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Abstract A two-way multivariate analysis of variance (MANOVA) aims to compare the effects
of several levels of two factors in a factorial experiment with two-way layout. It is widely used in
experimental sciences, e.g., biology, psychology, physics, among others. When the cell covariance
matrices are the same, it can be solved using the well-known Wilks likelihood ratio, Lawley-Hotelling
trace, Bartlett-Nanda-Pillai trace and Roy’s largest root tests ([1]). However, when the homogeneous
assumption is violated, these tests may become seriously biased. To overcome this problem, several
authors have proposed and studied different approximation solutions. In this paper, we propose and
study a Modified Bartlett (MB) test using a Wald-type statistic and the modified Bartlett correction
([2]) for heteroscedastic two-way MANOVA problems. The MB test can be easily implemented using
the usual χ2-distribution with known degrees of freedom. We show that it admits several invariant
properties. Simulation studies show that the MB test generally outperforms the classical Lawley-
Hotelling trace (LHT) test and a modified LHT test of [3] under various parameter configurations
in terms of size controlling and power. A real data example illustrates our method and the effect of
heteroscedasticity.

Keywords: Heteroscedastic two-way MANOVA, Tests of linear hypotheses, Modified Bartlett
correction, Wald-type statistic.

1 Introduction

A two-way multivariate analysis of variance (MANOVA) aims to compare the effects of several levels of
two factors in a factorial experiment with two-way layout. It is a multivariate version of two-way ANOVA
model and is widely used in experimental sciences, e.g., biology, psychology, physics, among others;
examples may be found in [4], [5], and [6], among others. When the cell covariance matrices are known to
be the same, this problem can be solved using the Wilks likelihood ratio (WLR), Lawley-Hotelling trace
(LHT), Bartlett-Nanda-Pillai (BNP) and Roy’s largest root tests as discussed in [1]. However, when the
homogeneous assumption is violated, these tests may become seriously biased, which means their sizes
may be severely inflated or deflated. For example, in our simulations which are presented in Section 3, we
set the nominal size α = 5%, the empirical size of the LHT test for testing interaction effect could be
as large as 75% or as small as 0%. This is a serious problem. In real data analysis, Box’s M test ([7])
is usually used to check whether the cell covariance matrices are equal and when the null hypothesis is
rejected, those tests mentioned above are not suitable for the main effect testing or interaction effect
testing. In this case, a test for heteroscedastic two-way MANOVA is needed.

To our knowledge, this problem for heteroscedastic two-way MANOVA has not been well addressed
in the literature. Recently, [3] tried to solve this problem via modifying the WLR, LHT and BNP tests.
Their main ideas focus on modifying the degrees of freedom of the random matrices involved in the test
statistics so that the heteroscedasticity of the cell covariance matrices is taken into account and the
WLR, LHT and BNP tests can still be used but with the degrees of freedom estimated from the data via
matching the first two moments. Although their approaches are simple to understand, these approaches
admit the following three main drawbacks: (1) one needs to estimate the degrees of freedom of both the
random matrices involved in the test statistics; (2) the estimated degrees of freedom, as given in Section 3
of [3], are complicated, case-sensitive, and not affine invariant; and (3) the null distributions of the WLR,
LHT and BNP tests with known degrees of freedom are not immediately available; further approximations
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based on χ2 or normal asymptotic expansions are needed, as shown in Sections 3.1 and 3.2 of [3]. To
overcome these drawbacks, using Wishart-approximation, [8] proposed an approximate Hotelling T 2 test,
and [9] improved [3]’s modified MANOVA tests. [10,11] studied an approximate degrees of freedom F-test
for heteroscedastic two-way ANOVA and one-way MANOVA respectively.

