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Abstract Woodruff confidence interval for quantiles is a classical procedure and prevailing in
practices and regarded as optimal one for many practitioners. This manuscript examines the per-
formance of bootstrap based confidence interval and the classical Woodruff one for quantiles. It is
found that the bootstrap procedure can outperform the Woodruff one in terms of coverage proba-
bility(accuracy) and the length of the intervals(efficiency). The validity of these theoretical findings
for large sample is further confirmed in finite sample simulation studies.
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1 Introduction

Let F be a given probability distribution function. The p th quantile of F , often denoted by F −1(p) or
simply ξp (for the fixed F ), is defined as

F −1(p) := inf {x, F (x) ≥ p}, for any p ∈ (0, 1). (1)

It is well-known that the quantiles ξp, p ∈ (0, 1), characterize the distribution F . Statistical inference
about ξp is therefore a central problem in practice.

Let Fn be the empirical distribution assigning mass 1/n to each of i.i.d. Xi, i = 1, · · · , n, from F .
Then ξ̂pn := F −1

n (p), the sample p th quantile, is a natural estimator of the population counterpart ξp.
Indeed, when the derivative of F at ξp, F ′(ξp), exists and is positive, ξ̂pn is consistent for ξp and (see
[14])

√
n

(
ξ̂pn − ξp

) d−→ N
(
0, p(1 − p)/(F ′(ξp))2)

. (2)

The sample quantiles thus can be employed to infer the population quantiles for large sample. For
example, an asymptotic (1 − 2α) confidence interval(CI) for ξp is:

IQn =
[
ξ̂pn − z1−α

( p(1 − p)
(F ′(ξp))2n

)1/2
, ξ̂pn + z1−α

( p(1 − p)
(F ′(ξp))2n

)1/2]
, (3)

where zr is the rth quantile of the standard normal distribution function Φ(x) and 0 < α < 1/2.
Unfortunately, F ′(ξp) (the density of F at ξp) has to be estimated first before this inference procedure

becomes practically useful and relevant. A most ingenious way to fulfill the task is to employ Bahadur’s
[1] representation of the sample quantile. For F twice differentiable at ξp with F ′(ξp) = f(ξp) > 0,

ξ̂pn − ξp = (p − Fn(ξp))/f(ξp) + Rn, (4)

where Rn = O(n−3/4 log n) almost surely (a.s.) as n → ∞. This and other results in Bahadur [1] imply
that for any integers 1 ≤ k1n < k2n ≤ n such that

k1n

n
= p − z1−α(p(1 − p))1/2

n1/2 + o(n−1/2), k2n

n
= p + z1−α(p(1 − p))1/2

n1/2 + o(n−1/2) (5)

as n → ∞, the following is an asymptotic (1 − 2α) CI for ξp:

IWn = [X(k1n), X(k2n)], (6)
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where X(1) ≤ · · · ≤ X(n) are order statistics. Woodruff [15] first proposed this procedure empirically. The
interval thus is also called Woodruff interval in the literature. Nevertheless, it is Bahadur’s representation
that provides a theoretical justification of this asymptotic confidence interval procedure.

Aside from sample quantiles, Bootstrap quantiles can provide excellent approximations to sample
quantiles in the inference of population quantiles; see, e.g., Bickel and Freedman [2] and Singh [13] in
general and Shao and Chen [12] for the special survey situation.

The bootstrap idea leads to not only a general mechanism of generating quantiles but also a general
variance and distribution estimation method. The latter offers, in turn, a bootstrap based confidence
interval procedure for quantiles (see Section 2). With this bootstrap interval procedure, a natural question
raised is: Is it as good (accurate or efficient) as classical Woodruff procedure? Evaluating the performance
of the two confidence procedures is the major objective of this manuscript.

It is not the purpose of this manuscript (and is impossible) to review/cite all the important references
on the massive topic of bootstrapping related methods. For more complete reviews/surveies, please see
the specific review/survey articles on the topic, e.g., DiCiccio and Efron [3] and the references cited
therein.

