategy for a query is NP-hard 

in the number of relations, genetic algorithm may be applied in this case to evaluate plan select value, CPU time, cost of query 

plans and sub plans including I/O cost. The purpose of doing so is to measure the cost of data sets while dealing with large 

data sets in the distributed environment. 

 

Key words: Query optimization, query plan, tuple, cardinality, instruction cost, CPU cost, NP-hard, I/O cost. 

 

____________________________________________________________________________________ 

 

 

1. Introduction 

 
 The distributed database technology includes schema 

integration, data transformation, distributed query processing 

and query optimization. The distributed query processors 

usually need three basic requirements. 

(i)Need of Query Processing: In a large scale distributed 

system, both data access and computation may be carried out 

at various sites. 

(ii)Need of Cost Factors:     In a centralized DBMS, query 

execution cost is a single                                           

dimensional factor measured in conceptual  

units.In a distributed database, costs must be divided into 

multiple dimensions under the control of single logical 

database. 

 

 (iii)Need of Cost Estimation: The implementation 

mechanism of query optimization process is motivated by the 

necessity of the cost estimation in  

the part of the query optimizer. Usually the optimization 

algorithms are divided into three steps.  

Step 1: Selecting the sub plans that require cost estimates.  

Step 2: Evaluate the size of plans and sub plans.  

Step 3: Calculate the costs for plans or sub plans. Evaluate 

execution plan for the query. 

 



European Journal of Academic Essays 1(3): 89-93, 2014 

90 

 

To minimize the retrieval of large datasets, cost 

measurement of the required data sets is essential.  

While optimizing multiple queries at a time in the distributed 

environment, it is observed that it is efficient with more 

number of similar queries also the decision space is quite 

large. 

Query optimization issues depend upon relation,  i.e. issues 

involved with cardinality,  size of a tuple and  fraction of 

tuples participating in a join with another relation. Also the 

query optimization issues depend upon   attribute comprising 

with cardinality of domain, actual number of distinct values 

and Common assumptions i.e.  independence between 

different attribute values and  uniform distribution of 

attribute values within their domain. 

In general there may be five requirements for distributed 

queries. 

(i)Conserve resources :  Since there is no restriction on how 

many rows (or objects) a query may return, resources must 

clearly be conserved to cater for the potentially unlimited set 

of results. Conservation of resources is achieved on the 

server by never holding onto any database resources. 

(ii)Response in a reasonable amount time:  The query 

should take about the same time to execute as a local query 

(i.e. within the same order of magnitude). That is, it must 

respond with the first row(s) of information with the same 

latency as a local query. 

(iii)Robustness : There are two forms of robustness. The 

first form of robustness relates to the returned results. Whilst 

the client is iterating over the result set, they do not want 

other users to interfere with the returned results. The second 

form of robustness relates to remote resources. If the network 

connection is lost for any reason, relying on obscure error 

conditions to handle server resource cleanup is undesirable.  

 

 

Therefore, server resources are not held open across client 

requests. 

(iv)Not limited partial result set :  This requirement simply 

states that any method for retrieving information must not 

limit the number of rows returned. All rows of query data 

should be returned from the server. 

(v)Intuitive to Use : The client developer should find 

retrieving data similar to or better than current local query 

approaches. In addition, the client using the query method 

should not be required to make allowances for the fact that it 

is a remote query. They should be able to use the same client 

code for local and remote queries. 

 

2. Review of Literature 
 

Lanzelotte et.al[1] have discussed in their paper about the 

inadequateness of the enumerative strategies while  

optimizing complex queries due to the large number of 

execution plans.  To resolve that particular problem, random 

strategies were being used. Usually the transformational 

approach characterizes that particular kind of strategies. 

Generally, heterogeneity and autonomy of data sources 

characterize data integration systems. Sources might be 

restricted due to the limitation of their query interfaces or 

certain attributes must be hidden due to privacy reasons. To 

handle the limited query capabilities of data sources 

Manolescu et.al[2] have introduced dependant join operator 

which is asymmetric in nature. 

