
124

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

TCP M-Start: A New Slow Start Method of TCP to Transfer Data

Over Long Fat Pipe Network

Patel Ritesh Pravinbahi1* Ganatra Amit Pravinchandra1

 1 U and P U. Patel department of Computer Engineering, CSPIT, Charusat, Changa, India

* Corresponding author’s Email: riteshpatel.ce@charusat.ac.in

Abstract: Transmission control protocol have gone through various revisions to develop new method of responding

to network congestion control as per past, present and future requirements. In cloud computing moving large size of

a VM from one data center to another data center over WAN is a challenging task. To regulate data flow, sending of

data is carried out in three phases iteratively. Slow start, congestion avoidance and fast recovery. All these methods

are functions of ACK reception. Specially in slow start, initially it is very slow but it progresses aggressively as

times increases. Because of a slow start, it suffers from low network resource utilization in the high bandwidth delay

scenario. At every receipt of ack, the congestion window is either step up by one or a zero. In this paper, efforts are

made to improve slow start behavior by changing step up count (scnt) to improve network resource utilization.

Experiments and results, observed during the slow start phase, show that throughput has increased to 51.23%, time to

reach epoch has reduced to 40%, the position of epoch point has increased to 4 times higher than traditional but it

leads to increased 30% of packet drops.

Keywords: TCP congestion control, Slow start, Step-up count, Epoch point, VM migration; Cloud computing; Data

centre.

1. Introduction

About 2.6 billion mobile devices will be

connected by the 2020 over the Internet [1]. It will

raise the need of more services from data centre.

Users also need data in a short response. Data

Centre (DC) has to provide those services in very

less time as per user needs. To achieve that DC

needs to perform load balancing either by moving or

copying VM nearest to clients [2]. This will reduce

long distance traffic on the Internet as well as fast

access to the required resources hosted nearby user.

To mitigate above service requirements data

center has to provide VM migration efficiently over

WAN. There are three types of VM migration [3]

developed in local area network environment. It

transfers VM over short distance with very high

bandwidth i.e. 100 Gbps. WAN VM migration has

issue of a latency and a resource occupancy for long

time. To support same method in WAN, TCP

protocol needs to be modified. Fiber optic network

has solved the problem of backbone bandwidth over

WAN. WAN has inherent problem of propagation

delay. To support WAN VM migration along with

LAN migration, data centre need of two types of

hypervisor is suggested. One hypervisor takes care

of internal VM migration. Other hypervisor takes

care of external VM migration. In this kind of

architecture, external hypervisor will take care of

transferring VM on the high bandwidth and high

delay where internal hypervisor is engaged to

transfer VM internally in a very high bandwidth and

very low delay network. Additionally, fiber optical

network has reduced external interference while

transferring data in WAN environment.

In TCP/IP protocol stack, network layer is

engaged to transfer data from one end to the other

end. TCP is responsible for regulating the flow

between the end devices. TCP works at the transport

layer, one layer above the network layer. The major

concern of transport layer is to provide connection

oriented and connection less services.

125

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

Figure.1 Behaviour of slow start

TCP is an example of a connection oriented

protocol. A traditional TCP flow consist of three

phases: Connection Establishment, Data Transfer

and Connection Termination. During connection

establishment client and server exchanges three

packets. Both the ends also negotiate various

parameters like value of initial sequence number,

capacity to receive data during connection

establishment. Congestion control mechanism is

used to regulate data flow of connections over

network

TCP is a connection oriented protocol which

requires acknowledgment(ack) to be sent from the

receiver to give feedback of data received

successfully. If the packet is corrupted, sender

would not receive any ack. Retransmission timer

timeouts at sender and it resends the packet. In 1983,

TCP did not have congestion control mechanism. In

3 years of span, the Internet had its first breakdown

because of absence of network congestion control

mechanism. V. Jacobson [4] has introduced a

congestion control mechanism that have solved

problem at some extents. Author gave theory to

maintain three variables per connection: a

congestion window(cwnd), a slow start

threshold(ssthresh) and an advertised window

(cwnd). In TCP flow, packets are sent from sender

to receiver; receiver acknowledges receipt of

packets. Congestion window (similar to sliding

widow) is maintained on both the sides to control

sending number of packets.

As shown in figure 1, cwnd is set to 1 initially,

upon receiving each ack it gets incremented by one.

