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___________________________________________________________________________________________________ 

Abstract: In this paper, the ( / )G G  -expansion method is extended to solve fractional differential equations in the sense of 

modified Riemann-Liouville derivative.  Based on a nonlinear fractional complex transformation, certain fractional partial 

differential equations can be turned into ordinary differential equations of  integer order. For illustrating the validity of  this 

method, we apply it to find exact solutions with parameters for four fractional nonlinear partial differential equations  namely, 

the time fractional  nonlinear coupled Burgers equations, the time fractional  nonlinear coupled KdV equations, the time 

fractional  nonlinear Zoomeron equation  and the time fractional  nonlinear  Klein-Gordon-Zakharov  equations .  When these 

parameters are taken to be special values, the solitary wave solutions are derived from the exact solutions. The proposed 

method  is efficient and  powerful in solving  wide classes  of  nonlinear  evolution fractional order equations. 

Keywords: The ( / )G G -expansion method, Fractional partial differential equations, Modified Riemann-Liouville derivative, Exact 

solutions; Solitary wave solutions, Fractional complex transformation. 
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1. Introduction 

During the past decades, more and more nonlinear fractional 

differential equations in mathematical physics are playing a 

major role in various fields.  These equations appear in a 

wide great array of contexts, such as physics, biology, 

electromagnetic, electrochemistry, engineering and fractional 

dynamics [1, 2]. Consequently, considerable attention has 

been given to the solutions of these equations. Many 

powerful methods for solving nonlinear fractional order 

partial differential equations were appeared in open 

literature, such as Bäcklund transformation [3], the 

homotopy perturbation method [4,5], the exp-functional 

method [6], the ( / )G G -expansion method [7], the 

improved ( / )G G -expansion method [8], the Adomian 

decomposition method [9,10] and so on. Finding the exact 

solutions to fractional differential equations is an important 

task. It is therefore needed to find a proper method to solve 

the problem of nonlinear differential equations containing 

fractional calculus.  In the present article, based on the 

homogeneous balance principle and Jumarie’s modified 

Riemann–Liouville derivative [11-15], we will apply the 

( / )G G -expansion method for solving the nonlinear 

fractional PDEs in the sense of the modified Riemann-

Liouville derivative obtained by Jumarie. It is well-known 

that the modified Riemann-Liouville derivative of order   

is defined by the following expression: 
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We list some important properties for the modified 

Riemann-Liouville derivative as follows: 
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2. Description of the ( / )G G  -expansion 

method for fractional partial differential 

equations 

 
Suppose that a fractional partial differential equation, say in 

the independent variables  1, ,..., nt x x  is given by 

  
1

, , ,..., 0,
nt x xF u D u u u   (3) 

where   1( , ,..., )nu u t x x   are unknown functions,  

0 1  , F  is a polynomial of the unknown function 

1( , ,..., )nu u t x x   and  its partial fractional derivatives, 

in which the highest order fractional derivatives  and the 

nonlinear terms are involved. These derivatives denote 

Jumarie’s fractional derivatives, which are the modified 

Riemann-Liouville derivatives . In the following, we give the 

main steps of the method: 

 

Step 1. Li et al. [14,15] have proposed the fractional 

complex transform to convert fractional order partial 

differential equations with the modified Riemann-Liouville 

fractional derivative into integer order  ordinary differential 

equations. Thus, the fractional complex transform is a natural 

extension of the traveling wave transform.  So, we assume 

that 

 ( , , ) ( ),u x y t U   (4) 

where 

 ,
(1 )

t
k x





 

 
 (5) 

where  ,k   are nonzero constants, to reduce Eq. (3) to the 

following integer order  ordinary differential equation: 

 ( , ', '',...) 0,P U U U   (6) 

where   P is a polynomial in  ( )u   and its total derivatives, 

while ' .
d

d
  

Step 2. We suppose that Eq. (3) has the formal solution  
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Where jA
 
are constants to be determined, such  0.NA   

the function  ( )G   satisfies the second-order linear ODE in 

the form 

 ''( ) '( ) ( ) 0,G G G        (8) 

Which have the following solutions 
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Where 1 2, , ,c c   are arbitrary constants. 

