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Abstract: In this paper, the (G'/G) -expansion method is extended to solve fractional differential equations in the sense of

modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, certain fractional partial
differential equations can be turned into ordinary differential equations of integer order. For illustrating the validity of this
method, we apply it to find exact solutions with parameters for four fractional nonlinear partial differential equations namely,
the time fractional nonlinear coupled Burgers equations, the time fractional nonlinear coupled KdV equations, the time
fractional nonlinear Zoomeron equation and the time fractional nonlinear Klein-Gordon-Zakharov equations . When these
parameters are taken to be special values, the solitary wave solutions are derived from the exact solutions. The proposed
method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
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1. Introduction

During the past decades, more and more nonlinear fractional
differential equations in mathematical physics are playing a
major role in various fields. These equations appear in a
wide great array of contexts, such as physics, biology,
electromagnetic, electrochemistry, engineering and fractional
dynamics [1, 2]. Consequently, considerable attention has
been given to the solutions of these equations. Many
powerful methods for solving nonlinear fractional order
partial differential equations were appeared in open
literature, such as Backlund transformation [3], the
homotopy perturbation method [4,5], the exp-functional

method [6], the (G'/G)-expansion method [7], the

improved (G'/G)-expansion method [8], the Adomian

decomposition method [9,10] and so on. Finding the exact
solutions to fractional differential equations is an important
task. It is therefore needed to find a proper method to solve
the problem of nonlinear differential equations containing
fractional calculus. In the present article, based on the
homogeneous balance principle and Jumarie’s modified
Riemann—Liouville derivative [11-15], we will apply the

(G'/G) -expansion method for solving the nonlinear
fractional PDEs in the sense of the modified Riemann-
Liouville derivative obtained by Jumarie. It is well-known
that the modified Riemann-Liouville derivative of order «
is defined by the following expression:

L LTI ()t O
Df (t)={[@-a)dty )

[f (”)(t)JH, n<a<n+l n>1

We list some important properties for the modified
Riemann-Liouville derivative as follows:

wr LQA+T)
Dt =—————t"", >0,
rl+r-a)
D [f a®]=f ©)D g t)+g(®)Df (), @)

D [f (gt)]=f, (9D g(t) =D, (gt)Ig, ®)]".
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2. Description of the (G'/G) -expansion

method for fractional partial differential
equations

Suppose that a fractional partial differential equation, say in

the independent variables t,Xl, .y X, is given by

F(u,Dt“u,qu, ..,uxn)=o, ®)

where u=uf(,x,,..,X,) are unknown functions,
O<a <1, F is a polynomial of the unknown function
u=uf(,x,,..,X,) and its partial fractional derivatives,

in which the highest order fractional derivatives and the
nonlinear terms are involved. These derivatives denote
Jumarie’s fractional derivatives, which are the modified
Riemann-Liouville derivatives . In the following, we give the
main steps of the method:

Step 1. Li et al. [14,15] have proposed the fractional
complex transform to convert fractional order partial
differential equations with the modified Riemann-Liouville
fractional derivative into integer order ordinary differential
equations. Thus, the fractional complex transform is a natural
extension of the traveling wave transform. So, we assume
that

u(x,y,t)=U (%), (4)
where
at”
=k _
d X +1"(1+05) ©)

where K, @ are nonzero constants, to reduce Eq. (3) to the
following integer order ordinary differential equation:

) =0, (6)

where P is a polynomial in U (&) and its total derivatives,

PU,U'U"..

while '=

dg
Step 2. We suppose that Eqg. (3) has the formal solution
G(S)
U($)= ( j (7)
JZ? G ()

Where A; are constants to be determined, such Ay # 0.

the function G (&) satisfies the second-order linear ODE in
the form

G (&) +AG (S) + 4G () =0, (8)

Which have the following solutions

e 3
» f[—w c‘smh(2 A 4/1)+C cosh(2 A 4,u)
(5«[[ 4y)+c smh(gxﬂ 4;1)

2
.| € sm(é du-1 )+c 005(5«/4;1 A )
G' -4 Albu-1 9 2
—]={—+ 9)

G 2 2 f o
c, cos| —4u- /1)+czsin( 4;1—,1)

2 2

-1 c,

2 c+cd

Where C,,C,, i, A are arbitrary constants.

