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Abstract In this paper we propose a new generalized counting process with extension of exponential
inter-arrival time distribution. This new model is a generalization of the exponential distribution.
The computational intractability is overcome by deriving the extension of exponential count model
using polynomial expansion. The hazard function of this new model is an increasing then decreasing
function of time, so that the distribution displays positive then negative duration dependence. The
model is applied to a real data set on inter arrival times between emissions of beta particles from
a nuclear reaction. This count model can be simulated by Markov Chain Monte-Carlo (MCMC)
methods, using Metropolis-Hastings algorithm. Our model has many nice features and its comparable
with other existing competitive models. It has computational simplicity and there exist of moments
that can be used for under-dispersed data.
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1 Introduction

The Poisson model for count data is used in cases where the number of arrivals in a given time period
assumes exponentially distributed inter arrival times. This is truly valid only in the case where the data
of interest support the restrictive assumption of equi-dispersion (i.e., the conditional variance equals the
conditional mean). But typically Poisson model is inefficient, if the data of interest present over-dispersion
(the conditional variance exceeds the conditional mean) and under-dispersion (the conditional mean
exceeds the conditional variance) or if the waiting time between the events are independent but not
exponential (which would lead to the Poisson distribution for counts). Moreover, the waiting time may
follow some other distribution with non constant hazard function. If the hazard function is a decreasing
function of time, the distribution displays negative duration dependence. If the hazard function is an
increasing function of time, the distribution displays positive duration dependence. In each cases, the
conditional probability of occurrence depends on the time since the last occurrence rather than on the
number of previous events. The probability of occurrence of an event at small increment of time, (t+∆t)
is influenced by the occurrence of at least one event up to time (t+∆t).

For more details about Poisson process with a sequence of independently and identically exponentially
distributed waiting times see Cox [3]. To derive a generalized model we replace the exponential distribution
with a less restrictive non negative distributions i.e., extension of exponential (EE) distribution. Possible
candidates are the Weibull (see McShane et al.,[6]), the gamma (including generalized gamma), (see
Winkelmannn [11]), and the log normal distributions.

In this paper we develop a new generalized count model, EE distribution in place of the exponential
one. Then we have formulated count model. Before we develop the EE count model, we first set the
stage by laying out the main properties that the EE count model developed here embodies. The model
generalizes the most commonly used extant models such as the Poisson thus, when a simple structure
is sufficient, most of the researcher will see it through the estimated model parameters. Furthermore,
standard inferential procedures have been used to estimate the parameters like maximum likelihood, which
can be used to compare different specifications for model suitability. The main motivation behind this
model has considered specially for underdispersed data, which are likely to be seen in practice. Its feasibility
to work with simulation-based method is computationally justified. On the other hand this model allows
also for the incorporation of person-level heterogeneity reflecting the fact that individuals interarrival
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rates may vary quite substantially across the population. Since, first our count model is based upon an
assumed EE interarrival process, which generalizs the exponential one, and second, we demonstrate that
the EE count model, via the shape parameter α being less than 1 is considered due to mathematical
simplicity for underdispersed data. The EE interarrival time story is richer than the exponential story,
because it allows for nonconstant hazard rates (duration dependence), see Figure1. Applying polynomial
expansion to deriving our considered model. More details about polynomial expansion for different models
have been discussed by many authors such as Bradlow, Hardie, and Fader[2], Everson and Bradlow[4],
and Miller, Bradlow, and Dayaratna [7] etc.
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Figure 1. Hazard rate of EE Count model.

The reminder of this article is as follows. In the next section, we present a description about EE
count model via polynomial expansions. Section 3 contains the properties of the EE count model. In
section 4 we present the results of a simulation study/ numerical illustration pertaining to the EE count
model. Applicability of the EE count model to real data is explained in section 5. Finally conclusions are
provided.

2 Extension of Exponential Count Model

EE distribution is an alternative to the gamma, Weibull and the exponentiated exponential distribution.
This only allows for decreasing or constant hazard when their respective probability densities are
monotonically decreasing (see Figure2). In such a situation EE distribution is more applicable as compare
to the gamma, Weibull and the Exponentiated exponential distribution. Since we can be used as an
alternative to the gamma and Weibull, are these distributions have inability to models data having mode
fixed at zero. There are many physical processes which have their mode fixed at zero by definition. The
model is applicable in infant mortality situation. On the other hand, for example, consider daily rainfall
and daily snowfall, for most locations in the world. However, if one tries to fit the gamma and Weibull
distributions to the data, the resulting fitted probability densities may not always have their modes at
zero, (see Nadaraja [8]). On the other hand, the Weibull and exponentiated exponential distributions have
not allowed for an increasing hazard function when their respective probability density functions(pdfs)
are monotonically decreasing. While the EE distribution is more applicable than the existing life time
distributions.

