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___________________________________________________________________________________________________ 

Abstract: The present paper examine the vibrational characteristics of double-walled carbon nanotubes (DWNTs) embedded 

in a polymer matrix based on the theory of strain gradient elasticity. The mechanical properties of carbon nanotubes and 

polymer matrix are treated as the functions of temperature change. The research work reveals the significance of the effect of 

small scale on wave propagation in DWNTs. It is demonstrated that some properties of transverse vibrations of DWNTs are 

dependent on the change of temperature. 
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1. Introduction 

When you submit your paper print it in two-column format, 

including figures and tables. In addition, designate one 

author as the “corresponding author”. This is the author to 

whom proofs of the paper will be sent. Proofs are sent to the 

corresponding author only. The Introduction should provide 

a clear statement of the problem, the relevant literature on 

the subject, and the proposed approach or solution. It should 

be understandable to colleagues from a broad range of 

scientific  

Carbon nanotubes (CNTs) are cylindrical macromolecules 

consisted of carbon atoms in a periodic hexagonal structure.  

Research on the mechanical properties of carbon nanotubes 

has been proposed since CNTs were discovered by Iijima 

[1]. The results from the research show that CNTs exhibit 

superior mechanical properties. Although there are various 

reports in the literature on the exact properties of CNTs, 

theoretical and experimental results have shown an 

extremely high elastic modulus, greater than 1 TPa (the 

elastic modulus of diamond is 1.2 TPa), for CNTs. Reported 

strengths of CNTs are 10–100 times higher than the 

strongest steel at a fraction of the weight. Thus, mechanical 

behavior of CNTs has been the subject of numerous recent 

studies [2–12]. 

The modelling for the analytical analysis of CNTs is mainly 

classified into two categories. The first one is the atomic 

modelling, including the techniques such as classical 

molecular dynamics (MD) [13,14], tight binding molecular 

dynamics (TBMD) [15] and density functional theory (DFT) 

[16], which is only limited to systems with a small number 

of molecules and atoms and therefore only restrained to the 

study of small-scale modelling. On the other hand, 

continuum modelling is practical in analyzing CNTs with 

large-scale sizes. Yakobson et al. [17] studied axially 

compressed buckling of single walled carbon nanotubes 

using molecular dynamics simulations. These authors 

compared their simulation results with a simple continuum 

shell model and found that all changes in buckling pattern 

can be predicted using a continuum model.  

Application of the non local continuum theory to nano 

technology was initially addressed by Peddieson et al [18] in 

which the static deformations of beam structures based on a 

simplified nonlocal model obtained by Eringen [19] were 

analyzed. Recently, the nonlocal beam models have been 

further applied to the investigations of static and vibration 

properties of single walled CNTs (SWCNTs) or multiwalled 

CNTs (MWCNTs) [20–28]. 

In early investigations on transverse vibration and wave 

propagation in CNTs, the effect of initial stress in CNTs on 

the vibration frequency and wave speeds is not considered. 
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More recently, the effect of initial loading on the vibration of 

CNTs has attracted attention [29] Zhang et al [30] studied 

transverse vibration of double-walled CNTs (DWCNTs) 

under compressive axial load and pointed out that the natural 

frequencies decreased with increasing the axial load while 

the associated amplitude ratio of the inner to the outer tube 

of DWCNTs were independent of the axial load. Wang and 

Cai [31] investigated the effects of initial stress on 

noncoaxial resonance of CNTs. In their results, it was shown 

that the influence of initial stress in CNTs was obvious on 

their natural frequency but was not obvious on their intertube 

resonant frequency. Sun and Liu [32]  studied the vibrational 

characteristics of CNTs with initial axial loading using the 

Donnell equations. In their results, it is shown that the 

resonant frequency is related to the tension or compression 

forms of initial axial stress. Lu [33] developed a nonlocal 

Euler beam model with axial initial stress.  