 

Step3. We determine the positive integer   in (7) by 

considering the homogeneous balance between the highest 

order derivatives and the nonlinear terms in Eq. (6). 

 

Step4. We substitute (7) along with Eq. (8) into Eq. (6) and 

collect all terms with the same powers of ( '/ )G G  and 

setting them to zero, we have a system of algebraic 

equations, which can be solved using the Maple or  

Mathematica.  Consequently, we can obtain the exact 

solutions of Eq. (3). 

 

3. Applications 

 
In this section, we will use the proposed method of Sec.  2, to 

construct the exact solutions of the following fractional 

nonlinear partial differential equations: 

 

3.1. Example 1: The time fractional nonlinear coupled 

Burgers equations 

 

In this subsection, we consider the following time fractional 

nonlinear coupled Burgers equations [16, 17]: 

 
   

   

2

2

0,

0, 0 1,

t xx xx

t xx xx

D u u u uv

D v v v uv







 

    


     

 (10) 

Where ,   are nonzero different constants. In order to 

solve the system (10), we use the fractional complex 

transformations 

 ( , ) ( ), ( , ) ( ), ,
(1 )

t
u x t U v x t V k x




  


   
 

 (11) 

Where ,k   are nonzero constants, to reduce the system 

(10) to the following ordinary differential equations: 
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Integrating the system (12) with zero constant of integration, 

we have 

 
   

   

2 2

2 2

' 0,

' 0, 0 1

U k U k U UV

V k V k V UV

 

  

   

     





 (13) 

Balancing  'U  with 
2U  and  'V  with  

2V with    in the 

system (13), we get 

 0 1

'
( ) ,

G
U a a

G


 
   

 
 (14) 

and 

 0 1

'
( ) ,

G
V b b

G


 
   

 
 (15) 

where 0 1 0, ,a a b  and 1b  are constants to be determined later, 

such that 1 0a   and 1 0b  . Substituting Eqs. (14) ,(15)  

and their derivatives into Eq.(13)  and collecting all terms 

with the same powers of  ( '/ ) , 0,1,2iG G i    together 

and  equating each coefficient  to zero, we have the 

following system of algebraic equations: 
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Solving these algebraic equations using the Maple or 

Mathematical yields 
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Now we get the following exact traveling wave solutions: 

(1) If 
2 4 0,    then we have 
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 (16) 

 

Substituting Eqs. (8), (10), (12), (14) obtained by Peng [18 ] 

into Eq.(16), we have respectively the following Kink-type 

traveling wave solutions: 

 

(i) If 
1 2c c  
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(ii) If 
2 1 0,c c   
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where 
21

1
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c

c
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 and 

1 2sgn( )c c  is the sign function. 
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2 1 0,c c   
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2 1 ,c c  
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(2) If 
2 4 0,    then we get 
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Now, we simplify Eq. (21) to get the following periodic 

solutions: 
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where 
1 12 2
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(3) If 
2 4 0,    
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3.2. Example 2:  The time fractional nonlinear coupled 

KdV equations 

We considered the following time fractional nonlinear 

coupled KdV equations [19]: 

 
6 2 0,

3 0, 0 1,

t x x xxx

t x xxx

D u auu bvv au

D u buv bv



 

    


    

 (25) 

Where a  and b are nonzero constants. The transformations 

(11) reduce Eqs. (25) to the ODEs: 

 

 

3

3

' 6 ' 2 ' ''' 0,

' 3 ' ''' 0,

U akUU bkVV ak U

U bkUV bk V





    


  
 (26) 

Balancing '''U  with 'VV  and '''V  with 'UV  in the 

system (26) we get 

 

 

2
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G G
U a a a

G G


   
     