This process is repeated till it suffers from

congestion (No Ack arrive). It concludes network is

congested by observing retransmission timed out. It

again starts slow start to send packets. This process

of slow start and congestion is repeated until all

information is sent. Average throughput is decreased

because of multiple slow start during transfer of

long data. Our proposed method reduces time to

slowly start thus increases average throughput.

Transmission of TCP streams is divided into two

phases. (1) Slow start and (2) Congestion Avoidance.

TCP stream comprises of progression of information

sections (or parcels) sent from a source to a

destination.

 Acknowledgment packets travel in the reverse

direction. Before receiving an acknowledgment, a

source sends a specific number of packets (specified

by cwnd), at the speed of local link. Therefore, cwnd

controls the rate of packet transmission at any given

point of time. Upon receiving ack from the receiver

side, sender increases the congestion window

according to the phase of connection transfer.

During slow start phase, sender increases congestion

window by one and sends two packets. Thus,

congestion window of TCP gets doubled at every

round trip time. In congestion avoidance phase,

sender increases congestion window to fraction of 1.

A fraction of 1 depends on by specific criteria

defined by specific TCP variants.

Slow start method utilizes network bandwidth

slowly. Following questions need to be answered to

make an efficient slow start

• What should be the initial value of congestion

window? There should be a proper selection of

initial congestion window size for the slow start.

If the initial congestion window is kept

sufficiently large, then epoch point could be

reached in less time thus improves network

throughput. But wrong pick up of congestion

window leads to poor efficiency of network.

• Does ssthresh is sufficient to move from slow

start to congestion avoidance? Ssthresh divides

slow start in two phase. Is there any need for

multiple phases?

• How should react with reception of ACK in

slow start? Traditional method implements

congestion window increase by 1 upon

reception of every ack. The system should react

in such a way that it could identify congestion

well in advanced in the bottleneck router.

• How could we move from slow start phase to

congestion avoid phase without losing any

packets.

Protocols are dependent on losses to detect the

BDP (Bandwidth Delay Product). Losses of packets

further reduces the efficiency of the network. At

least one RTO is needed to detect the losses of the

network. Exponential sending of data to learn a loss

would create congestion in the network. Other flow

126

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

may get impacted because of exponential sending of

data. In case of low bandwidth network, reaching to

epoch point after failure would be very easy. But, in

case of high speed network start from one to reach

to the epoch point would take longer time because

of multiple iteration of RTT.

Following are some tuning and responding

parameters which effects network throughput and

efficiency.

(1) cwnd: if congestion window is set to less than

BDP then it would never make congestion in

network and never makes any loss. But for that

one requires to know the bandwidth, delay and

queue size of the network well in advance.

(2) ssthresh: it is a point to transit from slow start to

congestion avoidance phase. Congestion

avoidance decreases the possibility of lots many

losses in single congestion window as compared

to aggressive behaviour of slow start. There is a

trade-off between time to reach epoch and

throughput with the value of ssthresh. If ssthresh

is near to the congestion window(cwnd), it may

lead to too many packet losses because TCP

responds aggressively during slow start but

results in better throughput. If ssthresh is far way

to the congestion window cwnd, it leads to fewer

packet losses but results in low throughput.

(3) RTT: Smooth RTT plays important role in the

phase of congestion avoidance. Almost all the

existing TCP variants are dependent on RTT to

find out their next increase of congestion

window.

(4) RTO: Larger value of RTO makes throughput

very less. The Lesser value of RTO results in too

many retransmissions which further decreases

efficiency of path.

The remainder of this paper is organized as

follows. The Next section covers literature review

titled as related work. In Section 3, analysis of

current slow start method is mentioned, proposed

method is specified in section 4. Section 5 covers

analysis of proposed method. Section 6 compares

simulation results and concluded in section 7.

2. Related Work

As mentioned above, congestion control

algorithms have two phases, namely slow start and

congestion avoidance. Slow start, initially grows

slowly but over a period of RTT it grows

exponentially to estimate available bandwidth. It

sets two parameters, ssthresh and MaxCwnd, at the

end of the procedure. When size of congestion

window reaches to ssthresh then it starts congestion

avoidance. In congestion avoidance phase growth of

congestion window is very slow as compared to

slow start phase. The Objective of the congestion

avoidance is to avoid too many dropping of packets

as it is about to reach to the maximum capacity of

network.