The cumulative density function of an EE distribution is given as

F (t) = 1− e1−(1+λt)α = 1− e−(−1+(1+λt)α); α > 0, λ > 0, t > 0. (1)
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Figure 2. Probability density of EE Count model.

and its pdf given by:

f(t) = αλ(1 + λt)α−1e1−(1+λt)α ; α > 0, λ > 0, t > 0. (2)

Its hazard function is given as

h(t) = λα(1 + λt)α α > 0, λ > 0, t > 0. (3)

which describe the general framework utilized to derive the model based upon the relationship between
inter-arrival times and their count model equivalent. Let Yn be the time from the measurement origin at
which the nth event occurs. Let X(t) denote the number of events that have occurred up until time t.
The relationship between inter-arrival times and the number of events is

Yn ≤ t←→ X(t) ≥ n.

We therefore have the following relationships that allow us to derive our EE count model Cn(t):

Cn(t) = P (X(t) = n)
= P (X(t) ≥ n)− P (X(t) ≥ n+ 1)
= P (Yn ≤ t)− P (Y(n+1) ≤ t). (4)

If we let Fn(t) be the cumulative density function (cdf) of Yn, then

Cn(t) = P (X(t) = n) = Fn(t)− Fn+1(t).

In the case where the measurement time origin (and thus the counting process) coincides with the
occurrence of an event, then Fn(t) is simply the n-fold convolution of the common inter-arrival time
distribution which may or may not have a closed-form solution. Now we assume that the inter arrival
times are independently and identically distributed, which follows the EE distribution. Then we derive
our EE count model based upon a polynomial expansion of F (t). Moreover, we use recursive relationship

of the form
t∫

0
F (t− s)f(s)ds with a Taylor series expansion of the EE distribution.

In particular, the Taylor series approximations obtained by expanding the exponential pieces (e(1+Îżλt)α−1)
respectively, for both the cdf and pdf of the EE count model are

F (t) =
∞∑
j=1

(−1)j+1((1 + λt)α − 1)j

j! (5)
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and

f(t) =
∞∑
j=1

(−1)j+1αλ(1 + λt)αj((1 + λt)α − 1)j−1

j! (6)

when 0 < α < 1 then

f(t) = (1 + αλt)e−αλt. (7)

Utilizing that Cn(t) = Fn(t)− Fn+1(t) we obtain the following recursive relationship that we utilize
in deriving the EE count model:

Cn(t) =
t∫

0

Fn−1(t− s)f(s)ds−
t∫

0

Fn(t− s)f(s)ds

=
t∫

0

Cn−1(t− s)f(s)ds. (8)

Before proceeding to develop the general solution to the problem, we note that F0(t) is 1 for all t and
F1(t) = F (t). Therefore, we have C0(t) = F0(t)− F1(t) = e−(−1+(1+λt)α)

=
∞∑
j=0

(−1)j((1 + λt)α − 1)j

j! . (9)

Using the recursive formula, we can compute C1(t):

C1(t) =
t∫

0

C0(t− s)f(s)ds

=
t∫

0

∞∑
j=0

(−1)j((1 + λ(t− s))α − 1)j

j!

∞∑
k=1

(−1)k+1αλ(1 + λt)α−1k((1 + λs)α − 1)k−1

k! ds

=
∞∑
j=0

∞∑
k=1

(−1)j(−1)k+1αλk

j!k!

t∫
0

((1 + λ(t− s))α − 1)j((1 + λs)α − 1)k−1ds, (10)

and for small displacement i.e., 0 < α < 1

C1(t) =
t∫

0

C0(t− s)f(s)ds

=
∞∑
j=0

∞∑
k=1

(−1)j(−1)k+1αλk

j!k!

t∫
0

(αλ(t− s))j(αλs)k−1ds

=
∞∑
j=0

∞∑
k=1

(−1)j(−1)k+1αj+kλj+kk

j!k!

t∫
0

(t− s)jsk−1ds

=
∞∑
j=0

∞∑
k=1

(−1)j(−1)k+1αj+kλj+kk

j!k! (t)j+k−1
t∫

0

(
1− s

t

)j (s
t

)k−1
ds, (11)
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now let s
t = z then ds = tdz. When s = 0, z = 0 and when s = t, z = 1, the above equation can be written

as

=
∞∑
j=0

∞∑
k=1

(−1)j(−1)k+1(αλt)j+kk
j!k!