Oszu et.al[3]have discussed in their paper that the goal of 

query optimization is to find an execution strategy for the 

query that is close optimal. An execution strategy for a 

distributed query may be described with relational algebra 

operations and communication primitives for transferring 

data. 

 

Oszu et.al[4] have discussed in their paper that the selection 

of the optimal strategy generally requires the prediction of 

execution cost of the alternative candidate ordering prior to 

actually executing the query. The execution cost is 

expressed as a weighted combination of I/ O, CPU, and 

communication costs. 

 

Ioannidis et.al[5] have discussed in their paper about the 

generation of codes  for the selected 

Query execution plans which may then be  executed in either 

compiled or interpreted mode to produce the query result. 

 

Kossmann et.al[6] have discussed in their paper about the 

particular use of indices by  

the optimizer  to execute a query and in which order the 

operations of a query may be executed. The optimizer 

enumerates alternative plans, estimates the cost of every plan 

using a cost model, and chooses the plan with lowest cost. 

  

Ibraraki T et.al[7] have discussed in their paper that selecting 

the optimal execution strategy for a query is NP-hard in the 

number of relations.  For complex queries with many 

relations, this incurs a prohibitive optimization cost. 

Therefore, the actual objective of the optimizer is to find a 

strategy close to optimal and to avoid bad strategies.  

 

G. Graefe et.al.[8] have discussed in their paper that although 

distributed query processing is a well-studied problem 

modern architectures pose new challenges and opportunities 

for fine-grained parallelization at all levels ranging from 

intra-operator level up to the workload level. 

 

O. Gorlitz et.al[9] have discussed in their paper that the 

optimization may be  split  into conventional local 

optimization for choosing access strategies and the global 

optimization where join ordering and site selection are the 

main tasks. For site selection two fundamental options exist: 

data shipping where the data is transfered from the storing 

site to the site executing the query and query shipping where 

the evaluation of 

the  sub query is delegated to the storing site. 

 

3. Problem Statement 

 

3.1. Example  

 

SELECT ENAME  

FROM EMP,ASG 

WHERE EMP.ENO = ASG.ENO 

AND DUR > 37 

 

Strategy 1 

 



European Journal of Academic Essays 1(3): 89-93, 2014 

91 

 

ENAME(DUR>37∩EMP.ENO=ASG.ENO (EMP X 

ASG)) 

 

 

Strategy 2 

 

ENAME(EMP X ENO (DUR>37 (ASG))) 

 

Here in this case Strategy 2 avoids Cartesian product. To 

minimize the cost function, the I/O cost, CPU cost  and 

communication cost of the query plans must be evaluated. 

The query plans may have different weights in different 

distributed environments. 

 

Total cost of query plans= CPU cost + I/O cost +  

communication cost 

CPU cost = Unit instruction cost * No. of instructions 

I/O cost = Unit disk I/O cost * No. of disk I/Os 

Communication cost = Message initiation + Transmission 

 

Elapsed time between the initiation and the completion of a 

query may be evaluated by calculating the response time, 

CPU time, I/O time and communication time. 

Response time = CPU time + I/O time + communication 

time 

CPU time = unit instruction time * no. of sequential 

instructions 

I/O time = unit I/O time * no. of sequential I/Os 

Communication time = unit msg initiation time*no. of 

sequential msg + unit transmission time * no. of sequential 

bytes. 

 

3. Complexities of relational operations 
 

Assume the relations of cardinality n with sequential scan . 

Table 1. Complexities (Relational operations) 

Operation Complexity 

Select 

Project 

(without duplicate elimination) 

 O(n) 

Project 

(with duplicate elimination) 

Group 

O(nlog n) 

Join 

Semi-join 

Division 

Set Operators 

O(nlog n) 

Cartesian Product O(n2) 

 

 

While moving  inner relation to the site of outer relation,  

joining may not be possible in their arrival. For storing the 

total cost of outer tuples corresponding to the inner tuples 

may be required. 

