INASS

International Journal of
Intelligent Engineering & Systems

http://www.inass.org/

Design of Embedded WEB Remote Monitoring System Based on 1t C/OS-1I
Operating System

Xibo Wang, Zhen Zhang*

School of Information Science and Engineering, Shenyang University of Technology,
Shenyang 110870, China

* Corresponding authors’ Email: zhangzhen0370@ 126.com

Abstract: Isolating embedded system has not been adapted to current development tendency. More and more em-
bedded systems need networking for communicating with each other. uC/OS-II, which is a typical embedded real
time operating system and contains a kernel without network protocol, has been widely used in a large number of
embedded systems. So it is of significance to join network protocol into (C/OS-IL. In this paper, a networking method
is proposed to embedded equipments based on pC/OS-II. LPC2200 based on ARM7TDMI-S is used as the core of
hardware platform, £ C/OS-II embedded real-time operating system and LwIP (Light Weight IP) are used as software
platform, ADS1.2 as compiler. Through the realization of files that are related to the processor LPC2200, the porting
of uC/OS-II into ARM7 is implemented. Through the realization of the LwIP operating system emulation layer and
realization network chip RTL8019AS driver, the porting of LWIP into uC/OS-II is implemented. On these founda-
tions, a remote monitoring application is successfully developed. Experiment results show that proposed approach can
be successfully used for embedded equipments networking control.

Keywords: embedded system; LwIP; uC/OS-II.

1. Introduction

Embedded system [1] has been widely used in var-
ious fields. The import of embedded operating sys-
tem can enable embedded systems to administer all
kinds of resources, run system correctly and steadily,
provide bottom interfaces to upper soft, and be conve-
nient for secondary development.

In recent years, with the rapid development of com-
munications technology and internet and progress of
embedded technology, embedded system has a great
influence on human, and changes human’s future life
style. But the isolating embedded system has not been
adapted to current development tendency. Since more
and more needs such as “remote monitoring” [2] and
“smart home appliances” [3] are put forward, embed-
ded devices should not only have the traditional con-

trol, monitor, auxiliary equipment, machinery and eq-
uipment operation function, but also be connected to
the Internet, make full use of network resources to
realize remote monitoring, remote control and wider
range of information sharing and intelligent data pro-
cessing functions. So the use of operating system and
network protocol in embedded systems is of vital and
practical significance.

UC/OS-II [4] is a multitask real time operating sys-
tem with open source code which is written by Jean
J. Labrosse. nC/OS-II is a high-performance kernel
and its instantaneity is guaranteed. pC/OS-II oper-
ating system reduces the complexity of program and
makes the design and maintenance of application sys-
tem simple [5]. pC/OS-II operating system can be
used in the 8-bit processors, the 16-bit processors and
the 32-bit processors. The functions of ©C/OS-II op-

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012 28



erating system can be tailored according to different
applications. uC/OS-II operating system demands for
low hardware. Its scheduling mode is preemptive i.e.
Task whose state is ready and has highest priority can
be run [6]. It has implemented task scheduling, task to
task communication, management of system memory,
but it has no file system and network protocol.

LwIP is a realization of TCP/IP protocol stack. Its
goal is to reduce usage rates of memory and the size of
code, so LwIP can be applied to this platform such as
embedded system whose resource is limited. In order
to simplify the process and reduce memory require-
ment, LwIP has clipping API and in this way LwIP is
a high-performance network protocol.

This paper introduces a method that joins LwIP net-
work protocol stack into uC/OS-II. Thus embedded
system can access the Internet. On this basis, a simple
WEB server is implemented. So users can access and
control the development board via the browser.

2. The Overview of uC/OS-11

UC/OS-1II is a multitask real-time operating system
which is based on preemptive kernel [7, 8]. uC/OS-11
is a real time operation system (RTOS) indeed, which
is very suitable for intelligent control on site [9]. uC/-
OS-II has no file system, no network system, no in-
terface system, no peripherals management system,
etc. Because the source code of (C/OS-II is clipping,
open, portable, it is very suitable to be used as instru-
ment inline micro controller [10].