The investigation of dynamic behavior of CNTs has been the 

subject of numerous experimental, molecular dynamics 

(MD), and elastic continuum modeling studies. Since 

controlled experiments at nanoscales are difficult, and 

molecular dynamics simulations are limited to systems with 

a maximum atom number of about 109 by the scale and cost 

of computation, the continuum mechanics methods are often 

used to investigate some physical problems in the nanoscale 

[34–36]. Recently, continuum elastic-beam models have 

been widely used to study vibration [37–38] and sound wave 

propagation [39–41] in CNTs. In the literature [42,43], 

multi-walled carbon nanotubes (MWNTs) have been 

modeled as a single-elastic beam, which neglected Vander 

Waals force of interaction between two adjacent tubes [44–

46]. Recently, therole of Vander Waals force interaction 

between two adjacent tubes in transverse vibration and wave 

propagation in MWNTs using the multiple-Euler-beam 

model has been studied [47–52]. In many proposed 

applications and designs, however, CNTs are often 

embedded in another elastic medium  [48-50].  

In this study, based on the strain gradient theory of thermal 

elasticity, a double-elastic-beam model is developed for 

wave propagation in double-walled carbon nanotubes 

(DWNTs) embedded in an elastic medium (polymer matrix), 

which accounts for the thermal effect in the formulation. The 

effects of surrounding elastic medium and Vander Waals 

forces between the inner and outer nanotubes are taken into 

consideration. In example calculations, the mechanical 

properties of carbon nanotubes and polymer matrix are 

treated as the functions of temperature change. Explicit 

expressions are derived for natural frequencies and 

associated amplitude ratios of the inner to the outer tubes for 

the case of simply supported DWNTs, and the influences of 

both temperature change and small length scale on them are 

investigated. 

 

2. Materials and methods 

2.1 Strain gradient beam model with thermal 

effect  

Using the Euler Bernoulli theory, the general equation for 

transverse vibrations of an elastic beam can be obtained as 

[51–53] 

                

 

Nt denotes an additional axial force and is dependent on 

temperature T and thermal expansion coefficient α of 

nanotube. This force can be expressed as 

       
The axial stress corresponding to strain gradient elasticity is 

given by 

                                                                       

Where e0 is a constant that is appropriate to the material and 

a  is an internal characteristic length. 

For the case where the thermal effect is taken into account, 

Eq 4 becomes 

                        (5)                                      

Considering the definition of the resultant bending moment 

and the kinematics relation in a beam structure, we have 

                                                     

 

Where y is the coordinate measured from the midplane along 

the direction of the beam’s height. 

Substituting Eqs 6 and 7 into Eq 5 leads to: 

 

  

Differentiating Eq (8) twice and substituting Eq (1) into the 

resulting equation   
 

 

 

This is the general equation for transverse vibrations of an 

elastic beam under distributed transverse pressure and the 

thermal effect with the surrounding elastic medium on the 

basis of Strain gradient elasticity.  

It is known that double walled carbon nanotubes are 

distinguished from traditional elastic beam by their hollow 

two layer structures and associated intertube Van der Waals 

forces. Thus Eq (9) can be used to each of the inner and 

outer tubes of the double walled carbon nanotubes. 

Assuming that the inner and outer tubes have the same 

thickness and effective material constants, we have  

 

 
Where subscripts 1 and 2 are used to denote the quantities 

associated with the inner and outer tubes, respectively, p12 

denotes the Van der Waals pressure per unit axial length 

exerted on the inner tube by the outer tube. 

For small amplitude sound waves, the Van der Waals 

pressure should be a linear function of the difference of the 

deflections of the two adjacent layers at the point as follows: 

 

 
Where c is the intertube interaction coefficient per unit 

length between two tubes, wich can be estimated by [29] 

(3) 

(7) 

(8) 

(9) 

(10a) 

(10b) 

(1) 
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Where R1 is the radius of the inner tube. In addition the 

pressure per unit axial length, acting on the outermost tube 

due to the surrounding elastic medium, can be described by a 

Winkler type model  [17,29] 

                                 
 

Where the negative sign indicates that the pressure f  is 

opposite to the deflection of the outermost tube, and k is 

spring constant of the surrounding elastic medium (polymer 

matrix). It is noted that the spring constant k is proportional 

to the Young’s modulus of the surrounding elastic medium 

  . 