1∫
0

(1− z)j (z)k−1
ds

=
∞∑
j=0

∞∑
k=1

(−1)j+k+1(αλt)j+k

(j + k)! . (12)

In order to get a closed form we use a change of variable m = j and l = m+ k, then we obtain

=
∞∑
l=1

(−1)l+1(αλt)l

Γ (l + 1)

l−1∑
m=0

Γ (m+ 1)Γ (l −m+ 1)
Γ (m+ 1)Γ (l −m+ 1)

=
∞∑
l=1

(−1)l+1(αλt)l

Γ (l + 1) . (13)

This suggests a general form for Cn(t), namely
∞∑
l=n

(−1)l+1(αλt)l
Γ (l+1) , which is confirmed by

Cn+1(t) =
t∫

0

Cn(t− s)f(s)ds

=
t∫

0

∞∑
l=n

(−1)l+1(αλ(t− s))l

Γ (l + 1) (1 + λαt) e−αλtds

= (1 + λαt) e−αλt
∞∑
l=n

(−1)l+1(αλ)l

Γ (l + 1)

t∫
0

(t− s)l+1−1s1−1ds

= (1 + λαt) e−αλt
∞∑
l=n

(−1)l+1(αλt)lt
Γ (l + 2) (14)

Therefore, we have the main result of this article, the EE count model.

Theorem. If the interval times are independently and identically distributed as EE distribution, then the
count model probabilities are given by

Cn(t) = P (X(t) = n) =
∞∑
l=n

(−1)l+1(αλt)l

Γ (l + 1) , n = 0, 1, 2 · · · (15)

3 Properties

I. The EE count model generalizes the most commonly used model such as exponential distribution.
When α = 1,
Cn(t) = P (X(t) = n) =

∞∑
l=n

(−1)l+1(λt)l
Γ (l+1) .

II. The expectation of EE count model is

E(N) =
∞∑
n=1

nCn(t)

=
∞∑
n=1

∞∑
l=n

n
(−1)l+1(αλt)l

Γ (l + 1)
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and variance of the EE count model given as

V (n) = E(N2)− (E(N))2

=
∞∑
n=1

∞∑
l=n

n2 (−1)l+1(αλt)l

Γ (l + 1) −

( ∞∑
n=1

∞∑
l=n

n
(−1)l+1(αλt)l

Γ (l + 1)

)2

.

III. The moment generating function (MGF) is given as:

MI(u) = E(eiu)

=
∞∑
i=0

∞∑
l=i

eiu(−1)l+1(λαt)l

Γ (l + 1) (16)

and the corresponding moment is

dn

dun
MI(u) = dn

dun

∞∑
i=0

∞∑
l=i

eiu(−1)l+1(λαt)l

Γ (l + 1)

=
∞∑
i=n

∞∑
l=i

ineiu(−1)l+1(λαt)l

Γ (l + 1) . (17)

Hence, on the basis of our polynomial expansion, we obtain closed-form expression for the density
as well as its moments.

IV. The hazard function is

h(t) = f(t)
1− F (t) . (18)

4 Numerical Illustration

In this section we study some numerical findings based on extensive simulated (because the result is
unavailable in closed form) data. Table 1 represents the probabilities of EE count model for different
values of the parameter α and λ = 1 at t = 1, 2 and 3. By using Metropolis-Hastings algorithm we simulate
the EE count model and verify that for 0 ≤ α < 1 the conditional expectation exceeds the conditional
variance which indicates under dispersion (value of conditional mean is greater than conditional variance).
Thus Figure 3 indicates that the count model can be used to represent the under dispersed data, which is
also shown in Table 2.

Table 1. The mean and variance of the EE Count model probabilities for different values of the parameter α
with λ = 1 at t = 1, 2, 3.

t=1 t=2 t=3

α mean Var mean Var mean Var

0.1 0.4967628 0.07805997 0.50747201 0.08939391 0.5063129 0.0901227
0.2 0.5055814 0.0776719 0.50789464 0.09131011 0.51348644 0.09006574
0.3 0.50303158 0.07717554 0.51348644 0.09006574 0.50719775 0.09488594
0.4 0.49971719 0.07910678 0.50628037 0.09368348 0.49967383 0.09536808
0.5 0.49778192 0.07912192 0.50690388 0.09493151 0.51369941 0.09195346
0.6 0.50097433 0.07896364 0.49967383 0.09536808 0.5120975 0.09628886
0.7 0.50431318 0.07847249 0.50509274 0.09233733 0.55258469 0.09955615
0.8 0.50126 0.0801147 0.51239046 0.09429889 0.500207 0.1014056
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Figure 3. Probability histogram of EE Count model (α = 0.5, λ = 1) and Poisson model (λ = 1)