The rest of the paper is organized as follows. Section 2 introduces the bootstrap CIs for quantiles.
Section 3 states two performance criteria for CIs. Section 4 presents Bahadur representations of boot-
strap sample quantiles and other preliminary results. These results are utilized in Section 5 where the
performance of the two types of CIs is examined with respect to two criteria in terms of their asymptotic
accuracy and length and their finite sample behavior. It is found that the bootstrap procedure can be
more accurate than Woodruff one for most choices of kin and is as accurate as the Woodruff one with
optimal kin, i = 1, 2 (see Section 5). The validity of these findings is confirmed at finite samples by
simulation studies. The proofs of main results are reserved for the Appendix.

2 Bootstrap Sample Quantiles and Confidence Intervals

Now let’s introduce bootstrap CIs (also see Zuo [16]). Let X∗
1 , · · · , X∗

n be a random sample from the
empirical distribution Fn. It is often called a bootstrap sample. Denote by F ∗

n the empirical distribution
based on this sample. The p th quantile based on this sample, ξ̂∗

pn, is called the bootstrap sample p th
quantile. In addition to Woodruff CI for ξp in (6) we now consider a bootstrap type CI.

Let the estimator θ̂n = T (Fn) of a functional θ = T (F ) satisfy
√

n (θ̂n − θ) d−→ N(0, σ2
F ) (in our case

T (F ) = F −1(p)). Note that σF is usually unknown. Let Hn be the c.d.f. of
√

n (θ̂n − θ). Then for any
finite sample [

θ̂n − n−1/2H−1
n (1 − α), θ̂n − n−1/2H−1

n (α)
]

(7)

is a CI for θ with an approximate level (1 − 2α). Since Hn is still unknown in general, we thus consider
its bootstrap version H∗ defined as

H∗(x) = P∗(
√

n (θ̂∗
n − θ̂n) ≤ x) = P (

√
n (θ̂∗

n − θ̂n) ≤ x
∣∣X1, · · · , Xn)

with θ̂∗
n = T (F ∗

n). For many T (·), H−1
∗ (t) − H−1

n (t) → 0 a.s. as n → ∞ for t ∈ (0, 1); see, e.g., Bickel and
Freedam [2] and Singh [13] (also see Section 4). Thus[

θ̂n − n−1/2H−1
∗ (1 − α), θ̂n − n−1/2H−1

∗ (α)
]

(8)

is a CI for θ with an approximate significance level (1−2α) for large sample size n. It is called the hybrid
bootstrap confidence interval. This bootstrap procedure in essence provides a consistent estimator for the
variance of θ̂n. It is an approximation to IQn (see (3)) in our quantile case. In some cases and for small
n H∗(x) can be calculated directly given Fn; see, e.g., Efron [4]. This is true for our quantile functional
case. But in general and for large n it is difficult to calculate. We thus consider its empirical version
based on bootstrap samples F ∗

n1, · · · , F ∗
nm,

ĤB(x) = 1
m

m∑
j=1

I
(√

n (T (F ∗
nj) − T (Fn)) ≤ x

)
, for any x ∈ R.
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which converges to H∗(x) a.s. and uniformly in x as m → ∞, conditional on Fn. Thus for large m and
n, an approximation to (8) (or (7)) is the CI[

θ̂n − n−1/2Ĥ−1
B (1 − α), θ̂n − n−1/2Ĥ−1

B (α)
]
. (9)

One may also simply consider a bootstrap percentile confidence interval defined as[
K̂−1

B (α), K̂−1
B (1 − α)

]
, (10)

which is closely related to (9), where the bootstrap sample distribution of T (F ∗
n) is

K̂B(x) = 1
m

m∑
j=1

I
(
T (F ∗

nj) ≤ x
)
, for any x ∈ R.

From now on, we focus on the case T (F ) = F −1(p) and the bootstrap CI (10). A natural question
is: How well does (10) perform compared with the classical Woodruff one. We will employ the Bahadur
representation of ξ̂∗

pn to answer this question. The performance of (9) (not (8)) will also be examined.