In the above formula, E, α and Em are, respectively, express 

Young’s modulus and thermal expansion coefficients of 

CNTs and polymer matrix, under temperature changes 

environments, which may be a function of temperature 

change as follow [45,56,57]: 

 

  

and                       

 

Because k is proportional to the Young’s modulus of the 

surrounding elastic medium Em [17], we can write 

 
Where E0  and α0 express elastic modulus and thermal 

expansion coefficients of CNTs under a room temperature 

environment, respectively. k0 and Em
0 are spring constant and 

Youn’s modulus of polymer matrix under a room 

temperature environment, respectively.  

Introduction of Eqs (11) and (13) into Eq (10a) and b yields 

 

 
 

 

2.2 Solution procedure 

Let us consider a double walled nanotube of length L in 

which the two ends are simply supported, so vibrational 

modes of the DWNT are of the form . 

   

,                       

and       

 

Where  and  are the amplitudes of deflections of the 

inner and outer tubes, respectively. 

Thus, the two n order resonant frequencies of the DWNT 

with thermal effect can be obtained via strain gradient model 

by substituting Eq (17) into Eq (16a) and (16b), which yields 

 

 

With 

 
 

  

3. Results and discussion 

On the basis of the above equations, we investigate the effect 

of temperature change and the small length scale on the 

frequency with numerical examples. The parameters used in 

calculations of DWNT are given as follows: theYoung’s 

modulus at room temperature E0 =1.1 TPa with the effective 

thickness of single-walled carbon nanotubes taken to be t 

=0.35 nm, and the mass density ρ =2.3 g/cm3. The thermal 

expansion coefficient at room temperature α0 = -1.5x10-6 0C-

1. The inner diameter Din =0.7 nm and the outer diameter 

Dout=1.4 nm. The spring constant of polymer matrix under a 

room temperature environment is k0=3.3 GPa. The 

calculations of vibration characteristics were performed by 

considering the elastic modulus E, the thermal expansion a 

and the spring constant k independent of temperature as well 

as dependent on temperature. To examine the influence of 

temperature change on vibrations of double-walled 

nanotubes embedded in a polymer matrix, the results 

including and excluding the thermal effect are compared. It 

follows that the ratios of the results with temperature change 

to those with out temperature change are respectively given 

by  

 

 

In the following we define  and  as the 

computed frequencies with out thermal effect (T=0). With 

the aspect ratio L/Dout =40, the thermal effects on the lower 

natural frequency  and the higher natural frequency 

 are shown in Figs.1 and 2, respectively, without the 

surrounding polymer matrix (k=0). As can be seen, the 

thermal effect on the lower natural frequency  is 

significant and especially for lower vibrational mode (n=1) 

while the higher natural frequency  is insensitive to 

temperature change. It can be seen that temperature 

dependent parameters lead to an increase in percentage 

change especially at higher temperature . 
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Figure 1: Thermal effects on the lower natural frequency 

 with the aspect ratio L/Dout=40 and e0a=0; (a) the 

vibrational mode number n=1, and (b) the vibrational mode 

number n=6. 

0 50 100 150 200 250 300 350 400 450 500

1,000000

1,000004

1,000008

1,000012

1,000016

1,000020

a

 T Dependent

 T Independent


n

II

T(
O
C)

 

0 50 100 150 200 250 300 350 400 450 500

1,0000

1,0001

1,0002

1,0003

1,0004

1,0005

1,0006
b

 T Dependent

 T Independent


n

II

T(
O
C)

 
Figure 2: Thermal effects on the higher natural frequency 

 with the aspect ratio L/Dout=40 and e0a=0; (a) the 

vibrational mode number n=1, and (b) the vibrational mode 

number n=6. 