UC/OS-II uses ANSI C language, contains a small
part assembly code. This enables it to be used for mi-
croprocessors of different structures [11]. The soft-
ware structure of g C/OS-II contains three parts code.
The first part is core code which is independent of the
processor; the second part is header file which is as-
sociated with the application configuration; the third
part is the code which is dependent of the processor.
When porting, it is necessary to write the code which
is dependent of the processor. The software structure
of uC/OS-II is shown in Figure 1.

3. The Overview of LwIP

TCP/IP protocol is complex. Its implementation is
difficult for the embedded devices which lack the pow-
erful support of operating systems. For a particular
application, embedded devices often only need a small
part of TCP/IP protocol. According to particular re-
quest, we use an existing simplified TCP/IP protocol-
LwIP, and recompose TCP/IP protocol based on LwIP

application software(user” s code)

uC/OS-1I code that
is independent of
the processor

nC/OS-1I code that
1s associated with
the application

uC/08-11 code that is dependent of the
processor

Figure 1 The software structure of uC/OS-II.

applications (network applications or other
applications)

LwlIP protocol stack

drivers of network
nC/OS-II devices
ARM network chip

Figure 2 Diagram of the uC/OS-II and LwIP.

[12]. LwIP is an open-source embedded TCP/IP pro-
tocol stack. Its name in English is “Light Weight IP”
- lightweight TCP/IP protocol stack. Its purpose is
to reduce the usage of memory and the size of code
and to make LwIP suitable for the embedded system
whose resource is very strained. In order to reduce
processing program and internal demand, LwIP uses
tailored API without data replication [13].

Referring to hierarchical protocol, LwIP has desig-
ned and implemented the TCP/IP protocol stack. LwI-
P is composed of several modules, including the im-
plementation modules of TCP/IP(IP, ICMP, UDP and
TCP), operating system emulation layer, buffer and
memory management subsystem, network interface f-
unctions and a group of Internet verifying and calcu-
lating functions. At the same time, LwIP also pro-
vides a set of abstract API interfaces. Thereby it is
greatly convenient for the developers to develop ap-
plications. After putting LwIP in uC/OS-II operating
system, the whole system is shown in Figure 2.

4. The Porting of uC/OS-1I

The so-called porting means enabling a real time
kernel to run on certain microprocessor or microcon-

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012 29



time

Main function

OS_ENTER_CRITICAL()

Call subFun()

OS_ENTER_CRITICAL()

Critical codes
Interruption | OS EXIT CRITICAL()
is open. | e

|
v !
Real critical
area
4

=

Area that is cut off

OS_EXIT_CRITICAL()

Figure 3 The phenomenon of critical area is cut off.

troller [14]. According to the porting request of uC/-
OS-II, the process of porting nC/OS-II to a new sys-
tem structure needs 3 files: “OS_CPU.H” (C header
file ), “OS_CPU_C.C” (C language program source
file) and “OS_CPU_A.S” (assembler source file).

“OS_CPU.h” uses “typedef” to define some data ty-
pes which are connected with processor, uses C pre-
processor directive “#define” to define some constants
and macros which are also connected with processor.
Because ADS1.2 only supports full stack decrease pr-
ogressively, the value of the constant “OS_STK_GRO-
WTH” that decides growth direction of the stack must
be “1”. After defining macro “OS_CPU_EXT”, we
can use “OS_CPU_EXT” to define a global variable.
Because the word length of different CPUs might be
different, so the data types of C language must be re-
defined.

Towards the processing program of critical codes,
because the use of the first kind of interrupt mode may
produce a status in the critical area of main function,
sub function that includes critical area is called. Be-
fore the return of sub function the interrupt has been
opened, then it will lead to the interrupt having been
opened before the critical area of main function has
run completely. This phenomenon is shown in Figure
3. So the first interrupt mode can not be used. For the
second interrupt mode, critical area code has modified
stack pointer that is used to save interrupt state, thus it
may cause an error when interrupt open/close state is
resumed, therefore the second interrupt mode can not
be used. The open/close interrupt way of uC/OS-II
is defined as “3”, the interrupt states are saved as lo-
cal variables, so this method can avoid the two wrong
methods what we said above.