Step3. We determine the positive integer in (7) by
considering the homogeneous balance between the highest
order derivatives and the nonlinear terms in Eq. (6).

Step4. We substitute (7) along with Eq. (8) into Eq. (6) and
collect all terms with the same powers of (G '/G) and

setting them to zero, we have a system of algebraic
equations, which can be solved using the Maple or
Mathematica.  Consequently, we can obtain the exact
solutions of Eq. (3).

3. Applications

In this section, we will use the proposed method of Sec. 2, to
construct the exact solutions of the following fractional
nonlinear partial differential equations:

3.1. Example 1: The time fractional nonlinear coupled
Burgers equations

In this subsection, we consider the following time fractional
nonlinear coupled Burgers equations [16, 17]:

D/u-u,, -(u®) +A(uv), =0,

) (10)
DNV -v,, —(v )X +y(uw) =0, 0<a<l,
Where [,y are nonzero different constants. In order to

solve the system (10), we use the fractional complex
transformations

a

ot
€. &= kX+F(l ,

+a)

u(x,t)=U () vix,t)=v (11)

Where K, @ are nonzero constants, to reduce the system
(10) to the following ordinary differential equations:

U'-kU"-k(U?*)+p(UV ) =0,
o U*)+pv) W)

N kY "~k (V)4 y(UV )'=0, 0<a<1
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Integrating the system (12) with zero constant of integration,
we have

U-kU'-k(U? uv )=0,
{w (U*)+pUV) .

oV —kV =k (V?)+y(UV)=0, 0<a<1

Balancing U ' with U ® and V" with V Zwith in the
system (13), we get

(14)

U(§)=ao+a1[%j,

and

.
v (§)=bo+bl[aj,

(15)

where 8,,8,,b, and b, are constants to be determined later,

such that & # 0 and b, # 0. Substituting Eqgs. (14) ,(15)
and their derivatives into Eq.(13) and collecting all terms
with the same powers of (G Y/G)',i =0,1,2 together
and equating each coefficient to zero, we have the

following system of algebraic equations:

0: wa,—ka’ +k?ua, +k fab, =0,

0: ab, +kyalb, —kbZ +k?ub, =0,

1:k *Ja, + wa, — 2kaya, +k Bajb, +k pab, =0,
1:k yap, +k ?Ab, + ab, + Kk yab, —2kb b, =0,
2:k%a, —ka/ +k pab, =0,

2:k %, +k ya, —kb} =0.

Solving these algebraic equations using the Maple or
Mathematical yields

@ pb, K@) | _K@+y)
1+y 1-py " 1-py

@+ o+ 2K (By -1,

B k2(@1+7) ’

= 0By D[+ o+ (By ~Dkby]

k*@+y)?

Now we get the following exact traveling wave solutions:
(1) If A> =4 >0, then we have

U= (1+ /)b, ki(l+p) . k (1+/3)1/42 —4u
Lty 20-p) 20- By)

¢, sinh (iw/lz - 4;1)+c2 cosh (i«/f —4;1)
c, cosh (?M —4;1) +¢, sinh (i At —4;1)

kA(L+7) N K@+ y)\JA" —4u y
2(1-pr) 2(1-pr)

¢, sinh (i»\/ﬂz - 4,u)+c2 cosh (i«/ﬂz —4/4)
c, cosh (S;M —4/1) +¢, sinh (i«/ﬂz —4;1)

Substituting Egs. (8), (10), (12), (14) obtained by Peng [18 ]
into Eq.(16), we have respectively the following Kink-type
traveling wave solutions:

(16)

\ (‘f):bo_

i) 1 [c)| >[c,|

@+ Bb, kiAl+pB) k@+p)A -4u
— + X
2(1- py) 2(1-By)

tanh {é»\/% —4u+ sgn(clcz)n//l} ,
2

u()=
1+y

17)
ki@ k(1 A -4
V(&) <b, - A+y) k@+y) ’
2(1-pr) 2(1-pr)
tanh [é»\/ﬂz —4u +sgn(clcz)n//l]
2
(i) If [c,| > || %0,
L+ Bb, kAl+p) k@+B\A —4u
U(é) = - + X
1+y 2(1- pr) 2(1- pr)
coth [E«MZ —4yu +sgn(clcz)y/2i|,
? (18)

kKAQ+y) k@+p)AJA —4u
+ X

2(1-By) 2(1-By)

s [
coth I:— A =4u +sgn(ce )y, :| ,
2

where y, = tanh™ (M] w, =coth™ (E] and

V(&) =b, -

e, e,
sgn(c,C,) is the sign function.

(iii) If [c,| >[c,| =0,
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1+ B)b,
1+y

_k/1(1+,8)+
2(1-py)
k (1+ B)A* —4u $ 2o
20-57) coth{?/;t 4;1},
k/1(1+;/)
2(1-py )

k(l+7/)«//12—4y I
coth[2 «//1 4;1},

2(1-By)

U (&)=

(19)
V() =b

(i) If [c,| =[c,].

(1+ /)b, kA(+p) . k(1+ p’)«/% 4y

U()=
1+y  2(1-4y) 2(1- pBy) (20)
V(é):bo_kﬁ(l+7)+k(1+;/) A —4u
2(1-By) 2(1-By)

() If A* =41 <0, then we get

1+ p)b,
1+y

_ka@+p) N k(L+ p)\Jdu—-A° .
2(1-By) 2(1-py)

~c, sin (iaﬂy -2 j+c2 cos(i«hu -1 )
c, cos(i«M,u -2 )+c2 sin (i«M,u - )

kA(l+7) N k(L+y)du—-A° .
2(1-pr) 2(1-pr)

~c, sin (i«My -1 j+c2 COS(?,M -1 j
c, cos(iahy -1 )+c2 sin (42!«/4# -1 )

Now, we simplify Eqg. (21) to get the following periodic
solutions:

U(e)=

(21)

\ (é)zbo_

U ()= (1+ﬂ)b _ka@+p)
20-57)
V (&) =D, —%+

U () = 1+ B, kil+p) N
1+y  2Q-py)
2
KL+ B)au— 2 tan[é ’_4;1—/12},
20 f7) 5
_kAQ@+ y/)
V ($)=b
- 20-py )
2
k(1+ ;/)«/4;1 A an [52 '_4;1—/12},
2(1-By)
where & = tan_lc—z, & = cot* %2,
Cl Cl
@) If A*—4u=0,
U - @+ B, _ki(1+ﬁ')+ k(@1+ B, |
I+y  20-pr) @-By)c, +cf) (24)
V(§)=bo—kﬂv(1+y)+ k(l+y), '
2(1-pr)  (A=pr)c, +c,9)

3.2. Example 2: The time fractional nonlinear coupled
KdV equations

We considered the following time fractional nonlinear
coupled KdV equations [19]:

(25)

D,°u +6auu, —2bvv, +au,,, =0,
=0, O<a<l],

2%
Du +3buv, +bv

Where a and b are nonzero constants. The transformations
(12) reduce Egs. (25) to the ODEs:

aJ '+ 6akUU '—2bkVV '+ak U " =0, 26)
aJ '+30kUV '+bkV "=
Balancing U ™ with VV ' and V ™ with UV ' in the
system (26) we get
N2
U (&)= a0+a1( j+a2( j ’ (27)
and
N2
v b, +b b , 28
@00 S 0[S oo