 

 

 

 

To investigate the effects of the surrounding polymer matrix 

on the vibration response of DWNT in thermal environment, 

variations of frequency ratio with and without foundation 

parameter are plotted in Figs. 3 and 4. The calculation is 

carried out by considering the elastic modulus E, the thermal 

expansion a and the spring constant k dependent on 

temperature.It can be observed from the results illustrated in 

Fig.3 that the presence of the elastic foundation reduces the 

values of the ratio  in thermal environment with . 

However, the values of the ratio  are insensitive to the 

elastic foundation. This implies that there is comparatively 

less effect of elastic medium on higher natural frequency of 

DWNT. 
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Figure 3: Effect of elastic foundation on the lower natural 

frequency  with the aspect ratio L/Dout=40 and e0a=0; (a) 

the vibrational mode number n=1, and (b) the vibrational 

mode number n=6. 
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Figure 4: Effect of elastic foundation on the higher natural 

frequency  with the aspect ratio L/Dout=40 and e0a=0; (a) 

the vibrational mode number n=1, and (b) the vibrational 

mode number n=6. 

 

To investigate the effect of scale parameter onvibrations of 

DWCNTs, the results including and excluding the nonlocal 

parameter are compared. It follows that the ratios of the 

nonlocal results to the corresponding local results is given by 

 

 
 

where  and  are the frequencies based on 

nonlocal and local Euler Bernoulli beam model, respectively. 

Figs. 5 and 6 show the small-scale effect on both lower and 

higher natural frequencies, respectively, of embedded 

DWCNT with elastic medium modeled as Winkler-type 

foundation. The calculationis carried out by considering the 

elastic modulus E, the thermal expansion a, and the spring 

constant k dependent on temperature. The nonlocal 

parameter or small-scale coefficient (e0a) values of DWCNT 

were taken in the range of 0 – 2 nm. The aspect ratio L/Dout 

is taken as 40 and the temperature T=100  . 

From the results presented in Figs. 5 and 6, it is observed 

that there is significant in fluence of the small size on the 

vibration response of embedded DWCNT and especially for 

vibrational 

mode number . The lower natural frequency  

considering nonlocal model are always smaller than the local 

(classical) model. This implies that the employment of the 

local Euler Bernoulli beam model for DWCNT analysis 

would lead to an over prediction of the lower natural 

frequency if the small length scale effects between the 

individual carbon atoms are neglected. 

Further, with increase in e0a values, the frequencies obtained 

by nonlocal Euler Bernoulli beam theory become smaller 

compared tolocal model. Furthermore, it is seen that the 

nonlocal effects on the vibration response of embedded 

DWCNT becomes more significant with the increase in the 

vibrational mode number n. However, the higher natural 

frequency is less sensitive to both nonlocal effects and 

the vibrational mode number . 
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Figure 5: Small scale effect on the lower natural frequency 

 of embedded DWCNT with elastic medium with the 

aspect ratio L/Dout=40 and temperature T=100 °C. 
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Figure 6: Small scale effect on the higher natural frequency 

 of embedded DWCNT with elastic medium with the 

aspect ratio L/Dout=40 and T=100 °C. 

4. Conclusion 

Presented herein is the vibration analysis of DWCNTs 

embedded in a polymer matrix based on Eringen’s nonlocal 

elasticity theory and the Euler Bernoulli beam theory. The 

effects of small size, temperature change, Winkler 

parameter, and Van der Waals forces between the inner and 

outer nanotubes are taken into account. The mechanical 

properties of carbon nanotubes and polymer matrix are 

treated as the functions of temperature change. For the case 

of simply supported DWCNTs, the natural frequencies are 

determined and discussed in detail. Itis shown that the higher 
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natural frequency of DWCNTs is insensitive to the change in 

temperature, the small scale effect, and the presence of the 

polymer matrix while theses three effects on the lower 

natural frequency are significant. 

The thermal effect on the lower natural frequency  

decreases with the increase in the vibrational mode number 

n. It is found that the nonlocal effect becomes larger, 

especially for higher values of vibrational mode number n, 

and thus the small scale effect cannot be neglected. 
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