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1. Introduction

   When hepatitis C virus (HCV) infection occurs, a subset 
of acutely infected individuals (nearly 15%-30%) can 
spontaneously eradicate the virus[1]. In addition, significant 
levels of natural immunity to HCV have been reported 
in studies of the chimpanzee model and in studies of 
reinfections in intravenous drug users[2,3]. Aided by a 
better understanding of the immunological correlates and 
mechanisms underlying the successful control of viral 
infection, the fundamental role of innate immune response 
in facing HCV infection has been emphasized[4]. Innate 
responses are observed early after HCV infection. The 

armaments which enable the body to fight HCV including 
type I interferons (IFNs), HCV specific CD4+ cells and CD8+ 
T cells, cytokines, natural killer (NK) cells, dendritic cells 
(DCs), anti-HCV neutralizing antibodies (nAb), toll-like 
receptors (TLRs), and the apoptotic machinery (Figure 1). 

1.1. Type I IFNs 

   In response to the remarkable increase in the viral load, 
large amounts of type I IFNs (IFN-α, IFN-β) are produced[5,6]. 
They are produced via several HCV-induced signaling 
pathways. TLRs signaling pathway leads to activation of 
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Hepatitis C virus (HCV) infection is a significant global health problem, affecting over 150 million 
people worldwide. There is increasing evidence that a small percentage of individuals exposed 
to the HCV have the capacity to generate a strong cellular as well as humeral immune response 
against the virus and avoid persistent infection, and perhaps do so repeatedly after re-exposure. 
While the critical role of the adaptive immune system in HCV infection is well-established, the 
importance of the innate immune system has been recognized in more recent years. The immune 
system has many weapons to combat the HCV infection. These include type I interferons, HCV 
specific CD4+ cells and CD8+ T cells, cytokine production, natural killer cells, dentritic cells, and 
the production of anti-HCV neutralizing antibodies. Toll-like receptors form an important element 
of the innate immune response, and there is considerable evidence for their crucial role in HCV 
infection. In order to limit the availability of the cellular components for viral amplification, 
apoptosis occurs. It involves caspases, the key effectors of apoptotic cell death. This article 
reviews what the immune system does, when HCV attacks the body. 
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IFN regulatory factor-3 (IRF-3), which is in association with 
many other factors regulating the expression of IFN-β[7]. 
After reaction cascades involving other proteins (e.g., Fas-
associated death domain protein, caspase recruitment 
domain), retinoic acid-inducible gene-I-like ribonucleic 
acid (RNA) helicase signaling pathway, IRF-3 and IRF-7 are 
activated leading to the formation of IFN-α and β[8]. 
   Moreover, endogenous IFN-α/β bind to a common receptor 
expressed at the surface of target cells, leading to the 
activation of signal transducer and activator of transcription 
(STAT) 1 and STAT2, which, together with IFN-stimulated 
gene factor 3, γ subunit/IRF-9, bind to IFN-stimulated 
response elements, thereby activating the transcription of 
IFN-α/β-inducible genes[9-11]. The inducible genes include 
genes encoding ribonuclease L and protein kinase R which 
degrade viral RNAs and block their translation. In addition to 
these genes, type I IFN activates the expression of more than 
300 genes that also have antiviral functions, e.g., the 2′,5′-
oligoadenylate synthetase, adenosine deaminase (adenosine 
deaminase, RNA-specific), and the MxA protein GTPases[12]. 
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Figure 1. Immune response to HCV infection.