   
 (27) 

and 

 

2

0 1 2

' '
( ) ,

G G
V b b b

G G


   
     

   
 (28) 

Where 0 1 0 1 2, , , ,a a b b a  and 2b  are constants to be 

determined later, such that 2 0a   and 2 0b  . Substituting 

Eqs.(27) and (28) into Eq.(26) and collecting all terms with 
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the same powers of  ( '/ ) ,iG G  0,1,2,3,4,5i  together 

and  equating each coefficient  to zero, we have the 

following system of algebraic equations: 

 
3 2 3 2

1 1 1 0 1

3 2

2 0 1

0 : 2 6

6 2 0,

ak a ak a a ak a a

ak a bk b b
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2

0 : 2 3

6 0,

a bk b bk b bk a b

bk b

    



  



 
  

3 3 3

1 1 1 0 1

2 3 2 3 2

1 2 2 2

2

0 2 0 1 1 0 2

1: 8 6

6 14 16 2

12 2 2 4 ,0

ak a ak a a ak a a

ak a ak a ak a a

ak a a bk b b bk b bk b b
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2
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0
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Solving these algebraic equations by Maple or 

Mathematica yields 
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Case 3: 
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ak ak
b b

b b

a k b



  





  







 

  



 

  

 

For case 1, we have the following  results: 

(1) If 
2 4 0,   then 
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0
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2
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2
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,
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2
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2

2

.

inh 4
2


 











 
 
 

     

 (29) 

Setting  
2 4

2


     and substituting Eqs.(8), (10), 

(12), (14) obtained  by  Peng [18] into Eq.(29), we have 

respectively the following Kink-type traveling wave 

solutions: 

(i) If 
1 2c c  
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2 2 2

0 1 2 1

2 2

1 2 1

21
0 1 2 1

21
1 2 1

( ) sec [ sgn( ) ]

4 tanh [ sgn( ) ],

( ) sec [ sgn( ) ]
4

tanh [ sgn( ) ],

U a k h c c

k c c

b
V b h c c

b
c c

   

  


  


 



    




    






 (30) 

(ii) If 
2 1 0c c   

 

2 2 2

0 1 2 2
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( ) csc [ sgn( ) ]
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4
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b
V b h c c

b
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(iii) If 
2 1 0c c   

 

2 2 2 2 2

0

2 21 1

0

( ) csc [ ] 4 coth [ ],

( ) c [ ] coth [ ],
4

U a k h k

b b
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(iv) If 
2 1c c  

 
0

1
0

( ) 4 ,

( ) ,

U a

b
V b

 






 



 


 (33) 

where 
21

1

1

tanh ,
c

c
 

 
   

 
 

21

2

1

coth ,
c

c
 

 
   

 
 and 

1 2sgn( )c c  is the sign function. 

(2) If 
2 4 0     then 

 

2 2 2 2

0
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2
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0

2 2
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2
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( ) (4 )
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(4 )
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c c

c c

b b
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c c

   

 
   

 
   

  




 
   

 
 

    

   

  


   

   

 

     
       

 
       

    

   
   
   

 
 
 

2

2

.

 











 
 
 

     

 (34) 

Now, we simplify Eq. (34) to get the following periodic 

solutions: 

 

2 2 2

0 1

2 2

1

21
0 1

21
1

( ) sec [ ]

4 tan [ ],

( ) sec [ ]
4

tan [ ],

U a k

k

b
V b

b
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2 2 2

0 2

2 2

2

21
0 2

21
2

( ) csc [ ]

4 cot [ ],

( ) csc [ ]
4

cot [ ],

U a k

k

b
V b

b

   

  


  


 



    




    






 (36) 

where 
1 12 2

1 2

1 1

tan , cot .
c c

c c
     

(3) If 
2 4 0,   then the rational solution 

 

2 2
2 2 2

0 2

1 2

2

1 1 2
0 2

1 2

4
( ) ,

( )

( ) ,
4 ( )

k c
U a k

c c

b b c
V b

c c

 





 


  



   
 

 (37) 

where 
2 2

0 1( ( 8 ) 3

(1

)
.