Lower value of ssthresh will take longer time to

reach MaxCwnd in congestion avoidance system.

Lower value of ssthresh will increase congestion

avoidance time, which further reduces average

throughput. Higher value of ssthresh will reduce

congestion avoidance time and improves the average

throughput.

Authors [5] have implemented new start up

method called AFStart for the adaptation of changes

of WAN. It dynamically sets slow start threshold

and dynamically adjusts congestion window.

AFStart can ramp up the congestion window from

its initial value to the slow start threshold more

quickly and smoothly than standard slow start, and

AFStart achieves higher network link utilization and

TCP throughput during the slow start than Fast TCP.

Initially, the congestion window(cwnd) is set to

4 packets. The initial 4 packets are sent back-to-

back to measure the available bandwidth by the

packet train algorithm. If calculated BDP based on

reference bandwidth is above 16 then it jumps

congestion window to 16 packets. Then after ImTCP

method is used for bandwidth estimation.

Shortcomings: It starts with initial 4 packets for

packet train which is insufficient for the estimating

bandwidth. Again, an abrupt step increase of

congestion window might acquire the available

resources in short duration of time. which forces

either source itself for a retransmission time out OR

it forces other traffics to get congested soon

Authors [6] have developed a method which is

known as TCP FastOpen. In this paper, they have

utilized messages exchange of connection

establishment to negotiate network capability

parameters to define reduces network latency by one

RTT to slow start.

Shortcomings: It does not suggest any

modification of slow start rather it suggests new

ways of reducing network latency by one RTT.

Authors [7] have presented a new slow-start

variant which improves the throughput of TCP-

Vegas. In this method, rate of congestion window

size is increased between exponential growth and

linear growth during slow-start phase. It improves

throughput significantly during the slow-start phase.

Shortcomings: It suffers from low throughput

and considerable packet loss.

Standard slow start has exponential increase

phase, which causes high packet losses when it

comes near to the epoch position. Recovering from

heavy packet losses puts extremely high load on

127

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

sender which puts system in unresponsive for a long

time, resulting in a long blackout period of no

transmission. Authors [8] specified a new method

called Hystart, its aim to prevent from the packet

loss when it reaches to the epoch position of

window size. HyStart improves the start-up

throughput of TCP more than 2 to 3 times.

Shortcomings: In order to address the packet

dropping problem of slow start, it slowdowns

increase of congestion window near to epoch point.

It achieves through observing two congestion

indicators (1) ACK train length (2) the increase of

RTT delays. Throughput gets decreased as it

decreases as rate of congestion window drops near

to epoch point.

Authors [9] aim to prevent multiple packet

losses which occur at the end of standard slow start

caused by exponential growth of congestion window.

In this paper authors have divided process of

standard slow start into two phases. In the first phase,

up to ssthresh/2, it works as traditional slow start. In

the second phase, it grows like negatively

exponential growth, which greatly reduces multiple

packet losses from a congestion window.

Shortcomings: It has low throughput as

compared to standard slow start. But it reduces the

probability of packet loss.

Authors [10] have developed this protocol for

the satellite communication network where BDP is

very high, but the probability of loss is also very

high. The aim of the method is to optimize slow

start phase. At the start of the connection, the initial

value of cwnd is set to detected network bandwidth.

It estimates the bandwidth and the window by using

the time interval during each two subsequent ACKs.

Also, error to estimate bandwidth is measured and

used in subsequent iteration to reduce error. The two

weights, exponential weighted filtering the smooth

bandwidth last time and the estimated bandwidth in

current iteration, can be adjusted, and its size can be

changed dynamically according to the different

network environment.

Shortcomings: Abrupt change of congestion

window in case of slow start may fill up bottle neck

queue quickly, which may lead to congestion of the

network.

Authors [11] developed variation of slow start

called smooth-start, which provides a smooth

transition from slow start to congestion avoidance

phase. Smooth-start solves this problem by

approaching the slow-start threshold more gradually.

The aim of the author is to significantly reduce both

packet losses and traffic burstiness. It puts necessary

lag points between ssthresh/4 and ssthresh to reduce

the effect of traffic burstiness. In smooth- start, there

are two sub-phases defined by a chosen separator

ssthresh, ssthresh/4, In the first sub-phase, Smooth-

start behaves the same way as slow-start. In the

second sub-phase, called the Smooth-start period,

cwnd is incremented only upon receipt of two or

more ACKs. So, at every RTT cwnd increases by a

factor of 1.5 or less. Increase of cwnd depends on

gradient called coarse-grained and fine-grained.