1.2. CD4+ and CD8+ T cells 

   The HCV-specific T-cell response has been shown to play 
a crucial role in determining the outcome of primary HCV 
infection. HCV specific CD4+ cells, together with cytolytic 
T lymphocyte (CTL) cells enter the liver in parallel with 
the onset of acute hepatitis. HCV-specific CD4+ T cells 
can potentially act in multiple ways and are central to the 
initiation and maintenance of adaptive immunity. Two likely 
major roles are in providing help for CD8+ T cells by cytokine 
production, and activation of antigen-presenting cells. There 
are multiple other roles including direct antiviral effects, 
and a role in B cell maturation, and regulatory functions[13]. 
CTL cells could respond to HCV viral infection through a 
couple of mechanisms: the killing of infected hepatocytes by 
apoptosis or the secretion of perforin and granzymes[14]. 
   Comparative studies in man have demonstrated that 
the broad and sustained CD8+ and CD4+ T cell response is 
associated with spontaneous viral clearance. Conversely, a 
weak and narrowly targeted T cell response is a hallmark of 
persistent infection[15-17]. When the latter occurs, T cells are 
exhausted and overexpress inhibitory molecules including 
cytotoxic T lymphocyte antigen-4, programmed death-1 

(PD-1) inhibitory receptor, B7 family member B7-H4, T cell 
immunoglobulin and mucin domain-containing protein 3 
(Tim-3), and lymphocyte activation gene-3 (LAG-3)[18-22]. 
Interactions of these molecules with their cognate ligands 
on various cells types result in reduced T cell propagation 
and function, together with tolerance to the antigens’ 
exposure[23]. 
   Cytotoxic T lymphocyte antigen-4 is a key negative 
regulator of T cell activation. Its inhibitory effect is due to 
reducing the production of interleukin (IL)-2 and arresting 
cell cycle progression[18].
   The inhibitory receptor PD-1, a CD28 family costimulatory/
coinhibitory molecule, is highly expressed on virus-
specific exhausted CTLs cells in comparison to functional 
memory CD8+ T cells[24]. Interactions between PD-1 and its 
ligands PD-L1/PD-L2 can inhibit antigen-specific T cell 
proliferation and effector function. 
   B7-H4 is a coinhibitory molecule expressed by activated 
hepatic stellate cells (HSC). Unlike quiescent HSC, activated 
HSC did not induce proliferation of antigen-specific T 
cells[20]. 
   Tim-3 is a membrane protein, which has shown to be 
a T cell exhaustion marker in humans infected with HCV. 
Recent studies have shown that higher expression levels 
of dual Tim-3 and PD-1 have been reported to correlate 
with impaired Th1/Tc1 cytokine secretion and diminished 
cytotoxic potential[21]. 
   LAG-3 is a CD4 homologue. It is a transmembrane protein 
that binds major histocompatibility complex (MHC) class II, 
enhances regulatory T cell activity, and negatively regulates 
cellular proliferation, activation, and homeostasis of T cells. 
Many cells of the hematopoietic lineage, such as B, NK, γδ 
T cells, and activated and regulatory CD4+ and CD8+ T cells, 
as well as tumor infiltrating lymphocytes, express LAG-3. 
Studies have shown that LAG-3 plays an important functional 
role on CD8+ T cells by maintaining the tolerogenic state[22]. 
          
1.3. Cytokines   

   Cytokines and chemokines which are secreted by immune 
cells contribute to viral control, or liver damage. Examples 
are IFN-α/β, IFN-γ, tumor necrosis factor α (TNF-α), 
granulocyte macrophage-colony stimulating factor, IL-5, 
IL-13, IL-10, and transforming growth factor. They are able 
to render uninfected cells resistant to infection and cure the 
infected ones from the virus by stopping viral replication. 
   In in vitro studies, IFN-γ inhibits amplification of HCV 
replicons in Huh-7 liver cells. In humans, the induction 
of IFN-γ-producing, antiviral CTL corresponds with the 
successful clearance of the HCV infection. Furthermore, the 
degree of viremia correlates inversely with the expression of 
IFN-γ in the livers of HCV-infected persons[25]. 
   Granulocyte macrophage-colony stimulating factor is a 
cytokine that functions as a white blood cell growth factor[26]. 
   Through binding to the IL-5 receptor, IL-5 stimulates B 
cell growth and increases immunoglobulin secretion, while 
IL-13 is a key regulator in humoral and adaptive immunity. 
IL-10 downregulates the expression of Th1 cytokines, 
MHC class II antigens, and costimulatory molecules on 
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macrophages. It also enhances B cell survival, proliferation, 
and antibody production. IL-10 can block nuclear factor-
κB activity, and is involved in the regulation of the Janus 
kinase-STAT signaling pathway[27]. 
   The normal anti-inflammatory cytokine milieu of the 
liver is disturbed by the antiviral immune response, which 
may activate stellate cells to produce matrix proteins and 
fibrosis-promoting cytokine. Transforming growth factor, 
another mechanism, which may contribute to liver injury 
in HCV infection is enhancing TNF-α-induced cell death 
by suppressing nuclear factor-κB activation through the 
action of core, NS4B, and NS5B[28]. 
   The intrahepatic T cells from the individuals with 
chronic HCV infection produce almost 50 times more TNF-α 
than the ones who control this infection. Furthermore, TNF-
related apoptosis-inducing ligand kills hepatocytes from 
virus-infected, inflamed livers via death receptors-4 and 
death receptors-5 but not from healthy ones[29]. 