We remark that the accuracy of the bootstrap confidence interval (8) (not (9) or (10) ) has been
studied for very smooth mean functional T thoroughly by, e.g., Hall [8] and for the quantile functional
by Falk and Kaufmann [5].

3 Two Performance Criteria for Confidence Intervals

Among key performance criteria (or desirable properties) for confidence intervals are validity and opti-
mality. And “validity" is most important, followed closely by “optimality".

Validity means that the nominal coverage probability (confidence level) of the confidence interval
should hold, either exactly or to a good approximation.

Optimality means that the procedure for constructing the CI should make as much use of the
information in the data-set as possible. Recall that one could throw away half of a data-set and still be
able to derive a valid confidence interval. One way of assessing optimality is by the length of the interval,
so that a procedure for constructing a CI is judged better than another if it leads to intervals whose
lengths are typically shorter.

4 Bahadur Representations of Bootstrap Sample Quantiles and Other
Preliminary Results

To assess the performance of CIs, in this section we present Bahadur representations of bootstrap sample
quantiles and other needed preliminary theoretical results. First let’s list an assumption.
(A) F is twice differentiable at ξp with F ′(ξp) = f(ξp) > 0,

Theorem 4.1 (Zuo [16]) Let 0 < p < 1. Under (A), we have

ξ̂∗
pn = ξ̂pn + Fn(ξp) − F ∗

n(ξp)
f(ξp)

+ R1n = ξp + p − F ∗
n(ξp)

f(ξp)
+ R2n (11)

where, with probability 1, Rin = O(n−3/4 log n), i = 1, 2, as n → ∞.

This representation offers more than what the Ghosh [6] type one does: it provides an absolute (not
probability) upper bound for the difference between ξ̂∗

pn − ξ̂pn and the average of i.i.d sum (Fn(ξp) −
F ∗

n(ξp))/f(ξp), conditional on Fn. It also leads immediately to a main theorem (Theorem 5.1) in Bickel
and Freedman [2] about weak convergence of

√
n (ξ̂∗

pn − ξ̂pn) as a process indexed in p under their
assumptions. It allows one to employ the law of the iterated logarithm conditional on Fn. Below we
present a more general result. Before that we need a condition (note it is different from an assumption)
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(C) Integer 1 ≤ kn ≤ n satisfies kn = np + o(n1/2(log n)δ), δ ≥ 1/2, as n → ∞.

Theorem 4.2 (Zuo [16]) Let 0 < p < 1. Under (A) and (C) with 1
2 ≤ δ ≤ 1, we have

X∗
(kn) = X(kn) + Fn(ξp) − F ∗

n(ξp)
f(ξp)

+ R̃1n = ξp + kn/n − F ∗
n(ξp)

f(ξp)
+ R̃2n (12)

where, with probability 1, R̃in = O(n−3/4 log n), i = 1, 2, as n → ∞.

Remark 4.3 The remainders in above theorems are bounded by Cn− 3
4 log n a.s. for large n and a

constant C > 0 and can be improved to O(n− 3
4 (log n) 1

2 (log log n) 1
4 ). With Kiefer [9]’s approach, they

can be further improved to O(n− 3
4 (log log n) 3

4 ). Details will not be pursued here though.

Theorem 4.4 Under (A),
sup
x∈R

|Hn(x) − Φ( x

σp
)| = O(n− 1

2 )

and
sup
x∈R

|H∗(x) − Φ( x

σp
)| = O

(
n− 1

4 (log n) 1
2 (log log n) 1

4
)

a.s. as n → ∞, where σp = (p(1 − p)) 1
2 /f(ξp).