Shortcomings: If there is no congestion occurs,

the performance of smooth-start is worse than Slow-

start. Other worst case happens when TCP

connection is closed exactly when the congestion

window size cwnd reaches ssthresh. If the

transmission of data lasts after reaching ssthresh, the

degradation of TCP performance caused by the

Smooth-start will become more trivial.

TCP uses self-clock based mechanism, ACK

reception, to update value of congestion window.

Authors [12] have suggested a new method of

updating congestion window by the way of system

timer. They took 200 microseconds of interval to

generate interrupt and update the congestion

window. In slow start, normally data are sent when

the ACK are received. That happens after one RTT

period of time where sender receives ack number in

burst. That triggers an increase of congestion

window at the end of each RTT and leads to send

too many packets at the same time. This method

disperses sending of data during RTT, so that

burstiness would not happen.

Shortcomings: Congestion window is updated at

the rate of 200 microseconds. It leads to static

variation of change of congestion window.

Authors [13] has given research direction to

improve method of slow start to improve TCP

performance. They also discussed and compared

suitable startup speed with respect to TCP variants.

They have also given research direction towards

reducing queuing delay at each router, finding

suitable start up speed for slow start mostly in high

BDP network. TCP modification should support

future network bandwidth as well as it should be

backward compatible. They also investigated new

research direction on congested ACK packets. The

authors have shown hope for alternate method to

slow start mechanism of slow start given name as e-

speed which selects protocols depending on the

network condition and gives maximum performance

whether it is deployed on larger bandwidth or lower

bandwidth.

Growth of congestion window is a function of

rate of reception of ACK from the receiver. Authors

[14] have introduced new model of generating ack

from receiver to control the growth function of

congestion window. The authors presented that

128

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

ACKs can be split so that an acknowledged portions

of a segment instructs the sender to open more

aggressively its congestion window. It focuses on

the reducing the time of reaching to maximum

congestion window thus improving throughput.

Shortcomings: Sender and receiver both need to

be modified to take an effect.

Authors [15] have suggested to improve fast

retransmit mechanism for quick recovery. The

Initial value of ssthresh is set to the BDP.

Bandwidth is calculated using least square

estimation. Approximate delay is calculated during

SYN segments exchanged during connection

establishment. Once the congestion window, reaches

to the ssthresh, it grows traditionally. The authors

have put more focus on fast recovery. Instead of

acting on 3rd ack, start reacting to 2nd acks which

decreases further loss of data, and increases

throughput.

Authors [16] have suggested modification into

slow start named as conservative slow start. From

starting of sending data it estimates capacity, buffer

size, buffer level and calculates value of fractional

increments of congestion window. Authors have

used path estimators to detect TCP session queues

build up.

Shortcomings: It avoids a significant amount of

segment losses, but not so much as the slow start.

This performance comes with a 5 times penalty on

transaction speed than the other protocols.

Following are the research category of above

research articles.

• Determining exit time from slow start to

congestion avoidance (Value of ssthresh): This

becomes exit point for the next iteration to jump

into congestion avoidance. Examples are AFast

Start [5], Hystart[8], Smooth Start [11].

• Estimating value of MaxCwnd: This becomes a

target for the subsequent iteration. Examples are

Novel Quick Start [10], [15].

• Multiple phases of Slow start method. Example

is P-TCP [9].

• Change of ACK parameter. Example is Gallops

Vegas [7].

• Change of slow start phases [16].

• Change into Three-way handshake, data transfer

and connection termination. Example is TCP

Fast Open [6].

• Change of method of responding to ACK.

Example is Smooth Slow Start [12].

• Change of method of sending to ACK. Example

is Conservative Slow start [14].