Macro “OS_ENTER_CRITICAL()” and “OS_EXIT-
CRITICAL()” are defined and used to open/close in-

Table 1 List of functions

Function Must be realized
OSTaskStkInit() Yes
OSInitHookBegin() No
OSInitHookEnd() No
OSTaskCreateHook() No
OSTaskDelHook() No
OSTasklIdleHook() No
OSTaskStatHook() No
OSTaskSwHook() No
OSTCBInitHook() No
OSTimeTickHook() No

terrupt. In this file, some function prototypes are de-
clared, so that other files can use them expediently.
These functions include OSTickISR(), OSCtxSw(), O-
SIntCtxSw(), OSStartHighRdy(), ARMCoreDisalbel-
tExt(),ARMCoreRestoreIntStatus(). These functions
will be realized in file “OS_CPU_A.s”.

In “OS_CPU_C.c” file, there are two group func-
tions. The first group functions must be realized, and
the second group function can be realized as empty
functions. These functions are shown in Table 1. From
Table 1, we can see there is only one function that
must be realized. The other functions are hook func-
tions. These hook functions can be put into the kernel
of nC/OS-II, then the function of kernel can be ex-
tended. But there is no need to extend the function
of kernel in this paper. These hook functions are only
defined.

UC/OS-II is a multitasking operating system, the
task will not run immediately after it has been created,
it must wait for the kernel scheduler program which
has pushed it into the CPU registers from stack, then it
runs. So every task stack must always keep right data
and the data is enough to make the task run or recover
running state. This theory is shown in Figure 4. So the
stack of task must be properly initialized when a task
is created, in other words, function “OSTaskStkInit()”
must be realized in file “OS_CPU_C.c”. When a task
is created, the function “OSTaskStkInit()” is called.
Function “OSTaskStkInit()” realizes the stack of task
shown in Figure 4. Task enter address is saved in PC
register in the stack of task. When scheduler program
puts task enter address into PC register in CPU, CPU
will run this task. Some other user functions are called
when pC/OS-II do some operation defined as empty
functions.

UC/OS-Il is a deprivable kernel, before it starts, the

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012 30



Low

 address CPSR » CPSR
* RO > RO
i RI : RI
| R2 § R2
DESC stack | ++e--r I T
! RI1 3 RI1
! R12 ! RI12
| LR | LR
__ High PC » PC
address .
Task stack CPU registers

Figure 4 The relationship Between task stack and CPU reg-
ister group

CPU should be owned by the highest priority task wh-
ose status is ready. Function “OSStart()” looks up
task which should be run first. After function “OS-
Start()” finds one task, function “OSStartHighRdy()”
will put stack of this task into stack of CPU. Because
this belongs to operation of registers, it belongs to
the porting of uC/OS-II. It needs to realize code in
line with different CPUs. The only work that func-
tion “OSStartHigRdy()” should do is to put stack of
task, whose priority is the highest and whose status
is ready, into stack of CPU, and recover task scene
that function “OSTaskStkInit()” simulates into stack
of CPU, then the task can run.

When interrupt returns, function “OSIntCtxSw()” is
used to switch tasks. After ISR finishes the treatment
of interruption, (C/OS-II has to make a task sched-
ule. The aim is to ensure that interrupt handling re-
sults can get timely response. So the all interruptions
of uC/OS-II must have one and only entry and exit.
In order to achieve this goal, exception vectors must
be modified. IRQ and FIQ point to a uniform entry
function. After user-defined interruption is disposed
completely, uC/OS-II makes a task schedule. The
process of function “OSIntCtxSw()” is shown in Fig-
ure 5. In Figure 5, we can see that variable “OSPri-
oCur”, where priority of current task is saved, is re-
vised as priority of task being about to run. Variable
“OSTCBCur”, where address of current task OS_TCB
is saved, will be revised as the address of task be-
ing about to run. The stack pointer register (SP_svc)
points to the top of stack of task being about to run.
CPSR register pops from the stack. AIC_EOICR reg-
ister is written. This notices that the interruption is
end. The task that being about to run pops from stack.
Then the task can run.