Remark 4.5 The results in the theorem are Berry-Esséen type expansions of the sample and bootstrap
sample quantiles. The O(n− 1

2 ) bound in the first part was also given in Reiss [10], which, however, requires
f(ξp) > 0 and supx∈R |f ′(x)| < ∞. The bound for the normal approximation to the bootstrap quantile
can be improved to O(n− 1

4 (log log n) 1
2 ) (using a result in Singh [13]) if f ′ is bounded near ξp. Note that

the standard tool, the Edgeworth and Cornish-Fisher expansions, is not applicable in the quantile case
since Cramér’s (sufficient) condition is not satisfied.

An immediate consequence of this theorem is that Hn(x) − H∗(x) → 0 a.s. as n → 0 and uniformly
in x ∈ R. The rate of this convergence is controlled as follows.

sup
x

|Hn(x) − H∗(x)| = O(n−1/4(log n)1/2(log log n)1/4), a.s. as n → ∞. (13)

Theorem 4.6 Under (A),
Ĥ−1

B (t) = σpΦ−1(t) + κ1n

for any t ∈ (0, 1), where κ1n = O
(
n− 1

4 (log n) 1
2 (log log n) 1

4
)

a.s. as n → ∞ for m ≥ cn1/2 and some
c > 0.

Remark 4.7 For simplicity we consider above (and hereafter) the case that m ≥ cn1/2 for some c > 0.
For a general m, we can simply replace κ1n above by

k1mn = O(max{n− 1
4 (log n) 1

2 (log log n) 1
4 , (log m/m) 1

2 }) a.s. as min{m, n} → ∞,

and the related results hereafter hold true.

5 Performance of the Two Types of CI for Quantiles

We now take advantage of the Bahadur representations of ξ̂∗
pn and ξ̂pn and evaluate the performance of

the Woodruff and bootstrap percentile CIs for ξp. We confine our attention to two performance criteria:
validity and optimality in terms of the coverage probability and length of the intervals.
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5.1 Large Sample Behavior of the CIs

The accuracy of the two types of CI The accuracy of an asymptotic 1 − 2α confidence set C =
C(X1, · · · , Xn) for the unknown parameter θ measures the convergence rate of P (θ ∈ C) to 1 − 2α. For
(10) we have

Theorem 5.1 Under (A),

P (K̂−1
B (α) ≤ ξp ≤ K̂−1

B (1 − α)) = 1 − 2α + κ2n,

where κ2n = O
(
n− 1

4 (log n) 1
2 (log log n) 1

4
)

as n → ∞ for m ≥ cn
1
2 for some c > 0.

Remark 5.2 The bound in Theorem 5.1 can be improved to O((log log n/n) 1
2 ) if we strengthen (A)

and assume that f > 0 and f ′ is continuous near ξp.

Let [ξ
H

, ξ̄H ] be the bootstrap confidence interval given in (9). That is,

ξ
H

= ξ̂pn − n−1/2Ĥ−1
B (1 − α), ξ̄H = ξ̂pn − n−1/2Ĥ−1

B (α). (14)

Theorem 5.3 Under (A), P (ξ
H

≤ ξp ≤ ξ̄H) = 1−2α+κ3n, where κ3n = O
(
n−1/4(log n)1/2(log log n)1/4)

as n → ∞ for m ≥ cn1/2 for some c > 0.

Remark 5.4 The bound in Theorem 5.3 can be improved to O((log log n/n) 1
2 ) if we strengthen (A) and

assume that f > 0 and f ′ is continuous near ξp and employ a result in Falk and Kaufmann [5]. Under these
stronger assumptions, the latter authors proved that the coverage probability of (8) is 1 − 2α + O(n− 1

2 ).
Note that, however, it is (9) not (8) that is used in practice in general.

For the Woodruff confidence interval in (6) with k1n and k2n in (5), we have

Theorem 5.5 Under (A),

P (X(k1n) ≤ ξp ≤ X(k2n)) = 1 − 2α + κ4n,

where κ4n = ϵn + O(n− 1
4 (log n) 1

2 (log log n) 1
4 ) and ϵn = o(1), as n → ∞

Remark 5.6 The bound in the theorem can also be improved to ϵn + O(n− 1
2 ) if we strengthen (A)

and assume that f > 0 and f ′ is continuous near ξp.