3. Analysis of Slow Start Method

Table 1. Evolution of Window of slow start size

with respect to RTT in slow start

RTT

Cycle

Time Acked

Packet

Window

Size

Packet

Released

Queue

length

0 0 - 1 1 1

1 T 1 2 2,3 2

2 2T 2 3 4,5 2

2 2T+1/µ 3 4 6,7 3

3 3T 4 5 8,9 2

3 3T+1/µ 5 6 10,11 3

3 3T+2/µ 6 7 12,13 4

3 3T+3/µ 7 8 14,15 5

4 4T 8 9 16,17 2

4 4T+1/µ 9 10 18,19 3

4 4T+2/µ 10 11 20,21 4

4 4T+3/µ 11 12 22,23 5

4 4T+4/µ 12 13 24,25 6

4 4T+5/µ 13 14 26,27 7

4 4T+6/µ 14 15 28,29 8

4 4T+7/µ 15 16 30,31 9

In traditional slow start, TCP sends two packets

upon receiving each ACK. This way of evolution of

window size is shown in Table 1.

RTT cycle specifies one RTT iterations. At time

t=0, first packet is released by source to next node.

At the end of one RTT, sender receives ack for the

first packet and its window size gets incremented by

one. Thus, sender sends two packets, numbered as

2,3. From the table, it is easy to see that the window

size and queue size satisfies the following equations

for n >= 1,

W(nT + m/µ) = 2n−1 + m + 1, 0 <= m <= 2n−1 −

1......n >= 1 (1)

Q(nT + m/µ) = m + 2, 0 <= m <= 2n−1 − 1.....n >= 1

 (2)

where W denotes window size, n denotes iteration

number, T denotes nth iteration of RTT, m denotes

ack of ith packet received during nth iteration, 1/µ

denotes service rate.

 Note that the maximum queue length in nth

iterations Qmax-n = 2n−1-1 + 2= 2n−1+1 and the

maximum window size in a nth iteration Wmax = 2n.

So forth Qmax-n= Wmax/2. Buffer overflow does

not occur in the slow-start phase if Qmax-n ≤Bs,

where Bs is buffer queue size. But Qmax-n =

129

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

Figure 2. Theoretical Round trip time vs Bits per

second

Wmax/2 ≤ (cT+Bs)/4 where cT is number of packets

in transit. Thus, a sufficient condition for no buffer

overflow in slow start is (cT + Bs)/4 which is

equivalent to Bs ≥cT/3.

Author [17] have presented analysis of linear

path model as contextual part is presented here. Let

P be the time to send an entire packet in units of T.

The contention phase has length 2e−1, so the total

time to send one packet (contention + packet time)

is 2e−1+P. The useful fraction of this is, of course, P,

so the effective maximum throughput is P/(2e−1+P).

Inter frame space interval is 96 ns for Gigabit

Ethernet(GE), 9.6 ns for 10GE and 0.96/2.4 ns for

100/40 GE, respectively. The sum of the

propagation delay and transmission delay is given

by τ + 1/µ where τ is propagation delay of signal,

1/µ is service rate of sending device. Suppose that

the link capacity is 1 Gbps and packet size is 1000

bytes, then 1/µ would be 0.008 msec per packet.

Sender sends data according to its speed of local

link. This speed fills up a queue of intermediate

bottleneck node very quickly. If the transmission

distance is 10000 km and if we consider queuing

delay is same as propagation delay, then round-trip

propagation delay T would be 4 X 106 / 2 X 108 =

200 msecs.

There is trade-off between underestimation and

overestimation of queue buffer size of intermediate

node. If buffer size is underestimated, then it leads

to poor utilization of network resources. If buffer

size is overestimated, then it could lead to packet

retransmission henceforth reduces efficiency.

4. Proposed Work

Initial start-up method of TCP known as slow

start is further divided into two parts. Slow start

itself and exponential increase. Slow start and

exponential increase aims to find out the maximum

capacity of network. Slow start method starts with

congestion window 1, and it increments its

congestion window as it receives acknowledgment.

Initially this is termed as a slow start, because its

growth of window is very slow over RTT. But when

it progresses, same method of increments of

congestion window leads to exponential increase.

Author [18] have suggested to initialize window size

to 10 to save 4 RTT times for web traffic. There is a

need to develop protocol which follows slow start,

but jumps to exponential increase very soon at the

start of each iteration and also becomes steady when

it’s about to reach the next iteration. In our proposed

method, we follow the same methodology as

mentioned above. M-increase increments congestion

window by additive factor P. Here initial value of P

is set to 10 as mentioned in [18]. Gradually additive

factor is getting decrease by one upon receiving

each ack. When P becomes 0 it would reset to 10.