Where a,,8,,b,,b,,8, and b, are constants to be

determined later, such that @, = 0 and b, # 0. Substituting
Egs.(27) and (28) into Eq.(26) and collecting all terms with
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the same powers of (G '/G)i , 1 =0,12,3,4,5together

and equating each coefficient to zero, we have the
following system of algebraic equations:

0:—ak °A% e, — 28k *pi*a, — pwa, — 6k 1@z, —

6ak *Aua, + 2bk b b, =0,

0: —uawa, —bk *A2ub, — 2bk 1%, — 3ok pag, -

6bk Au%b, =0,

1:—ak *2%a, —8ak *Aua, — Awa, —6ak 1a,a, —

6ak pa’ —14ak *A° pa, —16ak * e, — 2 uwa, —

128k piaga, + 2bk Ab b, + 2bk b2 +4bk b b,
1:—Awa, — 2 uwma, —bk A%, —8bk *Aub, —3bk lab, —
3k pap, —14bk *22ub, —16bk 1%, —6bk pagh, =0,

2:—Tak *A%a, —8ak *ua, — wa, —6aka,a, —

6ak Aa” —8ak *1%, —52ak *Aua, — 2 wa, —

12ak Aa,a, —18ak wa,a, +2bkb b, +2bk Ab” +
abk Ab b, + 6bk zbyb,

2:—wa, —2Awa, — Thk *A%b, —8bk ° b, — 3bka b,
3ok Aab, — 3ok wab, —8bk A%, —52bk A, —
6bk Aa b, — 6bk rap, =0,

3:-12ak *la, —6aka’ —38ak *1%a, —40ak °ua, —
203, —12aka,a, —18ak Aa,a, —12ak pa’ + 2bkb; +
4bkb b, +6bk Abjp, + 4bk pb? =0,

3:—2ma, —12bk °b, —3okab, —3bk Aab, —

38bk *4%,, — 40bk * b, — 6bkagb, — 6ok Aab,
6bk @b, =0,

4:—6ak *a, —54ak *Ja, —18akaa, —12ak Aa’ +
Bbkb.b, + 4bk Ab2 =0,

4:—6bk b, —3bka,b, —54bk * b, —

6bka,b, — 6bk Aa,h, =0,

5: —24ak *a, —12akaZ + 4okb? =0,

5: —24bk *b, — 6bka,b, = 0.

Solving these algebraic equations by Maple or
Mathematica yields

Case 1.

10

63,3k A +by) +k (27 +8u)(6k *A-+b)

b. =
0 12k 22
=b(k2(/12+8,u)+3a0)b1 b _b,
ak A R
a =-4k°1, a,=-4k?, b, %0,
Case 2:
o - 63,3k * +b,) +k 247 (6k ? +b)
0 12k 2
2172
:b(k i4:3a0)b2 ,b1=/1b2,a1:_4k 2/1’
a,=-4k? u=0, b, #0,
Case 3:
b, = (oa —3vb)k*2" + (6v/6a ~9vb)a,
6vb
o= /%k (kA% +3a,),a, = -4k *4,
o - 2feak’z - 24eak’
1 % ' 2 % ’

a,=-4k? u=0, b, #0.

For case 1, we have the following results:
() If A> =4 >0, then
U(&)=a, +k“A" —k* (A" - 4u)x

¢, sinh (i«//lz - 4;;) +¢, cosh (i «//12 - 4”)

b b2 —4u)
4

V(§)=b, -

c, sinh(

¢, cosh (i«/lz —4;1) +c, sinh (i«/ﬂz - 4/1)

—4y)+c cosh (f\/ﬁj

¢, cosh (

¢ [
h A" -4
)+c sin (2 yj

2

2

(29)

Setting ¢ = ga/ﬁz — 4 and substituting Egs.(8), (10),

(12), (14) obtained by Peng [18] into Eq.(29), we have

respectively the following Kink-type traveling wave
solutions:

() If [c,| > [c,|
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U (&) =a, +k2A%sech?[g+sgn(cc, )y, ]+
4k ? tanh2[¢+59n(clcz)'//1]a
V(&)

=, 2 sech?[g +sgnice )yl @

£ tant[g +sgnic.e,)val,
(i) If [c,| >[c,| =0

U (&) =a, —k 2A%csch?[¢+sgn(c,c,)w,] +
44k % coth?[g+sgn(c.c,)w,],

V () =b, + 2 csch?lg +sgnieJy] - @

B coth’[g-+sgn(e. )y
(iii) If [c,| >[c,|=0

U (&) =a, —k A% csch’[¢] + 4k * coth?[4],

(32)
V (&) =b +b4/1cs ch’[g] - ”bl coth?[4],
(i) I [c,| = e,
U (5)=a,+4u,
b, (33)
vV b, —2-
(&)= T
where v, = tanhl[M], W, = Cothl[MJ, and
e, e,
sgn(c,c,) is the sign function.
@1f 2> =41 <0 then
U()=a,+k A"k (4u-1")x

2

—, sin (iwhy -A ) +C, cos(i«/w - j
c, cos(i«ﬂy—ﬂz j+c2 sin (i«h,u -1 j

bA b@u-1)
41

—c, sin ((’;/4;1 -2 j +C, cos(i«/@z -2 j
c, COS(;“” -A ) +c, sin (i»\ﬂy -A )

Now, we simplify Eq. (34) to get the following periodic
solutions:

(34)
V(&) =b, -

U (&) =a, +k*A°sec’[£ —¢] +
4,uk 2 tanz[é:l _¢]a

V (&) =b, -2

by —==sec’[ ~ 4] (35)

%tanz[fl—ﬂ,

U (&) =a, +k A% csC?[&, + ¢] +
4k ? cot’[&, + 4],

V@b, ol rgl- @

”Tblcoﬁ[«; 4]

- 4C
where & =tan™ -2, & =cot™ -2,
1 Cl

(3) If A> =4 =0, then the rational solution

4k 2
(€, +¢,8)°
b,A bc?

B RTRTIE

U(&)=a, +k22% -
(37)

where
fzkx+b(k2(/12+8y)+3ao)bl t”
4k A Il+a)

3.3. Example 3: The time fractional nonlinear Zoomeron
equation

We consider the following time fractional  nonlinear

Zoomeron equation [20]

u u
Df"[ Jy j—(ﬁj +2D(u?) =0, (9

In order to solve Eq. (38) ,
transformation

we introduce the following

a

u(x,y,t)=U(&), E=kx +k,y + A , (39)
ri

+a)

Where K, K., @ are nonzero constants. Substituting (39)
into (38), we have the ODE:

U” " U” " y
klkzwz(—j —ksz(—) +2k,0(U?) =0, (40)
U U

Integrating Eq. (40) twice with respect to &, we get
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kik, (@ —k*)U"+2k,a) °+CU =0, (1)

where C is a constant of integration, while the second
constant of integration is vanishing. Balancing U " with

U % in the Eq. (41), we get

G 1
U@©)=a, +a1(—j, @)
G
Where @,,8, are constants to be determined later, such that
a, # 0. Substituting Eq.(42) into Eq.(41) and collecting all

terms with the same powers of (G '/G)i 0 =01273
together and equating each coefficient to zero, we have the

following system of algebraic equations:

0:Ca, +2wack, + Auw’ak.k, — Auak’k, =0,
1:Ca, +6walak, + A’w’ak.k, + 2um’ak k, —
APak’k, —2uak’k, =0,