)4

t
k

b a

k
x

k b  







 





 

3.3. Example 3:  The time fractional nonlinear Zoomeron 

equation 

 

We consider the following time fractional  nonlinear 

Zoomeron equation [20] 

  2 22 0,
xy xy

t t x
xx

u u
D D u

u u

    
     

   
 (38) 

In order to solve Eq. (38) , we introduce the  following  

transformation 

 
1 2

( , , ) ( ), ,
(1 )

t
u x y t U k x k y




 


   
 

 (39) 

Where 1 2, ,k k   are nonzero constants. Substituting (39) 

into (38), we have the ODE: 

 

  2 3 2

1 2 1 2 1
2 0,

U U
k k k k k U

U U
 

   
  

   
   
   

 (40) 

Integrating Eq. (40) twice with respect to  , we get 
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  2 2 3

1 2 12 0,k k k U k U CU      (41) 

where C  is a constant of integration, while the second 

constant of integration is vanishing.  Balancing U   with 
3U  in the Eq. (41), we get 

 0 1

'
( ) ,

G
U a a

G


 
   

 
 (42) 

Where 0 1,a a  are constants to be determined later, such that 

1 0a  . Substituting Eq.(42) into Eq.(41) and collecting all 

terms with the same powers of  ( '/ ) , 0,1,2,3iG G i   

together and  equating each coefficient  to zero, we have the 

following system  of algebraic equations: 

 
3 2 3

0 0 1 1 1 2 1 1 2 0,0 : 2Ca a k a k k a k k       

2 2 2 2

1 0 1 1 1 1 2 1 1 2

2 3 3

1 1 2 1 1 2

1: 6 2

2 0,

Ca a a k a k k a k k

a k k a k k

   

 

   


  

2 2 3

0 1 1 1 1 2 1 1 22:6 0,3 3a a k a k k a k k      

3 2 3

1 1 1 1 2 1 1 23: 2 2 2 0,a k a k k a k k   
 

 

 Solving these algebraic equations using Maple or 

Mathematica yields 

2 2

2 1
0 1

2 2 2

1 2 1

2 2

1 2

1

1

( )
, ,

2

( ) 2
.

4 ( )

k k
a a

k k k C

k k

a

k

 



 


















 

(1) If 
2 4 0,    then we have 

 

2 2

2 1

2

2 2

1 2

2 2

1 2

4
( )

sinh 4 cosh 4
2 2

cosh 4

( )( )1

2

sinh 4
2 2

U

c c

c c

k k  


 
   

 
   





 


  





 

     
       

 
       

    

 (43) 

Substituting Eqs.(8), (10), (12), (14) obtained  by  Peng [18 ] 

into Eq.(43), we have respectively the following Kink-type 

traveling wave solutions: 

 

(i) If 1 2 ,c c  

 

2

2

1 2 1

2 2

2 1 4
( )

tanh 4 sgn( ) ,

( )( )1

2

2

k k
U

c c

 






  



 


 




 
 



 (44) 

(ii) If 
2 1 0,c c   

 

2

2

1 2 2

2 2

2 1 4
( )

coth 4 sgn( ) ,

( )( )1

2

2

k k
U

c c

 






  



 


 




 
 



 (45) 

Where  
21

1

1

tanh ,
c

c
 

 
   

 
 

21

2

1

coth ,
c

c
 

 
   

 
 and 

1 2sgn( )c c  is the sign function. 