Total Cost = cost(retrieving qualified outer tuples) + no. of 

outer tuples fetched * cost(retrieving matching inner tuples 

from temporary storage) + cost(retrieving qualified inner 

tuples) + cost(storing all qualified inner tuples in temporary 

storage) + msg. cost * (no. of inner tuples fetched * avg. 

inner tuple size) / msg. size. 

 

4. Materials and Methods 
 

This problem may be represented as a genetic algorithm 

problem, where it is intended to determine the chromosome, 

genetic algorithm operators. The individual query plan may 

be represented as chromosome and sub plans/ tasks may be 

represented as gene. For the crossover, one point in the 

selected chromosome might be selected along with a 

corresponding point in another chromosome and then the 

tails might be exchanged. Mutation processes causes some 

bits to invert and produces some new information. Therefore 

the best individual may be used to proceed forward to the 

next generation. After performing operations, some 

chromosomes might not satisfy the fitness and as a result the 

algorithm discards this process and gets q (q<=n) children 

chromosomes. The algorithm then selects n chromosomes 

with the lower fitness value from the q+n chromosomes ( q 

children and n parents) to be parent of the next generations. 

This process will be repeated until a certain number of 

generations are processed, after which the best chromosome 

is chosen. 

 

5. Problem Formulation 

5.1. Algorithm 

Step 1 :  Set maximum generation and relations. 

Step 2 :  Set maximum number of relations. 

Step 3 : Assign maximum number of queries. 

Step 4 : Assign the required length of  query plan, where 

query plan can be termed as chromosome.  

Step 5 : Evaluate population by considering number of 

queries and query plans. 

Step 6 : Set probability for crossover, pc 

Step 7 :  Set probability of mutation, pm 

Step 8 :  Evaluate I/O operation time 

Step 9 : Calculate plan select value by taking number of 

queries and query plans into consideration.  

Step 10 : Evaluate CPU time during processing.          

Step 11: Evaluate estimated cost of plan by considering plan 

select value, total number of queries along with number of 

relations. 

Step 12: Evaluate total cost of plan by considering CPU cost, 

I/O cost and communication  cost into account.CPU cost 

may be obtained by multiplying unit instruction cost with 

number of instructions.                   

Similarly I/O cost may be obtained by multiplying unit disk 

I/O cost with number of disk I/Os. 

5.2. Experimental analysis 

Maximum generations=100 

Numberofqueries=100 

Number of relations=100 

Size of Chromosome ( Plan in a query)=5 

Probability of crossover, Pc= 0.07 

Probability of mutation, Pm=0.002 

 



European Journal of Academic Essays 1(3): 89-93, 2014 

92 

 

Table 2. Query plan along with cost 

Sl.No. Query Plan Est_Cost Total_Cost 

1 7 0.018344 0.36288 

2 15 0.018344 0.36688 

3 18 0.018419 0.36838 

4 24 0.018569 0.37138 

5 25 0.018144 0.37188 

 

6. Discussion and future direction 

We have already discussed the optimization technique in 

terms of cost evaluation of query plans along with algorithm. 

The information may be available through standard set of 

rules which allows querying the primary database about 

statistics, or by caching statistics from before query 

executions.  Usually the communication costs  remain 

constant for the duration of optimization and execution of the 

query. The tasks/ sub plans may  have some cost associated 

with them which 

reflects both the CPU and I/O cost required to process them.  

It is seen that  the cost of an access plan is the cost of 

processing its component tasks. 

In a distributed environment, a global access plan for a set of 

queries corresponds to a plan that provides a way to compute 

the results of all  queries.In this case the access plan may be 

constructed by choosing one plan for each query and then 

merging them together. It is clearly understood that this type 

of  problem is NP-hard . A  nondeterministic algorithm needs 

only  one plan for each query and check whether the cost of 

the global access plan obtained by merging the guessed local 

access plans is less than or equal to combining the access 

plans which can be easily done in polynomial time and 

therefore the checking steps takes only polynomial time. 