Remark 5.7 In the light of Theorems 5.1, 5.3 and 5.5, the bootstrap and Woodruff asymptotic
confidence intervals have the same accuracy order except the extra ϵn term in Theorem 5.5 (this term
is purposely not combined with other term, the same is true for equation (15) below). This term can
make a big difference. For example, if kin = np − n

1
2 Ki + O(n 1

4 +ε(log n)γ), i = 1, 2, where K2 = −K1 =
−z1−α(p(1 − p)) 1

2 , 0 < ε < 1/4, γ > 0, then both k1n and k2n meet the equations in (5) and

P (X(k1n) < ξp < X(k2n)) = 1 − 2α + O(n−1/4+ε(log n)γ).

That is, the bootstrap confidence intervals can be more accurate than Woodruff one if ε ↑ 1/4 and γ is
very large. On the other hand, if ϵn(= o(1)) = 0 the latter can be as good as the bootstrap intervals in
terms of the (asymptotic) accuracy order.

The length of the two asymptotic CIs Besides the coverage probability, the length is another aspect
reflecting the performance of a CI. It is an efficient measure of the interval. At the same asymptotic
significance level, it is obviously preferred to have a shorter CI. We now calculate the length of the two
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types of CI. By the Bahadur representations for X(kin), i = 1, 2, the length LW (n) of the Woodruff
interval (6) satisfies

LW (n) = 2K1

n
1
2 f(ξp)

+ ηn + O(n− 3
4 (log n) 1

2 (log log n) 1
4 ), a.s. as n → ∞. (15)

where ηn = o(n− 1
2 ) as n → ∞. It is not difficult to see that the bootstrap confidence intervals (10) and

(9) have the same length LB(n). In the light of Theorem 4.6 it follows that

LB(n) = 2K1

n1/2f(ξp)
+ O(n− 3

4 (log n) 1
2 (log log n) 1

4 ), a.s. as n → ∞. (16)

Remark 5.8 The rates at which the length of the two confidence intervals tends to 0 as n → ∞ are the
same. That is, the two intervals are asymptotically equally efficient. For a fixed n (i.e. in the finite sample
practice), however, LW (n) can be much larger than LB(n). Indeed, if kin = np−n

1
2 Ki+O(n1/4+ε(log n)γ),

i = 1, 2, as defined in Remark 5.7, then the equations in (5) are satisfied and

LW (n) = 2K1

n1/2f(ξp)
+ O(n− 3

4 +ε(log n)γ),

which can be much larger than LB(n) given in (16).

5.2 Finite Sample Behavior of the CIs
To assess the validity of the asymptotic results obtained and to examine the finite sample performance
of the two types of CI for ξp, we now undertake Monte Carlo studies. We will focus on the two desirable
properties validity and optimality: the relative coverage frequency (the empirical confidence level) and
the average length of the CIs at finite samples. We call the bootstrap hybrid CI (9) hb and the bootstrap
percentile CI (10) pb. Woodruff interval (6) with the following kin (see Remarks 5.7 and 5.8), i = 1, 2, is
called w0, w1 and w2, respectively (where ⌊·⌋ is the floor function).

– w0: k1n = ⌊np − n1/2K1 − n1/4+1/5⌋, k2n = ⌊np + n1/2K1 + n1/4+1/5⌋.
– w1: k1n = ⌊np − n1/2K1 + n1/4+1/5⌋, k2n = ⌊np + n1/2K1 + n1/4+1/5⌋.
– w2: k1n = ⌊np − n1/2K1⌋, k2n = ⌊np + n1/2K1⌋.

We generate 1000 samples from N(0, 1), t(3), and t(1) with n = 20, 50, and 100, respectively. We
set m = 500, α = 0.025 and consider p = 1/4, 1/2 and 3/4, respectively. Tables 1 to 3 list the relative
coverage frequency (rcf ) and the average length of the intervals (al). Since w0 has extremely large rcf’s
(≈ 100%) and al’s, the corresponding results are not informative and hence skipped in the tables.