2:6wa,a°K, +31w’ak k, —32ak’k, =0,

3: 20k, +2w°ak .k, —2ak ’k, =0,

Solving these algebraic equations
Mathematica yields

ao_ﬂ'a1 a = ’M,
w

B 22k K, (0® —k[)-2C
4k1kz(a)2 _k12) .
(1) If A* =44 >0, then we have

U@ ==+ \/
2

1

clsinh[2 ,/ 2_4#) (43)
¢, cosh ((’;\Mz —4yj+c2 sinh (i«/iz —4#)

Substituting Egs.(8), (10), (12), (14) obtained by Peng [18 ]
into Eq.(43), we have respectively the following Kink-type
traveling wave solutions;

using Maple or

k,(k; —o")(A" - 4p)

(0]

S

VA —4yj+c2 cosh(2

01t >[e,

U (&)= J
tanh E«Mz —4u +Sgn(0102)!//1}

(i) If [c,| > [c,| # 0,

Ko(k{ = @0*)(A* ~4p)
w

(44)

12

Ko(k( = 0*)(A* ~4p)
w

U=+ J

coth [%MZ —4u+ sgn(clcz)wz},

e zIJ _ coth™ [I |

il &

sgn(c,c,) is the sign function.

(45)

Where , =tanh™ {

}-

(iii) If c,| >[c,| =0,

U@)==- \/
2

(i) I [c,| =[c4],

k,(k; -0 )4 -4u)

coth E«M —4;1] (46)

(2]

(47)

U - \/k L (k2 —@?)(A? - 4p)

(0

) If A?

U@)=+- J
—Clsin(i«/4ﬂ—12j+02005(§«/4ﬂ—12j (48)
clcos((’;/4y—ﬂzj+czsin(i«/@—lz)

Now, we simplify Eq. (48) to get the following periodic

solutions:

U(@:%\/kz(kl—w><4u—z)

[0

—441 <0, then we get

k,(k - )(4u- /L)

@

K (k- )(du-1)

[

tan

_g ——«/4 —/1} (49)

—

COl

¢ +§\/4ﬂ—f}, (50)

-2, & =cott2 G

Where & =tan™
Cl

1
@3) If A% — 411 =0, then we obtain the rational solution

2 2
U= \/k N [ 1 B R
w C,+C,¢
axa
where &=k, X +K,y +m,

3.4. Example 4: The time fractional nonlinear Klein-
Gordon-Zakharov equations
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These equations can be written in the following nonlinear
system [21]:

DU -u,, +u+ABuv =0,
DV v, —B,(u]), =0, 0<a <1,

With U (X ,t) is a complex function and V (X ,t) is a real

function, where /3, 3, are nonzero real parameters. This

system describes the interaction of the Langmuir wave and
the ion acoustic in a high frequency plasma. Using the wave
variable

(52)

I'l+ea)

where @(X,t) is a real-valued function, K,@ are real

u(x,t)=¢(x,t)exp{i (kx + )}, (53)

constants to be determined and & is an arbitrary constant.
Then the system (52) is carried to the following PDE system:

D¢~¢y +(K* - +1)¢+ v ¢ =0,

oD gk, =0, (54)
thav Vi _ﬂ2¢xx =0.
Setting
v(x,t)=v (&), eox.t)=¢(S),
“ (55)
E=wX + ,
I'l+ea)
then we get
B0’ ¢ (£)
V(&)= ?@——7 +C, (56)
and
y (kz—a)2+ﬂ1C +1) a)zﬂzﬂ1 s
=0,
¢ + (kZ_a)Z) (kZ_a)2)2¢ (57)

where C is an integration constant, and K # + . Balancing
@" and ¢°, we get

G 1
#(&) =2, +31(—]a (58)
G
where a,,8, are constants to be determined later, such that
a, # 0. Substituting (58) into Eq.(57) and collecting all

terms with the same powers of (GYG)',i =0,1,2,3

together, equating each coefficient to zero, we have the
following system of algebraic equations:

13

3k’ —o'+fC +1)  appo’
K—o®)  (K-o?)

ak’-o’+8C +1)
(k?—?)