1.4. DCs          

   DCs, the professional antigen presenting cells, represent 
the cornerstone cell part of innate immunity. They 
orchestrate the quality and effectiveness of downstream 
adaptive immune response (Figure 2). 
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Figure 2. DCs and immune responses in HCV infection. 
Plasmacytoid DCs recognize HCV infection and produce IFN-α, which 
activates NK cells, Th cells, macrophages, and CTLs. Activated NK 
cells destroy the HCV-infected hepatocytes in a nonspecific manner, 
whereas CTLs destroy the infected hepatocytes in an antigen-specific 
manner. Myeloid DCs, which recognize dead hepatocytes, secrete IL-
12, promoting the activation of NK cells, Th1 cells, and CTLs. Activated 
Th1 cells, in turn, promote DC maturation by interacting with the CD40L/
CD40 ligand. Macrophages stimulated by type 1 Th1 cells produce TNF-α, 
which accelerates local inflammation. In humoral immune responses, 
Th2 cells activate B cells. Plasma cells differentiated from B cells secrete 
immunoglobulins to neutralize the circulating HCV. pDC: Plasmacytoid DC; 
mDC: Myeloid DC (adapted from Hiroishi et al[30]).

   Found within the peripheral tissues and lymphoid 
organs, DCs are perfectly suited to detect and capture 
pathogens. Their antigen presenting capability is crucial 
for generation of CD4+ T cells, and priming B cells for 
antibody production. By production of CD40 and IL-2, DCs 
provide help to CD8+ cells. Since DCs express distinct sets 

of TLRs, it is likely that some viral components stimulate 
DCs through ligation of TLRs, presumably TLR 3, 7-9[31].
   The two major DC subsets, the myeloid dendritic cells 
(MDC) and plasmacytoid dendritic cells (PDC), contribute 
to the immune mechanisms targeting HCV. MDC produce 
large amounts of IL-12 and IL-10 and make small amounts 
of IFNs, while PDC are specialized type I IFN-producing 
machines and express much lower levels of other 
cytokines. These released cytokines, efficiently prime both 
CD4+ Th cells and CD8+ CTLs[32]. 
   Several studies indicate that DCs response to HCV in the 
early stage of infection is fundamental in determining the 
outcome of the disease. Chronic HCV-infected individuals 
show impairment of DC functions, which may include a 
reduced frequency of MDC and PDC, reduced IL-12 and 
IFN-α, and increased IL-10 production, accompanied by an 
impaired capacity to prime naive T cells[33].