Inspecting of the tables reveals immediately that w1 should be discarded since it has unacceptably low
rcf’s that are far below the nominal level 95%. Results of w0 and w1 confirm the conclusion in Remarks
5.7 and 5.8: Woodruff interval can have very bad performance at large (as well as) small samples for
special kin.

The bootstrap hybrid confidence interval hb shares the same al’s as the bootstrap percentile interval
pb but has the second lowest rcf’s which are (unexpectedly) lower than the nominal level 95%. Hence
the hb confidence interval (9) is not very useful practically though its coverage probability is closer to
95% when n gets larger.

Table 1 Relative coverage frequency (rcf) and average length (al) of intervals

N(0, 1)
p = 1/4 p = 1/2 p = 3/4

n w1 w2 hb pb w1 w2 hb pb w1 w2 hb pb

20 rcf .59 .89 .80 .94 .77 .95 .81 .94 .63 .91 .78 .91
al .94 1.5 1.2 1.2 1.3 1.2 1.1 1.1 1.3 1.1 1.1 1.1

50 rcf .65 .93 .85 .94 .76 .92 .85 .94 .65 .95 .84 .94
al .67 .84 .75 .75 .74 .67 .70 .70 1.3 .76 .75 .75

100 rcf .62 .96 .85 .95 .69 .94 .89 .95 .66 .94 .85 .92
al .48 .56 .53 .53 .49 .48 .49 .49 .68 .53 .53 .53
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Table 2 Relative coverage frequency (rcf) and average length (al) of intervals

t(3)
p = 1/4 p = 1/2 p = 3/4

n w1 w2 hb pb w1 w2 hb pb w1 w2 hb pb

20 rcf .59 .90 .84 .95 .75 .94 .82 .93 .58 .90 .78 .90
al 1.1 3.0 1.9 1.9 1.7 1.4 1.2 1.2 2.7 1.4 1.4 1.4

50 rcf .63 .94 .84 .95 .75 .92 .86 .94 .64 .94 .85 .94
al .78 1.1 .95 .95 .83 .73 .77 .77 2.4 .95 .94 .94

100 rcf .63 .95 .87 .96 .71 .94 .89 .95 .65 .94 .85 .94
al .56 .72 .67 .67 .54 .52 .53 .53 1.0 .67 .66 .66

Table 3 Relative coverage frequency (rcf) and average length (al) of intervals

t(1)
p = 1/4 p = 1/2 p = 3/4

n w1 w2 hb pb w1 w2 hb pb w1 w2 hb pb

20 rcf .60 .88 .85 .93 .76 .94 .89 .92 .60 .91 .79 .91
al 1.6 72. 5.7 5.7 3.4 2.1 1.7 1.7 34. 3.0 3.0 3.0

50 rcf .63 .93 .85 .94 .77 .92 .88 .93 .64 .95 .84 .94
al 1.1 2.5 1.7 1.7 1.1 .90 .94 .94 14. 1.8 1.8 1.8

100 rcf .62 .95 .89 .95 .69 .94 .90 .95 .64 .95 .87 .95
al .80 1.3 1.2 1.2 .67 .63 .64 .64 2.5 1.1 1.1 1.1

We thus need only to focus on the Woodruff w2 and the bootstrap percentile confidence interval (10)
pb. The performance of the two is roughly the same when n ≥ 50. Both can reach (or are close to) the
nominal level 95% when n ≥ 50. On the other hand, when p = 1/4, w2 usually has a wider CI and a lower
coverage probability. The latter is especially true for n = 20 while the interval of w2 can get extremely
wider when the tails of the distribution get heavier. When p = 1/2, w2 has a slightly wider interval and
higher coverage probability than pb for n = 20. This is reversed when n ≥ 50. When p = 3/4, the two
perform roughly the same.

Findings above indicate that the bootstrap percentile procedure (10) can perform as well as the
Woodruff procedure with optimal choices of k1n and k2n. It performs better when the sample size or p
is small.