As per equation 1, congestion window is a

function of number of acknowledgment in nth

iteration. At the beginning of iterations congestion

window is increased by one at reception of every

acknowledgment, although a large amount of

bandwidth is available. As shown in table 1, initial

iterations are having less number of sub iterations

because it receives few packets and sends double

packets of received packets. Then it waits for one

RTT to receive ack and continues to send packets as

mentioned above. It’s waiting time is larger than the

sending time. During the start of iterations only less

bandwidth is utilized. In this proposal, increment of

congestion window is a function of nth iteration in

kth acknowledgment. Queue buffer size in the

intermediate node gets empty at the end of each

iteration. Increment of congestion window is higher

at the start of iteration and low at the end of iteration,

which allows high data rate at the start of iteration

where whole bandwidth is empty and low

congestion. To find out minimum delay, first two

iterations are not changed.

The proposed work is based on the function of

acknowledgment number(k) in ith iteration. When it

starts new iteration, queue would be empty. To fill

up the queue aggressively it starts with higher

number of increments in congestion window i.e.

scnt, which increases utilization of network. When it

reaches near to the end of iteration it progressively

slowdowns increment to 0. This scenario could be

achieved through equation 3.

W (nT + m/µ) = [2k-1+ m + 1 + (p − (k%p))],

0 <= m <= 2n−1 − 1, k <= n (3)

where W denotes window size, n denotes iteration

number, T denotes nth iteration of RTT, m denotes

ack of ith packet received during nth iteration, 1/µ

130

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

denotes service rate, P denotes initial value of step

up count. K is used to rotate value of P from 10 to 0.

Figure 3. Increment of Congestion window with respect

to time

Algorithm

Input: ACK Number

Method: Repetitive increment with ceiling

Output: Increment in congestion window

P=0;

scnt=P;

scnt--;

If(scnt<>0)

While(tpsnd_cwnd_cnt>=tpsnd_cwnd) {

 tpsnd_cwnd_cnt-= tpsnd_cwnd;

 if (tpsnd_cwnd < tpsnd_cwnd_clamp)

 tpsnd_cwnd+=scnt;

 if (scnt==0)

 scnt=P;

 }

5. Analysis of proposed work

To analyze proposed method, we have used NS-

2.35 event driven network simulator. A CUBIC

variant of TCP is used to send and receive data.

Hystart[8] is implemented in current linux and NS

2.35 in addition to CUBIC. TCP-Cong.c file has

been modified to observe an effect of proposed

approach. As mentioned in algorithm, P is initialized

to 10. scnt is step up count. Scnt step up count is

added to the congestion window if all the condition

is satisfied by congestion control algorithm. When

scnt becomes 0, it is reinitialized with P.

Table 2. Evolution of Window size of M-Start with

respect to RTT

RTT

Cycl

e

Time Acke

d

Pack

et

Win

dow

Size

Packet

Released

Que

ue

leng

th

Thro

ughp

ut

(Kbp

s)
0 0 - 1 1 1 8

1 T 1 2 2,3 2 16

2 2T 2 12 4 to 16 11 88

2 2T+1/µ 3 21 17 to 26 18 144

3 3T 4 29 27 to 35 9 72

3 3T+1/µ 5 36 36 to 42 16 128

3 3T+2/µ 6 42 43 to 48 22 176

...

3 3T+23/µ 26 139 137 to 145 119 952

4 4T 27 146 146 to 152 8 64

4 4T+1/µ 28 152 153 to 158 14 112

4 4T+2/µ 29 157 159 to 163 19 152

...

4 4T+121/

µ

166 901 899 to 907 754 6032

Table 3. Comparative summary analysis of both the

methods at end of each iteration

Itera

tion

Traditional Slow Start Modified Slow Start

(M-Start)

Wind

ow

Size

Queue

Length

Through

put

Window

Size

Queue

Length

Throughp

ut

0 1 1 8 Kbps 1 1 8 Kbps

1 2 2 16 Kbps 2 2 16 Kbps

2 4 3 32 Kbps 27 18 232 Kbps

3 8 5 64 Kbps 139 119 10392

Kbps

4 16 9 128

Kbps

901 754 426712

Kbps

In research mentioned [6-16] in related work,

they are applying algorithm after cwnd reach to

ssthresh/2. In our approach, we applied count

increase method before ssthresh/2. It becomes very

aggressive than other methods, but also increases

network resource utilization when the next iteration

starts.