1.5. Anti-HCV nAb          

   Although the role of anti-HCV nAb was controversial 
in the pathogenesis of HCV infection, recent studies have 
indicated that nAbs are fundamental in determining HCV 
disease outcome. Viral clearance is associated with a rapid 
induction of nAb in the early phase of infection with some 
evidence that these nAb are broadly reactive, while chronic 
HCV infection is characterized by absent or low-titre nAb. 
Infection persists, despite the induction of cross-nAb in 
the later phase of infection[34].
   Current understanding of the nAb response raised against 
HCV suggests that E2 is the major target, and that multiple 
epitopes within E2 may be targeted by both linear- and 
conformation-dependent antibodies. Predominantly, these 
neutralization epitopes overlap with CD81-binding sites 
and clearly demonstrate a role in inhibition of entry[35]. 
   The antibody can exert their actions through a fragment 
crystallizable region-mediated recruitment of other 
components of the immune system, including antibody-
dependent cell-mediated cytotoxicity, complement-
dependent cytotoxicity and antibody-dependent cellular 
phagocytosis[36,37]. Given the potential antiviral effect of 
the antibodies, HCV has evolved multiple mechanisms 
for protection from antibody binding. One of these is 
glycosylation of receptor. Carbohydrates are poorly 
immunogenic and, therefore, do not stimulate the response 
of type B lymphocytes and simultaneously hide the 
underlying protein structures. HCV E2 protein contains 
up to 11 potential N-linked glycosylation sites. Specific 
glycans mask the CD81-binding site and, therefore, nAb 
epitopes. Lipid shielding may represent an additional 
strategy used by HCV to evade the antibody response. 
Current data suggest that key neutralizing epitopes are less 
accessible on lipoviral particles. More recently, HCV has 
been found capable of direct cell-to-cell transmission, 
which is largely resistant to antibody neutralization. 
Finally, the high mutation rate of HCV, which undergoes 
rapid antigenic variation, allows escaping neutralization[38]. 
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1.6. TLRs 

   TLRs, the family of pattern recognition receptors, 
function as primary sensors of the innate immune system 
to recognize microbial pathogens[39]. TLRs recognize the 
distinct structures in microbes, pathogen associated 
molecular patterns. Ligand binding to TLRs invokes a 
cascade of intra-cellular signaling pathways that induce 
innate immune response (Figure 3)[40]. 
   TLRs are having a role in HCV viral infection. Activation 
of TLR7 and TLR9, induces the production of type I IFNs, 
and thus primes the host for a Th1 adaptive immune 
response[41]. 
   Recent reports have uncovered the key molecules 
in the TLR-induced signaling pathways that lead to 
type I IFN induction, enhancing the antiviral activity of 
cytokines. This occurs via activation of IRF-3 and IRF-7 
expression[42]. 

1.7. Apoptosis and caspases          

   HCV infection constitutes an unwanted intrusion that 
needs to be eradicated by host cells. On one hand, one 
of the first protective barriers set up to prevent viral 
replication, spread or persistence involves the induction 
of apoptotic cell death that aims to limit the availability 
of the cellular components for viral amplification. The 
existence of numerous antiapoptotic products within the 
viral kingdom proves that apoptosis constitutes a major 
threat that should better be bypassed[43].  
   Apoptosis depends completely on the host molecular 
machinery and to some extent on the viruse itself[44]. In the 
host, it is carried out via two pathways: death receptor-
mediated pathway, and mitochondrial apoptotic pathway. 
The two pathways involve a sequence of reactions; the 
common end point of both is the activation of the cascade 
of the intracellular proteolytic enzymes caspases (Figure 4). 
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Figure 3. Expression of TLR on native immune cells. 
TLR 1,-2,-4, -5 and -6 are situated in the plasma membrane. TLR2 links with either TLR1 or TLR6. TLR3, 7, 8 and 9 move from the endoplasmic reticulum to 
the endosome where they meet their ligands. MyD88 and TRIF are signalling adaptors that link TLRs to downstream kinases which identify certain signalling 
pathway. The categorization adaptor TIRAP is used by TLR1, TLR2, TLR4 and TLR6 and links the TIR domain to MyD88, whereas TRIF is taken on by both TLR4 
and TLR3. One more adaptor TRAM, connects the TIR domain of TLR4 with TRIF. TLRs which use the MyD88 dependent pathway recruit the IRAK family of 
proteins and TRAF6 resulting in the activation of TAK1. This in turn leads to the activation of NFKB and the MAPK pathway and results in the induction of pro-
inflammatory cyokines and upregulation of phenotypic markers of activation. TLR4 (which relies on additional accessory molecules MD2 and CD14) and TLR3 
both activate the TRIF-dependent pathway, which also leads to activation of inflammatory cytokines via NFKB and MAP kinase. In addition, TRIF recruits 
TRAF, leading to the activation of TBK1/IKKi, IRF3 and IRF7 and transcription of type I IFN. MyD88 also associates with the IRAK family of proteins. A complex 
of proteins (TRAF3, IRAK1 and Ikkα) subsequently activates IRF7. TIR: Toll-interleukin 1 receptor; TIRAP: TIR domain-containing adapter protein; TRAM: 
TIR domain-containing adapter-inducing interferon-β-related adaptor molecule; TRAF: Tumor necrosis factor receptor-associated factor; TRIF: TIR domain-
containing adapter-inducing IFN-β; RIP: receptor-interacting protein; IRAK1: Interleukin-1 receptor-associated kinase-1; IRAK4: Serine/threonine kinases, 
leading to MyD88-dependent pathway; TRAF6: Tumor necrosis factor-receptor-associated factor-6; IKK: Inhibitor of kappa light polypeptide gene enhancer in 
B-cells kinase; MyD88: Myeloid differentiation primary-response protein-88; TAK1: Transforming growth factor-beta-activated kinase-1 (adapted from Kumar 
et al[42]).
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TCR: T cell receptor; Fas: a transmembrane receptor of the TNF receptor 
superfamily; FasL: Fas ligand; Bid: BH3 interacting-domain death agonist; 
BCL-XL: B-cell lymphoma-extra large (a transmembrane molecule in the 
mitochondria); Cyt: cytochrome; ARAF-1: apoptotic protease activating factor 
1 (adapted from Mita et al[45]). 