Function “OSTickISR()” is used for interrupt ser-

vice routine of clock tick. “OSTickISR()” must be
called by uC/OS-II kernel ISR. “OSTickISR()” re-
duce “OSTCBDIly” of every task.

Function “OSSched()” needs function “OS_TASK_
SW()” to complete task switching work. Because task
switching needs to operate CPU registers, and differ-
ent CPUs have different operation instructions to op-
erate registers, function “OS_TASK_SW()” is realized
according to different CPUs in “OS_CPU_A.s” file.
The process of function “OS_TASK_SW()” is shown
in Figure 6. From Figure 6, we can see that running
scene of current task is saved into stack of task, the
pointer of current task is saved into OS_TCB of cur-
rent task, variable “OSPrioCur”, where priority of cur-
rent task is saved, is revised as priority of task being
about to run, variable "OSTCBCur” where address of
current task OS_TCB is revised as address of task be-
ing about to run, the pointer of task being about to run
is recovered from OS_TCB to SP register, the scene of
task being about to run is recovered into CPU register,
then the task being about to run can run.

5. The Porting of LwIP

The porting of LwIP is divided into two parts: one
part is to realize the operating system emulation layer,
i.e. “interface layer”’; another part is to realize bottom-
level driver. The operating system emulation layer
provides a common interface between the LwIP code
and the underlying operating system kernel. The gen-
eral idea is that porting LWIP to new architectures re-
quires only small changes to a few header file. In or-
der to facilitate porting of LwIP, functions and data
structure that belongs to operating system are not used
directly, but an interface layer is used to take the place
of these functions. Therefore, in order to the porting
of complete LwIP, the interface layer must be realized
[15]. So interface layer should be modified according
to a given operating system. Because different net-
work card chip has different operation, bottom-level
driver should be realized according to different hard-
ware.

Environment variables and data types are defined in
file “cc.h”. These common data types are used in op-
erating system emulation interface functions and low-
level protocol stack. Towards the critical-protecting
functions of LwIP, LwIP and pC/OS-II have the same
way to handle this, so same method can be used to
realize critical-area-protecting functions as yC/OS-II.
Macro “SYS_ARCH_PROTECT()” and “SYS_ARCH
_UNPROTECT()” are defined and used to realize the
protection of critical area.

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012 31



Current OS_TCB

OSTCBStkpPir || OSTCBCur [ CPSR |-4GPSRY

Interruption ends

CPSR
RO
Current task priority 2 R1
OSPrioCur R
Task being abouttorun | | | seeees
OS TCB = 1chRdvl | eeceee
SP_svc -»JOSTOBSIPE 2STCBHighRdy
1 RI11
R12
Task being about to run LR
priority PC
—————» OSPrioHighRdy Task
stack

CPU
registers

Figure 5 The task switching process at interruption level

&
Current OS_TCB
CPSR | SP-4» OSTCBStkPtr QSIC Bl "I cPSR
RO RO
R1 R1
R2 Current task priority 5 R2
OSPrioCur
""" Task being about to run
RI11 OS_TCB : R11
OSTCBHighRdy
LR LR
] PC
1 Task being about to run
CcrPU Task priority Task CcPU
registers stack ——»{ OSPrioHighRdy | stack  registers

Figure 6 The task switching process at task level

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012

32



Because ARMY7 aligns as 4 bytes as default, if struc-
ture designed can not align as 4 bytes, then compiler
“ADS1.2” will readjust structure and make sure the
structure aligns as 4 bytes, because the visit efficiency
is the highest when the structure aligns as 4 bytes.
But sometimes structure needs to be visited as actual
member boundary, especially in network structures.
LwIP has thought about this problem and provided
some macros to package structure, so these macros
need to be defined. These macros include
"PACK_STRUCT_FIELD(x)”,
"PACK_STRUCT_STRUCT”,
"PACK_STRUCT_BEGIN”, and
"PACK_STRUCT_END”.