Simulation studies for asymmetric (e.g., χ2) distributions and for very large m, n and replication
number were conducted. The above conclusions remain valid.

Finally, we conclude that overall the bootstrap percentile procedure (10) is a much favorable alterna-
tive to Woodruff confidence procedure.
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Appendix: Proofs of main results

Proof of Theorem 4.4 First consider |x| ≥ (log n/(p(1 − p)))1/2 := xn. If x ≥ xn, then

Φ(x) > 1 − exp(−x2/(2p(1 − p)))/(
√

2πx) ≥ 1 − (2
√

2π(log n)1/2n2)−1,

and for large n,

1 − Hn(σpx) = P
(
Fn(σpx√

n
+ ξp) − F (σpx√

n
+ ξp) < p − F (σpx√

n
+ ξp)

)
< n−1/2,

by Hoeffding’s inequality. Thus for large n, supx>xn
|Hn(σpx) − Φ(x)| < n−1/2. Likewise we can obtain

the counterpart for x ≤ −xn. Hence for large n

sup
|x|≥xn

|Hn(σpx) − Φ(x)| < n−1/2. (17)

Now consider |x| < xn. Let ξn(x) = σpxn−1/2 + ξp and pn(x) = F (ξn(x)). Then

sup
|x|<xn

|Hn(σpx) − Φ(x)|= sup
|x|<xn

|P (pn(x) − Fn(ξn(x)) ≤ pn(x) − p) − Φ(x)|

≤ sup
|x|<xn

|Φ( n1/2(pn(x) − p)
(pn(x)(1 − pn(x)))1/2 ) − Φ(x)| + rn(x) (18)

by Berry-Esséen Theorem for all n, where rn(x) = 33/(4(npn(x)(1 − pn(x))1/2). Expanding pn(x) leads
to

pn(x) = p + (p(1 − p))1/2

n1/2 x
(

1 + (p(1 − p))1/2x

n1/2f2(ξp)
(f ′(ξp) + o(1))

)
,

and
n1/2(pn(x) − p)

(pn(x)(1 − pn(x)))1/2 = x + (p(1 − p))1/2x2

n1/2f2(ξp)
(
f ′(ξp) + o(1)

)
− (1 − 2p)x2

(p(1 − p)n)1/2 + O(x3

n
).

Thus
sup

|x|<xn

|Φ( n1/2(pn(x) − p)
(pn(x)(1 − pn(x)))1/2 ) − Φ(x)| ≤ sup

|x|<xn

|Φ′(x)x2O(n−1/2)| = O(n−1/2).
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This, (18), and (17) lead to the first part of the desired result.

By Bahadur representations ξ̂∗
pn (Theorem 4.2) and Remark 4.3, we have

√
n (ξ̂∗

pn − ξ̂pn) =
√

n (Fn(ξp) − F ∗
n(ξp))/f(ξp) + r2n (19)

where r2n = O(n−1/4(log n)1/2(log log n)1/4) a.s. as n → ∞. Define

W ∗
n =

√
n (Fn(ξp) − F ∗

n(ξp))
/

(Fn(ξp)(1 − Fn(ξp)))1/2. (20)

Then by Berry-Esséen theorem, we have

sup
x

|FW ∗
n

(x) − Φ(x)| = O(1/
√

n) conditional on X1, X2 · · · Xn. (21)

By the representation and the result in Bahadur [1], we have

Fn(ξp) = p + f(ξp)(ξp − ξ̂pn) + O(n−3/4 log n) = p + O
(
(log log n/n)1/2)

, a.s. (22)

as n → ∞. Let σn = (Fn(ξp)(1 − Fn(ξp)))1/2/f(ξp). It is readily seen that

σ−1
n = σ−1

p (1 + ηn), a.s. (23)

for ηn = O((log log n/n)1/2) as n → ∞. This, (19), (20) and (21) imply that

sup
x∈R

|H∗(x) − Φ( x

σp
)| = sup

x∈R
|FW ∗

n
((x − r2n)/σn) − Φ(x/σp)|

= sup
x∈R

|E
[
Φ((x − r2n)/σn) + O(n−1/2)

]
− Φ(x/σp)|

= sup
x∈R

|Φ(x

σ p
) − Φ′(x

σ p
)O(r2n) + o(r2n) + O(n−1/2) − Φ( x

σp
)|.