(iii) If 
2 1 0,c c   

 2

2

2

2 2

1
4

( )
( )(

coth 4 ,
2

)1

2

k
U

k 



  
  

 
 

 
  

(46) 

(iv) If 
2 1 ,c c  

 
2 2

2 1

2 4
( )

( )( )1
,

2
U

k k


  



 
  (47) 

(2) If 
2 4 0,    then we get 

 

2

2 2

1 2

2 2

1

2

2

2

2

1
4

( )

sin 4 cos 4
2 2

cos 4 sin 4
2 2

( )( )1

2
U

c

c

k

c

c

k  


 
   





 
   

 


  





  

    
       

 
    
    
    

 (48) 

Now, we simplify Eq. (48) to get the following periodic 

solutions: 

 
2

2

1

2 2

2 1
4

( ) tan
( )

2
4 ,

(1

2

)
U

k k   
   






 
  

 
  

 (49) 

 
2

2

2

2 2

2 1
4

( ) cot
( )

2
4 ,

(1

2

)
U

k k   
   






 
  

 
  

 (50) 

Where  
1 12 2

1 2

1 1

tan , cot .
c c

c c
     

(3) If 
2 4 0,    then we obtain the rational solution  

 
2

2

1 2

2 2

2 1( ) 4(1

2
( ,

)
)

c
U

c c

k k  








 



  (51) 

where  1 2 ,
(1 )

t
k x k y





  

 
 

3.4. Example 4:  The time fractional nonlinear  Klein-

Gordon-Zakharov equations 
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These equations can be written in the following nonlinear 

system [21]: 

 

2

1

2

2

0,

( ) 0, 0 1,

t xx

t xx xx

D u u u uv

D v v u







 

   

    
 (52) 

With ( , )u x t is a complex function and ( , )v x t  is  a real 

function, where 1 2,   are nonzero real parameters. This 

system describes the interaction of the Langmuir wave and 

the ion acoustic in a high frequency plasma.  Using the wave 

variable  

 ( , ) ( , )exp ( ) ,
(1 )

t
u x t x t i kx






 
  

  
 (53) 

where ( , )x t  is  a real-valued function, ,k   are real 

constants to be determined and  1  is  an arbitrary constant. 

Then the system (52) is carried to the following PDE system: 

 

2 2 2

1

2

2

( 1) 0,

0,

0.

t xx

t x

t xx xx

D k v

D k

D v v







     

  

 

     

 

  

 (54) 

Setting  

 

( , ) ( ), ( , ) ( ),

,
(1 )

v x t v x t

kt
x



   

 


 

 
 

 (55) 

then we get 

 
2 2

2

2 2

( )
( ) ,

( )
v C

k

   



 


 (56) 

and 

 
2 2 2

31 2 1

2 2 2 2 2

( 1)
0,

( ) ( )

k C

k k

    
  

 

  
   

 
 (57) 

where C is an integration constant, and k   . Balancing 

  and 
3 , we get 

 0 1

'
( ) ,

G
a a

G
 

 
   

 
 (58) 

where 0 1,a a  are constants to be determined later, such that 

1 0a  . Substituting (58) into Eq.(57) and collecting all 

terms with the same powers of  ( '/ ) , 0,1,2,3iG G i   

together, equating each coefficient  to zero, we have the 

following system of algebraic equations: 

 

2 2 3 2

0 1 0 1 2
1 2 2 2 2 2

( 1)
0 : 0,

( ) ( )

a k C a
a

k k

    


 

  
  

 
 

2 2
2 1 1

1 1 2 2

2
2 1 1 2
0 2 2 2

( 1)
1: 2

( )

3 0,
( )

a k C
a a

k

a
a

k

 
 



  



  
  






  

2 2

1 1 2
1 0 2 2 2

2 :3 3 0,
( )

a
a a

k

  



 


  

3 2

1 1 2
1 2 2 2

3: 2 0.
( )

a
a

k

  


 


 

Solving these algebraic equations yields 

 
2 2

1 0 1

1 2

2 2 2

1

2 2

2
, ,

2

( )( 2) 2(1 )
,

4( )

k
a a a

k c

k

 

  

  




 
 

   




 

(1) If 
2 4 0,    then we have 

 