Semaphores are represented by the type “sys_sem_t”
which is defined in the “sys_arch.h” file. Mailboxes
are equivalently represented by the type “sys_mbox_t”.
LwIP does not place any restrictions on how “sys_sem
t” or “sys_mbox_t” are represented internally.

Macro used for performance measurement is defined
as an empty macro in file “perf.h”.

The following 4 groups of functions must be imple-
mented by the operating system emulation layer.

(1) Semaphore operation functions

LwIP needs semaphores to achieve communication
within processes, so semaphore processing functions
need to be realized. Semaphores can be either count-
ing or binary - LwIP works with both kinds. These
functions are shown as follows.

1) sys_sem_t sys_sem_new(u8_t count)

This function creates and returns a new semaphore.
The “count” argument specifies the initial state of the
semaphore.

2) void sys_sem_free(sys_sem_t sem)

This function deallocates a semaphore.

3) void sys_sem_signal(sys_sem_t sem)

This function signals a semaphore.

4) u32_t sys_arch_sem_wait(sys_sem_t sem, u32_t ti-
meout)

This function blocks the thread while waiting for the
semaphore to be signaled. If the “timeout” argument
is non-zero, the thread should only be blocked for the
specified time (measured in milliseconds).

If the timeout argument is non-zero, the return value
is the number of milliseconds spent waiting for the
semaphore to be signaled. If the semaphore isn’t sig-
naled within the specified time, the return value is
“SYS_ARCH_TIMEOUT?”. If the thread doesn’t have
to wait for the semaphore (i.e., it is already signaled),
the function may return zero.

Because uC/OS-1II has already provided semaphore,

these functions mentioned above can be realized by
packaging or rewriting semaphore operation functions
that uC/OS-II has already provided.

(2) Mailbox operation functions

Mailboxes are used for message passing and can be
implemented either as a queue which allows multi-
ple messages to be posted to a mailbox, or as a point
where only one message can be posted at a time. LwIP
works with both kinds, but the former type will be
more efficient. A message in a mailbox is just a pointe-
r, nothing more. So mailbox operation functions must
be realized. These functions are shown as follows.

1) sys_mbox_t sys_mbox_new(void)

This function creates an empty mailbox.

2) void sys_mbox_free(sys_mbox _t mbox)

This function deallocates a mailbox. If there are
messages still present in the mailbox when the mail-
box is deallocated, it is an indication of a program-
ming error in LwIP and the developer should be noti-
fied.

3) void sys_mbox_post(sys_mbox_t mbox, void *msg)

This function posts the message to the mailbox.

4)u32_t sys_arch_mbox_fetch(sys_mbox_t mbox, void
**msg, u32_t timeout)

This function blocks the thread until a message ar-
rives in the mailbox, but does not block the thread
longer than “timeout” milliseconds (similar to the “sys
_arch_sem _wait()” function). The message argument
is a result parameter that is set by the function (i.e., by
doing “*msg = ptr”’). The message parameter maybe
“NULL” to indicate that the message should be dropp-
ed.

The return values are the same as for the “sys_arch _s-
em_wait()” function: Number of milliseconds spent
waiting or “SYS_ARCH_TIMEOUT” if there was a
timeout.

UC/OS-II has realized the message queue, and it
provides abundant function of message queue oper-
ation, then it is needed to package these functions for
the need of LwIP.