   
   HCV infection has been shown to influence both pathways. 
Among the different strategies developed by the virus 
to deal with apoptosis, one is based on attacking the 
cell directly. Another mechanism is to express proteins 
targeted by caspases, the key effectors of apoptotic cell 
death. Caspase cleavage of these proteins results in 
various consequences, from logical apoptosis inhibition 
to more surprising enhancement or attenuation of viral 
replication[46]. 

2. Conclusions 
 
   The overall data demonstrate complex, contradictory 
and evolving equilibrium between HCV and host innate 
immunity. Consequently, adaptive immunity are the 
determinants of final clinical outcomes ranging from 
resolution to chronic viral infection.
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Comments 

Background
   HCV infection represents a major health problem in many 
countries worldwide. The innate immune system plays an 
important role in defending the human body against HCV 
infections. The article describes different mechanisms of 
innate immunity involved in the protection of the body 
against HCV infection. 

Research frontiers
   When HCV infection occurs, a subset of acutely infected 
individuals (nearly 15%-30%) can spontaneously eradicate 
the virus. In addition, significant levels of natural immunity 
to HCV have been reported in studies of the chimpanzee 
model, and in studies of reinfections in intravenous drug 
users. This review article maks an attempt to evaluate the 
role of innate immune response against HCV infection. 

Related reports
   HCV infection has been shown to influence both pathways. 
Among the different strategies developed by the virus to 
deal with apoptosis, one is based on attacking the cell 
directly. Another mechanism is to express proteins targeted 
by caspases, the key effectors of apoptotic cell death.

Innovations and breakthroughs
   HCV infection constitutes an unwanted intrusion that 
needs to be eradicated by host cells. On one hand, one 
of the first protective barriers set up to prevent viral 
replication, spread or persistence involves the induction 
of apoptotic cell death that aims to limit the availability of 
the cellular components for viral amplification. The present 
review illustrates what the immune system does when HCV 
attacks the body.
  
Applications
   This overall data demonstrate complex, contradictory 
and evolving equilibrium between HCV and host innate 
immunity. Consequently, adaptive immunity are the 
determinants of final clinical outcomes ranging from 
resolution to chronic viral infection.    

Peer review
   This is a good review article which showed and evaluated 
the role of innate immune response against HCV infection. 
The author tried to correlate the relation between different 
tools of innate immunity e.g. different types of cells, actions 
of some cytokines, anti-HCV and apoptosis in the process of 
immunity against HCV infection. 
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