=0,

0: Aua, +

1: A%, +2u8, +

appo"

k*-a’)
. afw" _

2:3Ja, +3a, oy
& pp0" _

(k2 _w2)2

Solving these algebraic equations yields

o | =2 aozial
V@@’ 2"

2—@’)(A* -2)-2(L+cB)
4k * - %)
(1) If A> =4 >0, then we have

3a; 5o

3:2a +

k?-
alz
(0
(

k:—o" [du-2°
25,5,

w
¢, sinh (i«/ﬂz —4yj+c2 cosh (i A? —4;4) (59)
¢, cosh ((’;Mz —4/1) +¢, sinh (i«/lz —4;1)

Substituting Egs.(8), (10), (12), (14) obtained by Peng [ 18]
into Eq.(59), we have respectively the following Kink-type
traveling wave solutions:

#(8) =

X

@) If [c,] > [c,|,
4u— 22
#(&) = 250
12 (60)
tanh [gw//lz —4u +sgn(clc2)y/1},
(i) If [c,| > |, | =0,
k-’ |du—A°
#(&) = ‘”J;ﬂx
12 (61)

coth [?/22 —4yu +sgn(clc2)z//2},

| 2|J Coth‘{| 2|], and

| 2

sgn(c,c,) is the sign function.

Where y, = tanh‘{
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(iii) I [c,| >|c,| =0,

k- 4y—/12 £ -
= ’ th| = \JA4*—4u |, (62
#(&) - T co [2 ﬂ} (62)
() 1f A* =41 <0 then we have the exact solution
@ 4/1—/12
X
28,5,
«/4#—12)+CZCOS(§«/4/1—22) (63)
«/4y—/12)+czsin(i»\/4y—ﬂf)

k®—

#(8) =

—c, sin (
c, cos(

)

N |

N |

k?-a’ f12—4y ¢ = |
= ~= \Jau-27 |, (64
#(&) - 5 tan _51 , Vau | (64)
¢(5)=k G e ’Z cot §2+£«/4,u—42 , (65)
w \f 285, |2 |
C

_ 4 C
where & =tan'-2, & =cot™-2..
Cl Cl

(3) If A> =4 =0 then we have the rational solution

k?-—w’ f -2 C,
7o) = 2 BB, ¢ +C2§.

Substituting ¢(&) into (53) and (56) to get the solutions
U(&) and v (&) of the original equations (52) .

(66)

4. Conclusions and physical meaning of the
results

The (G '/G) -expansion method of the fractional partial

differential equations is applied successfully for solving the
time fractional nonlinear coupled Burgers equations, the time
fractional nonlinear coupled KdV equations, the time
fractional nonlinear Zoomeron equation and the time
fractional nonlinear Klein-Gordon-Zakharov equations. As
one can see, the nonlinear fractional complex transformation

for & is very important, which ensures that a certain

fractional nonlinear partial differential equation can be
turned into another nonlinear ordinary differential equation
of integer order whose solutions can be expressed by a

polynomial in (G /G) where G satisfies the linear ODE

(8). We have given some figures to illustrate some of our
results. The physical meaning of our results can be
summarized as follows: The results (17), (44), (60) represent
the  kink-shaped  soliton  solutions.  The  results
(18),(19),(45),(46),(61),(62) represent singular kink-shaped
soliton solutions. The results (30) represents the bell -kink-

shaped soliton solution , while the result (31) represents the
singular bell -kink- shaped soliton solution.

Figure 1: The plot of U (&) in (30) when
a, =1 u=121=+8k =1L a =1 w=1sgn(c,c,)=0.
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Figure 2: The plot of U (&) in (32) when
a,=Lu=,1=8k =La=Lw=1.

Figure 3: The plot of U (&) in (35) when
a,=Lu=11=8k =La=1w=1.
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Figure 4: The plot of U (&) in (36) when
a,=Lu=11=8k =La=1w=1.
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