131

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

We present comparative analysis between traditional

slow start and M-start shown in table 3. M-start is

also function of ack, it changes congestion window

on receipt of every ack with different count. There is

no change in first iteration. M-Start starts with

sending 1st packets in the network. Then it waits for

one RTT. It sends two packets in iteration 1 and

waits for the acknowledgment. In iteration 2, after

receiving ack it increments cwnd by 10 so cwnd

becomes 12. Table 2 shows progression of

congestion window with respect to RTT. As

mentioned in table, upon receiving second ack in the

same iteration 2, scnt becomes 9 and cwnd becomes

21. During that it release 10 packets as congestion

window to send 10 packets.

Figure 4. Simulation Topology

Figure 5. Comparative Result: Over 50 Sec

Comparative graph, as shown in Figure 3, shows

increments of congestion window of traditional slow

start and M-Start with respect to time. Slow start

increments cwnd by on 1 only while M-start

increments cwnd from 10 to 1 over period of time.

Table 2 show detail analysis of change of cwnd

with respect to each packet received for M-Start and

Table 3 gives comparative summary of traditional

slow start and M-Start method for each iteration.

M-Start gives better throughput that tradition slow

start.

6. Performance Evaluation

Figure 6. Comparative Result: Magnified result over 5

sec.

6.1. The Simulation Setup

In the simulation experiment, a standard single

dumbbell topology is used as shown in Figure 4.

Only one sender (S1) and one receiver (D1) are used.

S1 sends data to D1 through three routers R1, R2

and R3.

Node S1 and D1 are connected to the routers

over LAN with 1 Gbps speed and 1 ms propagation

delay. Intermediate routers are also linked by 1

Gbps speed with 200 ms propagation delay. This

network has a bottleneck at routers, and there is no

other traffic present in this topology. Window size,

throughput and packets loss are considered as a

performance metric.

6.2 Simulation Result

As shown in the table 1, traditional slow start

algorithm increment congestion window by 1 at all

the time. Although sufficient bandwidth available to

send large number of packets. Even if we choose to

increment with specific value then congestion

window increases, so aggressively it could fill the

pipe and results in heavy congestion. We adopted

variable congestion widow size with respect to

previous change of congestion window.

Change of congestion window with respect to

time for traditional slow start and proposed slow

start is shown in figure 5. M-start changes

congestion window with exponential growth, but

when it reaches to change limits it slow down

change of growth and restart the whole procedure.

So, it follows somewhat sine wave of change of

congestion window. Shortcoming of this algorithm

is that it has large number of packet drop as

compared to traditional slow start. It is also noted

that at the end of 15th iteration, average throughput

of M-start is 1095 Mbps and traditional slow start is

132

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

549 Mbps. So, M-start fills 75% of available

bandwidth as compared to traditional slow start as

indicated in figure 6, tradition approach takes

4.10101 seconds to reach the saturation point at 454

packets while proposed approach takes 2.10097

seconds to reach the saturation point at 1992 packets.

Figure 7. Throughput Comparative Result

Figure 7 and table 4 indicates simulated

comparative result of traditional approach and

proposed approach. M-Start approach is 51.23%

faster as compared to traditional approach. Epoch

point of M-Start is also 4 times higher than

traditional approach. The graph indicates that

tradition approach increases by one step while

proposed approach increases with more aggressively

with exponential approach.

As shown in table 4 modified slow start having

problem of more freezing time period compared to

traditional slow start. It can be seen from table that

at 4th, 8th, 9th, 13th, 14th & 15th second throughput

is near to zero.

It means sender is not sending any packet into

network. Main cause for these phenomenon is

waiting time for the acknowledgment is higher

because of too many packet loss occurring at the end

of RTT iteration.

7. Conclusion

In this paper, causes of low bandwidth utilization in

slow start of TCP is investigated and proposed new

method of slow start named as Modified start. This

paper proposes changes to improve step up count of

slow start method of congestion control used in TCP.

Proposed method is tested in a simulated

environment. It significantly improves throughput

performance during slow start. Experiments and

results, observed during slow start phase, show that

throughput has increased to 51.23%, time to reach

epoch has reduced to 40%, position of epoch point

has increased to 4 times higher than traditional

approach. Future work involves tuning initial

parameter, P, with respect to different network

conditions and different types of traffic. Also,

finding the safe exit point to reduce packet loss.