This completes the proof. 2

Proof of Theorem 4.6 By the DKW inequality (see, e.g., Theorem 2.1.3 A of Serfling [11]),

P∗
(

sup
x∈R

|ĤB(x) − H∗(x)| > (log m/m)1/2)
≤ C/m2,

for a constant C and all m = 1, 2, · · · . Since the right side is independent of Fn, the inequality holds for
P replacing P∗. By the Borel-Cantelli lemma for large m

sup
x∈R

|ĤB(x) − H∗(x)| ≤ (log m/m)1/2.

By Theorem 4.4, we conclude that

sup
x∈R

|ĤB(x) − Φ(x/σp)| = η1n, (24)

with η1n = O(n−1/4(log n)1/2(log log n)1/4), a.s. as n → ∞. Thus for any t ∈ (0, 1),

ĤB(σpΦ−1(t − 2η1n)) < t, ĤB(σpΦ−1(t + 2η1n)) > t.

Thus σpΦ−1(t−2η1n) < Ĥ−1
B (t) ≤ σpΦ−1(t+2η1n). Let Ĥ−1

B (t)−σΦ−1(t) = κ1n. Then the desired result
follows immediately from Taylor’s expansion theorem. 2

Proof of Theorem 5.1 For any random variable Sn, we have

P (Sn < s) = P
(

∪∞
k=1

(
Sn ≤ s − 1/k

))
= lim

k→∞
P

(
Sn ≤ s − 1/k

)
.
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Let GX(x−) = P (X < x) for any X ∼ GX . By the proof of Theorem 4.4, we have

sup
x∈R

|Hn(x−) − Φ(x/σ)| = O
(
n−1/2)

as n → ∞. (25)

This and Theorems 4.4 and 4.6 imply that

P (K̂−1
B (α) ≤ ξp ≤ K̂−1

B (1 − α))=P
(

− Ĥ−1
B (1 − α) ≤ n

1
2 (ξ̂pn − ξp) ≤ −Ĥ−1

B (α)
)

=Hn(σz1−α + κ1n1) − Hn(σzα + κ1n2−)

=Φ(z1−α + κ1n1

σ
) − Φ(zα + κ1n2

σ
) + O(n− 1

2 )

=1 − 2α + κ2n,

where κ1ni and κ2n are of order O(n−1/4(log n)1/2(log log n)1/4), i = 1, 2. 2

Proof of Theorem 5.3 The proof is similar to that of Theorem 5.1 and hence skipped. 2

Proof of Theorem 5.5 To prove the result in the theorem, it suffices to show that as n → ∞

P (X(k1n) > ξp) = α + o(1) + O(n−1/4(log n)1/2(log log n)1/4), (26)

since a similar result can be obtained for P (X(k2n) < ξp) and hence the desired result follows. Let
K1 = z1−α(p(1 − p))1/2. Then k1n/n = p − K1/n1/2 + o(n−1/2). By the Bahadur representation results
for X(k1n) and for ξ̂pn, we have

X(k1n) − ξ̂pn = −K1
/

(n1/2f(ξp)) + o(n−1/2) + κ5n, (27)

where κ5n = O(n− 3
4 (log n) 1

2 (log log n) 1
4 ) a.s as n → ∞. This and Theorem 4.4 imply

P (X(k1n) > ξp) = P
(√

n (ξ̂pn − ξp) > K1/f(ξp) − o(1) − n1/2κ5n

)
= Φ(−z1−α + o(1) + κ6n) + O(n−1/2)
= α + o(1) + O(n−1/4(log n)1/2(log log n)1/4),

where κ6n = O(n−1/4(log n)1/2(log log n)1/4). This completes the proof. 2
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