2 2 2

1 2

2 2

1 2

2 2

1 2

4
( )

2

sinh 4 cosh 4
2 2

cosh 4 sinh 4
2 2

k

c c

c c

  
 

  

 
   

 
   

 
 

  

  

     
       

 
       

    

 (59) 

Substituting Eqs.(8), (10), (12), (14) obtained   by  Peng [ 18] 

into Eq.(59), we have respectively the following Kink-type 

traveling wave solutions: 

(i) If 
1 2 ,c c  

 

2 2 2

1 2

2

1 2 1

4
( )

2

tanh 4 sgn( ) ,
2

k

c c

  
 

  


  

 
 

 
  

 

 (60) 

(ii) If 
2 1 0,c c   

 

2 2 2

1 2

2

1 2 2

4
( )

2

coth 4 sgn( ) ,
2

k

c c

  
 

  


  

 
 

 
  

 

 (61) 

Where 
21

1

1

tanh ,
c

c
 

 
   

 
 

21

2

1

coth ,
c

c
 

 
   

 
 and 

1 2sgn( )c c  is the sign function. 
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(iii) If 
2 1 0,c c 

 

 
2 2 2

2

1 2

4
( ) coth 4 ,

2 2

k    
   

  

 
 

 
  

 (62) 

(2) If 
2 4 0     then we have the exact solution 

 

2 2 2

1 2

2 2

1 2

2 2

1 2

4
( )

2

sin 4 cos 4
2 2

cos 4 sin 4
2 2

k

c c

c c

  
 

  

 
   

 
   

 
 

   

  

     
       

 
       

    

 (63) 

 
2 2 2

2

1

1 2

4
( ) tan 4 ,

2 2

k    
    

  

 
  

 
  

 (64) 

 
2 2 2

2

2

1 2

4
( ) cot 4 ,

2 2

k    
    

  

 
  

 
  

 (65) 

where  
1 12 2

1 2

1 1

tan , cot ..
c c

c c
      

(3) If 
2 4 0    then we have the rational solution 

 
2 2

2

1 2 1 2

2
( ) .

ck

c c


 

   

 



 (66) 

Substituting ( )   into (53) and (56) to get the solutions  

( )u   and ( )v   of the original equations (52) . 

 

4. Conclusions and physical meaning of the 

results 

 

The ( '/ )G G -expansion method of the fractional partial 

differential equations is applied successfully for solving the 

time fractional nonlinear coupled Burgers equations, the time 

fractional nonlinear coupled KdV equations, the time 

fractional nonlinear Zoomeron equation and the time 

fractional nonlinear Klein-Gordon-Zakharov equations.   As 

one can see, the nonlinear fractional complex transformation 

for     is very important, which ensures that a certain 

fractional nonlinear  partial differential equation can be 

turned into another  nonlinear  ordinary differential equation 

of  integer order  whose solutions can be expressed by a 

polynomial in ( '/ )G G  where G  satisfies  the linear  ODE 

(8). We have given some figures to illustrate some  of  our 

results. The physical meaning of our results can be 

summarized as follows: The results (17), (44), (60) represent 

the kink-shaped soliton solutions. The results 

(18),(19),(45),(46),(61),(62) represent singular kink-shaped 

soliton solutions. The results (30) represents the bell -kink- 

shaped soliton solution , while the result (31) represents  the 

singular  bell -kink- shaped  soliton solution.   

 

 

 

Figure 1: The plot of  ( )U   in (30) when 

0 1 21, 1, 8, 1, 1, 1,sgn( c )=0.a k c          

 

 

 

 

 

Figure 2: The plot of  ( )U   in (32) when 

0 1, 1, 8, 1, 1, 1.a k          

 

Figure 3: The plot of  ( )U   in (35) when 

0 1, 1, 8, 1, 1, 1.a k        
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Figure 4: The plot of  ( )U   in (36) when 

0 1, 1, 8, 1, 1, 1.a k        
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