Table 4. Simulated Throughput per second and

Average Throughput over time

 Traditional Slow Start Modified Slow Start

(M-Start)

Time

(Sec)

Average

Throughput

Throughput

per second

Average

Throughput

Through

put per

second

1 23 23 102 102

2 67 55 1498 1447

3 192 148 1840 841

4 555 410 1381 1

5 718 274 1151 46

6 601 2 1367 407

7 521 5 1481 309

8 468 12 1296 0

9 439 23 1152 0

10 432 37 1060 23

11 465 71 1180 216

12 601 174 1369 287

13 631 76 1264 0

14 587 0 1174 0

15 549 1 1095 0

References
[1] A. Technologies, Q4 2015 state of the internet

connectivity report.

[2] W. Zhang, K. T. Lam, C.-L. Wang, “Adaptive live vm

migration over a wan: Modeling and implementation.”

in: IEEE CLOUD, IEEE, pp. 368–375, 2014.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.

Limpach, I. Pratt, A. Warfield, “Live migration of

virtual machines.”, in: A. Vahdat, D. Wetherall

(Eds.), NSDI, USENIX, 2005.

[4] V. Jacobson, M. J. Karels, “Congestion avoidance and

control”, ACM Computer Communications Review

18 (4), pp.314–329, 1988.

[5] Y. Zhang, N. Ansari, M. Wu, H. Yu, “Afstart: An

adaptive fast tcp slow start for wide area networks.”,

in: ICC, IEEE, pp. 1260–1264, 2012.

[6] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, B.

Raghavan, “TCP fast open.”, in: K. Cho, M. Crovella

(Eds.), CoNEXT, ACM, p. 21, 2011.

[7] C.Y. Ho, Y.C. Chan, Y.C. Chen, “Gallop-vegas: An

enhanced slow-start mechanism for tcp vegas.”,

133

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.14

Journal of Communications and Networks 8 (3)

pp.351–359, 2006.

[8] S. Ha, I. Rhee, “Taming the elephants: New tcp slow

start.”, Computer Networks 55 (9) pp.2092–2110,

2011.

[9] X. Deng, Z. Chen, L. Zhang, “A parameterized model

of tcp slow start.”, in: H. Jin, G. R. Gao, Z. Xu, H.

Chen (Eds.), NPC, Vol. 3222 of Lecture Notes in

Computer Science, Springer, pp. 316–324, 2004.

[10] D. gan Zhang, K. Zheng, D. Zhao, X. dong Song, X.

Wang, “Novel quick start (qs) method for

optimization of tcp.”, Wireless Networks 22 (1)

pp.211–222 2016.

[11] H. Wang, K. G. Shin, H. Xin, D. S. Reeves, “A

simple refinement of slow-start of tcp congestion

control.”, in: ISCC, IEEE Computer Society, pp.

98–105, 2000.

[12] Y. Nishida, “Smooth slow-start: Refining tcp slow-

start for large-bandwidth with long-delay

networks.”, in: LCN, IEEE Computer Society, pp.

52–60, 1998.

[13] K. I. Oyeyinka, A. O. Oluwatope, A. T. Akinwale, O.

Folorunso, G. A. Aderounmu, O. O. Abiona, “TCP

window based congestion control-slow-start

approach.”, Communications and Network 3 (2) 85–

98, 2011.

[14] A. Arcia-Moret, O. Diaz, N. Montavont, “A tunable

slow start for tcp.”, in: GIIS, IEEE, pp. 1–6, 2012.

[15] J. C. Hoe, “Improving the start-up behavior of a

congestion control scheme for tcp.”, in: D. Estrin, S.

Floyd, C. Partridge, M. Steenstrup (Eds.),

SIGCOMM, ACM, pp. 270–280, 1996.

[16] K. Kumazoe, C. Marcondes, M. Gerla, D. Cavendish,

M. Tsuru, Y. Oie, “Conservative slow start:

Controlling losses in very high speed networks.”, in:

ICC, IEEE, pp. 5798–5803, 2008.

[17] R. Srikant, “The Mathematics of Internet Congestion

Control”, 2004.

[18] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T.

Herbert, A. Agarwal, A. Jain, N. Sutin, “An

argument for increasing tcp’s initial congestion

window.”, Computer Communication Review 40 (3)

pp.26–33, 2010.