(3) “sys_arch_timeout” function

In LwIP, each thread has a list of timeouts which
is represented as a linked list of “sys_timeout” struc-
tures. The “sys_timeouts” structure holds a pointer to
a linked list of timeouts. This function is called by the
LwIP timeout scheduler and can not return a “NULL”
value. The function prototype of “sys_arch_timeouts”
is shown as follows.

struct sys_timeouts *sys_arch_timeouts(void)

This function returns a pointer to the per-thread “sys
_timeouts” structure. In a single thread the operating

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012 33



system emulation layer implementation, this function
will simply return a pointer to a global “sys_timeouts”
variable stored in the operating system emulation laye-
r module.

(4) Functions that are related to thread

These functions are shown as follows.

1) sys_thread_t sys_thread _new(void (* thread)(void
*arg), void *arg, int prio)

This function starts a new thread with priority “prio”
that will begin its execution in the function “thread()”.
The “arg” argument will be passed as an argument to
the “thread()” function. The id of the new thread is
returned. Both the id and the priority are system de-
pendent.

For uC/OS-II, a creation of a new thread means a
creation of a task. It is needed to package the func-
tion “OSTaskCreate()” that uC/OS-II has provided.
In the way of arrangement of priority, in order that
priority conflict does not occur, initiative thread prior-
ity of LwIP i.e. “T_LWIP_THREAD_START_PRIO”
is defined.

2) sys_prot_t sys_arch_protect(void)

This optional function does a “fast” critical region
protection and returns the previous protection level.
This function is only called during very short critical
regions. An embedded system which supports ISR-
based drivers might want to implement this function
by disabling interrupts. Task-based systems might w-
ant to implement this by using a mutex or disabling
tasking. This function should support recursive calls
from the same task or interrupt. In other words, “sys
_arch_protect()” could be called while already protect-
ed. In that case the return value indicates that it is
already protected.

3) void sys_arch_unprotect(sys_prot_t pval)

This optional function does a “fast” set of critical
region protection to the value specified by “pval”. See
the documentation for “sys_arch_protect()” for more
information. This function is required for this port
supports an operating system.

6. System Initialization for LwIP

A truly complete and generic sequence for initial-
izing the LwIP stack cannot be given because it de-
pends on the build configuration and additional ini-
tializations for your runtime environment. But there
is a general method. The following functions must be
called in turn.

(1) stats_init()

This function clears the structure where runtime statis-

tics are gathered.

(2) sys_init()

The operating system emulation layer is initialized
in this function.

(3) mem_init()

This function initializes the dynamic memory heap
defined by MEM_SIZE.

(4) memp_init()

This function initializes the memory pools defined
by MEMP_NUM _x.

(5) pbuf_init()

This function initializes the pbuf memory pool de-
fined by PBUF_POOL _SIZE.

(6) etharp_init()

This function initializes the ARP table and queue.

(7) ip_init()

This function should be called to handle future chan-
ges.

(8) udp_init()

This function clears the UDP PCB list.

(9) tep_init()

This function clears the TCP PCB list and clears
some internal TCP timers.

(10) netif _add( struct netif *netif, struct ip_addr *ipaddr,
struct ip_addr *netmask, struct ip_addr *gw, void *state,
errt (* init)(struct netif *netif), err_t (* input)(struct
pbuf *p, struct netif *netif) )

This function adds your network interface to the “n-
etif” list. This function allocates a “netif “’struct and
passes a pointer to this structure as the first argument.
The “init” function pointer must point to a initializa-
tion function for Ethernet “netif” interface. In this pa-
per this function is “ethernetif_init()”. “Ethernetif_ini-
t()” function is an entry function for the initializa-
tion of underlying network interface. The main work
of “ethernetif_init()” function is “send-function” (the
sending of data is completed by “send-function” ).
“Send-function” is written in line with specific hard-
ware. “Send-function” is registered to LwIP on data
link layer. A semaphore handle is created for the block-
ing access to network card. MAC address is filled in
“ethernetif” stuct. Network card chip is initialized in
order to build a physical connection link and a thread
for receiving data is created. At last, the timing up-
date for ARP table is opened. The process of “eth-
ernetif_init()” function is shown in figure 7. In fact,
“etherneif_init()”” function calls a number of functions,
these functions is shown in table 2.