7. Conclusion 

As we have seen that each query may have a number of 

possible solution plans, and also each plan of a query may 

contain a set of tasks, where each task may have associated 

cost, therefore the cost value may represented by a positive 

integer number. Alternative plans of a query , and other 

queries in the query set , may contain the same task. It is 

required to determine a set of tasks, with minimal total cost 

which may contain all the tasks of at least one plan of each 

query. The evaluation of query plans, evaluating cost of 

query plans and specific implementations of query 

optimization is very much essential for distributed database 

systems. In this case the optimizer must have to consult the 

data sources to evaluate the cost of that operation. The 

process implemented in this case indicates that, when the 

physical database design is known to the optimizer, this 

query optimization algorithm works with accuracy.  

 

 

8. References 

[1] Lanzelotte, R.S.G., Zaït, M., Gelder, A.V.: Measuring the 

effectiveness of optimization. Search Strategies. In: BDA 

1992, Trégastel, pp. 162–181 (1992). 

 

[2] Manolescu, I., Bouganim, L., Fabret, F., Simon, E.: 

Efficient querying of distributed resources in mediator 

systems.In:Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, 

DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 468–

485. Springer, Heidelberg (2002). 

 

[3] Oszu, M. T. and Valduriez P., “Distributed and Parallel 

Database Systems,” in Trucker A. (Ed), 

The Computer Science and Engineering 

Handbook, CRC press, pp. 1093-1111, 1997. 

 

[4] Oszu M. T. and Valduriez P., Principles of 

Distributed Database Systems, Prentice Hall 

International, NJ, 1999. 

 

[5] Ioannidis Y. E., “Query Optimization,” in Trucker A. 

(Ed), The Computer Science and Engineering Handbook, 

CRC press, pp. 1038- 1054, 1996. 

 

[6] Kossmann D. and Stocker K., “Iterative Dynamic 

Programming: A New Class of Query Optimization 

Algorithm,” ACM TODS, March 2000. 

 

[7] Ibraraki T. and Kameda T. “Optimal Nesting for 

Computing N-Relational Joins,” ACM Transactions on 

Database Systems, vol. 9, no. 3, pp. 482-502, 1984. 

 

[8] G. Graefe. Parallel Query Execution Algorithms. In 

Encyclopedia of Database Systems , pages 2030{2035. 2009. 

 

[9]  O. Gorlitz and S. Staab. SPLENDID: SPARQL Endpoint 

Federation Exploiting VOID descriptions. In COLD'11 , 

2011. 

 
Authors’ Profile 
 

 
 

Er. Sambit Kumar Mishra has obtained B.E. and M.Tech. in 

Computer Science & Engineering from Amaravati 

University, Maharastra and Indian School of Mines, 

Dhanbad respectively. He is now serving in ABIT, Cuttack 

as Associate Professor in the department of Computer 

Science & Engineering. He has submitted his Ph.D thesis for 

evaluation. He has 13 number of publications in reputed 

International Journals. Recently he is also reviewer of  peer 

reviewed  international Journals, e.g . International Journal 



European Journal of Academic Essays 1(3): 89-93, 2014 

93 

 

of Scientific and Engineering Research (IJSER) and 

International Journal of Information Technology and 

Computer Science(IJITCS), European  Journal of Academic 

Essays.  

 

 
 
Prof. (Dr.)Srikanta Pattnaik has obtained B.E. degree in 

Electronics & Telecommunication Engineering from UCE, 

Burla and M.E. & PhD from Jadavpur University. Presently 

he is working as Professor at S.O.A. University, 

Bhubaneswar. He is also Editor in Chief of many reputed 

International Journals like International Journal of 

Information and Communication Technology,  International 

Journal of Computational Vision and Robotics , SPRINGER-

VERLAG etc. 
 

 
Prof.(Dr.)Dulu Patnaik is presently working as Principal, 

Government College of Engineering, Bhawanipatna. He 

obtained his M.E. from N.I.T., Rourkela and Ph.D from 

Indian School of Mines, Dhanbad. He is also Editor and 

Chief Editor of many reputed International Journals. 

 

 