Table 2. The EE count model probability for different values of the parameter α with λ = 1 at t = 1, 2, 3.

t=1 t=2 t=3

α C1(t) C2(t) C3(t) C1(t) C2(t) C3(t) C1(t) C2(t) C3(t)

0.1 0.9048374 0.8187308 0.7408182 0.9048374 0.8187308 0.7408182 0.9048374 0.8187308 0.7408182
0.2 0.8187308 0.67032 0.5488116 0.8187308 0.67032 0.7408182 0.8187308 0.67032 0.5488116
0.3 0.7408182 0.5488116 0.4065697 0.7408182 0.5488116 0.4065697 0.7408182 0.5488116 0.4065697
0.4 0.67032 0.449329 0.3011942 0.67032 0.449329 0.3011942 0.67032 0.449329 0.3011942
0.5 0.6065307 0.3678794 0.2231302 0.6065307 0.3678794 0.2231302 0.6065307 0.3678794 0.2231302
0.6 0.5488116 0.3011942 0.1652989 0.5488116 0.3011942 0.1652989 0.9048374 0.3011942 0.1652989
0.7 0.4965853 0.246597 0.1224564 0.4965853 0.246597 0.1224564 0.4965853 0.246597 0.1224564
0.8 0.44932896 0.20189652 0.09071795 0.44932896 0.20189652 0.09071795 0.4965853 0.20189652 0.09071795

5 Application to a Real Data Set

For illustrative on purpose, we have considered a data set of an engineer, observing a nuclear reaction,
measuring time interval between emissions of beta particles (Shuda and Purohit[9]). The following data
are inter arrival times:

0.894, 0.235, 0.071, 0.459, 0.1, 0.991, 0.424, 0.159, 0.431, 0.919, 0.061, 0.216, 0.082, 0.092, 0.9, 0.186,
0.579, 1.653, 0.83, 0.093, 0.311, 0.429, 2.01, 1.718, 0.041, 0.817, 0.612, 0.158, 0.099, 0.712, 2.267, 0.143,
0.527, 0.162, 0.994, 0.091, 0.055, 1.033, 0.076, 0.149, 0.139, 0.752, 2.863, 0.107, 0.866, 0.083, 0.188, 0.365,
0.278, 0.054.
From Figure 4 it is clearly identified that inter arrival times are positively skewed. Here we also observe
that the conditional mean is greater than the conditional variance (mean = 0.54948 and variance =
0.38961). Thus this dataset is under dispersed and hence we apply the EE Count model.

To test whether there is a significant difference between an observed inter arrival time distribution
and the EE model distribution, the fitting of EE model was checked using CDF(Cumulative distribution
function)-plot and PP(Probability Probability)-plot given in Figure (5-6) and Kolmogorov-Smirnov(KS)
test. Value of the test statistics 0.1041684 < 0.21496 (KS(Tabulated)), which shows that EE model
provides a satisfactory fit to the considered data set. Hence, the EE model assumption for interarrival
times is valid. To estimate the number of emission of beta particles, we use the EE count model. Figure 7
supports above discussion clearly.

5.1 Model Suitability for Real Data

Use the classical inferential procedure from Nadaraja [8] and Singh et al[10], which were used as estimates
for the maximum likelihood approach for model parameter. For comparing model fitting, Akaike [1],
namely AIC = −2 ∗ l̂(.) + 2 ∗ k is adopted, where k is the number of parameters in the model under
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consideration. The AIC specifies that the model that best fits the data is the one with the smallest
AIC value. Table 3 shows parameter estimators for distributions EE, exponentiated exponential and
Weibull distributions using maximum likelihood (ML) approach and the corresponding Akaike information
criterion (AIC). For these data, AIC shows a better fit for the EE model. Figure 4 reveals model fitting
for the three models, and Figure 5 compares the distribution functions for the models with the empirical
distribution function.

6 Conclusion

In this article we have introduced a new count model based upon EE inter arrival time process. More
importantly, the model provides a sizeable improvement over the traditional Poisson process. One
important advantage of the new model is used in underdispersion data set for considered parameters.
The new model has closed form and the computation is possible using R. This new model can be applied
to real data sets where the assumption of underdispersion is considered.
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Figure 7. Probability of the predicted number of emission of particles according to EE count model and Poisson
model.
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Table 3. Parameter estimates for EE, exponentiated eponential and Weibull distributions for a nuclear reaction
data set, measures time (inter arrivals) interval between emissions of beta particles.

Parameter estimates EE model Exponentiated Eponential Weibull Distribution

α 0.7141213 0.9753652 0.940298
λ 3.2800951 1.7901338 1.877093

AIC 34.78671 36.10387 35.78125
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