(11) netif_set_default(struct netif *netif)

This function registers the default network interface.

(12) netif_set_up(struct netif *netif) When the netif
is fully configured, this function must be called.

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012 34



‘ ethernetif init H low_level output() H EMACSendPacket() ‘

| low_level init() |- EMACIit() |

GePacketLen()

—»{ low_level_input() }—»{ EMACKReadPacket() ‘

Figure 7 Process of “ethernetif_init()” function.

Table 2 Functions that “etherneif_init” calls

Name Effect
etherneif_init initialization entry function for
underlying network interface
low_level_output send-function on data
link layer
EMACSendPacket send frame
low_level_init network initialization on data link
layer
EMACTInit network card chip initialization
GetPacketLen get length of frame
low_levle_input receive-function on data link layer
EMACReadPacket receive frame

(13) dhcp_start(struct netif *netif)
This function creates a new DHCP client for this
interface on the first call.

7. Network Device Driver

In this paper, network card chip is RT-L8019AS.
RTL8O19AS is a highly integrated Ethernet chip, co-
mpatible with NE2000 on software level. So the driver
of RTL8019AS can be written according to the stan-
dard of NE2000. These mainly include initialization,
receiving data and sending data.

The initialization function flow chart of RTLSO19AS
is shown in Figure 8.

The sending function flow chart of RTL8019AS is
shown in Figure 9.

The receiving function flow chart of RTL8019AS is

( begin )

’ reset

v

‘ enter stop state

v

\ set chip

v

| start chip

-

{ cn

Figure 8 The initialization function flow chart of
RTL8019AS.

length of data <60? N

Y

calculate the le length=60
length ff data
switch send *

buffer
v

write data into
send buffer

|

set chip send P
— resen
start address v v
—Y send success? N
h 4
end

Figure 9 The sending function flow chart of RTL8019AS.

shown in Figure 10.

Regarding the interface between network drive and
LwIP, the author of LwIP has designed a template.
This template is in “/src/netif/ethernetif.c”. In LwIP,
each network card corresponds with a “netif” struc-
ture. LwIP calls function “netif-input” and “netif-out-
put” of “netif” for receiving and sending of Ethernet
packets. It is needed to realize these functions that
are between upper layer(IP layer) and lower layer(link
layer) in “ethernetif.c” file. These functions include
“ethernetif_init()” used for initialization of bottom net-
work interface, “low_level output()” used for sending
data on link layer, “low_level_init()” used for initial-
ization of network card, “ethernetif_input()” used for
receiving data, “low_level_input()” used for reading a
frame.

8. Application design and test

After the porting, application test program can be
written. This application is designed to build a WEB
server. User can access development board through
browser, click on the “submit” button, then the LEDs
of the development board are lightened, and LEDs
display as water lamp. The main thought is to handle
HTTP1.1 protocol. The message that browser submits
can be distinguished into “GET” and “POST” request.
If a “GET” request arrives, the WEB server sends a
default web page to browser. If a “POST” request
arrives, according to the function name and param-
eter that browser submit, the WEB server finds ho-
mologous service function, and makes response and
deals with the current request. The flow char Figure

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012 35



enter critical
section

call
—initialization (Y-

read read-pointer
and write-pointer

function
read-pointer
add 1 N
read-pointer=0x7{7 Y- read-pointer=0x4c
N

read-pointer =
write-pointer?

7
Z
v

£

read frame states

receiving frame is receive data and
N——> .
wrong? put data into buffer
: i v

empty send buffer

exit critical section
end and return 0

Figure 10 Receiving function flow chart of RTL8019AS.

11 shows the core of application.

After the IP address of development board is input
in the address field of browser, a “GET” request is sent
to development board. Then development board sends
a static Web page to browser. The result of visiting
development board in the browser is shown in Figure
12.

After clicking “submit”, a “POST” request is sent to
development board. Then development board enables
water lamp according to the “POST” request. The sta-
tus of development board is shown in Figure 13.

9. Conclusion

In this paper, embedded light weight network pro-
tocol stack (LwIP) is designed and implemented suc-
cessfully. A simple WEB server is implemented. Loo-
king from the status of development board, the ex-
pected result is obtained. TCP/IP protocol is added
into uC/OS-II successfully. The C/OS-II operating
system suits for various embedded equipments prefer-
ably.

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012

Figure 11 Flow char of the application core.

3 http://10.16.2. 140/ — Nicrosoft I...

NHEE HKEE

Qe - ©

HItk () & hetp: //10.16.2. 140/

FEW Wwew IAD

x] & @ P==

v B3 BEE
click “submit” to enable water lamp

&)

#p > o

@ Internet

Figure 12 Result of visiting development board in the
browser.

the indicator lights are
illuminated

LI ARRR
DDD)
ROD D

Figure 13 Status of development board.

36



Acknowledgments

We would like to thank Qiao Zhou for his support
and helpful comments.

References

(1]

(2]

(3]

(4]

(5]

(6]

H. Liu, “Simple discussion on the development ten-
dency of embedded system”, In: China Construction
Education, Beijing, China, pp.51-54, 2006.

L. Li, J. He, C. Cao and J. Li, “PLC Remote
Monitoring Application Research Based on TCP/IP
protocol”, In: Microcomputer Information, Beijing,
China, pp.57-59, 2011.

Z. Chai, “Intelligent Home Systems of Remote Con-
trol Based On Internet”, In: Computer Knowledge
and Technology, Hefei, China, pp.7194-7195, 2009.

J. L. Jean, The Embedded Real-Time Operating Sys-
tem L C/0S-11, Beijing University of Aeronautics and
Astronautics Press, Beijing, 2005.

H. Qin, Y. Tang, “Transplant of Real-time Oper-
ating System, pC/OS-II on the HFRK2410C”, In:
Computer Knowledge and Technology, Hefei, China,
pp.1544-1547, 2010.

H. Ji, S. Fu, X. Che and L. Zhou, “Analysis and Im-
provement of Real-time Embedded Operating Sys-
tem uC/OS-II Kernel”, In: Computer Engineering,
Beijing, China, pp.246-247, 2007.

(7]

(8]

(9]

(10]

(11]

[12]

[13]
(14]

(15]

J. Shen, and X. Liu, “Analysis of pC/OS-II Kernel
and Realization of Multi-task Schedulers”, In: Com-
puter Engineering, Beijing, China, pp.85-87, 2006.
Y. Wu, W. Chen, S. Zheng and H. Xu, Embedded
Real-Time Operating System tC/OS- Course, Xidian
University Press, Xi’an,2007.

Y. Liu, L. Cao, “Acceleration and Deceleration Con-
trol for Step Motor Base on UC/OS-1I", In: Intelli-

gent Information Technology Application Workshops,
Shanghai, China, pp.180-183, 2008.

L. Zhou,ARM Embedded System Foundation Course,
Bei Hang University Press, Beijing, 2005.

J. Luo Y. Xie H. Shu and Y. Zhang, “Implementation
of LwIP in uC/0S 1I”, In: Microcomputer Informa-
tion, Beijing, China, pp.46-47, 2005.

H. Jiao, The Design of Embedded Network System,
Bei Hang University Press, Beijing, 2008.

Adam Dunkels, LwIP-1.4.0 source code, 2011.

C. Li, M. Huang, X. Zhang, J. Hu, Y. Liu
and Y. Wang, “Transplant Method of uC/OS- on
XC164CS”, In: Computer Engineering, Beijing,
China, pp.242-244, 2010.

M. Cheng, Z. Yu, Y. Su and X. Guo, “Porting LwIP

into 4 C/OS- and Testing”, In: Microcomputer Infor-
mation, Beijing, China, pp.79-90, 2008.

International Journal of Intelligent Engineering and Systems, Vol.5, No.1, 2012 37