The most related topic to the heteroscedastic two-way MANOVA is the heteroscedastic one-way
MANOVA which tests the effect of a factor, having k levels, in an experimental design. When k = 2,
this problem is often referred to as the multivariate Behrens-Fisher (BF) problem and it has been well
addressed in the literature by various authors including [12], [13], [14], [15], [16], [17], [18], and [19],
among others. [18]’s test is based on a Wald-type statistic’s asymptotic distribution and the modified
Bartlett correction of [2]. [2] proposed several monotone transformations that can be applied to a wide
class of approximately chi-squared distributed statistics, aiming to improve the chi-squared approximation
accuracy. According to [18]’s simulation studies, the MB test based on [2]’s method works well for the
two-sample multivariate Behrens-Fisher problem. We feel this idea also works for heteroscedastic two-way
MANOVA models, so we propose and study the MB test in this paper. Following [18], we use a Wald-type
statistic (see for example, [20]) and adopt the modified Bartlett correction. Our MB test admits several
nice properties: (1) it has a simple form and its P-value is easy to compute using a chi-square distribution
with known degrees of freedom; (2) it is shown to be affine-invariant; (3) all the related tests under the
two-way MANOVA, such as the main effect, interaction effect, post hoc, and contrast tests among others,
can be unified under a common framework — a general linear hypothesis test. The MB test is shown to
be invariant under different choices of the matrices used to define the same hypothesis; and (4) it works
well. Simulation results reported in Section 3 show that the MB test generally outperforms the LHT test
in terms of size controlling and [3]’s LHTm test in terms of size and power under heteroscedastic cases.
The simulations also show that the MB test does not lose much power in homogenous cases compared to
the LHT test, indicating the MB test also works well when the cell covariance matrices are the same. We
would also like to mention that it is straight forward to extend the ideas and methodologies for two-way
heteroscedastic MANOVA to three and higher-way heteroscedastic MANOVA where more factors are
considered as done in [8].

It is worthwhile to mention that heteroscedastic ANOVA and MANOVA problems have been paid much
attention in the past decades due to their interesting and challenging nature. There are two major kinds
of methods: simulation-based approaches and approximation-based approaches. The references mentioned
earlier among others are generally approximation-based approaches. In the literature, simulation-based
approaches are also popular due to their simplicity and recent advance of computation powers. For
example, to deal with heteroscedasticity, [21] proposed a simulation-based approximate test. [22] proposed
another simulation-based test using the concept of generalized P-values, resulting in a so-called generalized
F-test. The generalized P-values method is further studied by [23] and [24]. [25] compared the performance
of a parametric bootstrap test with the generalized F-test of [22]. [26] proposed a bootstrap method and
[27] studied a permutation test for general ANOVA problems. A drawback of simulation-based approaches
is that they are often time-consuming especially when the sample sizes are large.

The rest of the paper is organized as follows. The methodologies for the MB test are presented in
Section 2. Simulation results are presented in Section 3. An example using a data set from a smoking
cessation trial is presented in Section 4. Finally, some technical proofs of the main results are given in the
Appendix.

2 Methodologies

2.1 Main and Interaction Effects in Two-way MANOVA Models

Consider a two-way experiment with two factors A and B having a and b levels, respectively, with a total
of ab factorial combinations or cells. Suppose at the (i, j)-th cell, we have a p-dimensional random sample:
yijk, k = 1, 2, · · · , nij , satisfying the following model:

yijk = µij + εijk, εijk ∼ Np(0,Σij), k = 1, · · · , nij , (1)

where µij : p × 1 and Σij : p × p are the cell mean vector and cell covariance matrix of the random
sample at the (i, j)-th cell. All these ab samples are assumed to be independent with each other. In this
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subsection, we aim to represent the main and interaction effects as linear combinations of the cell means
which are estimable in the two-way MANOVA model (2) as described below.

In two-way MANOVA, the cell mean vectors µij are usually decomposed into the form µij =
µ0 + αi + βj + γij , i = 1, 2, · · · , a; j = 1, 2, · · · , b, where µ0 is the grand mean vector, αi and βj are
the i-th and j-th main effects of factors A and B, respectively, and γij is the (i, j)-th interaction effect
between factors A and B so that (1) can be further written as the following well-known two-way MANOVA
model:

yijk = µ0 +αi + βj + γij + εijk, εijk ∼ Np(0,Σij),
k = 1, 2, · · · , nij ; i = 1, 2, · · · , a; j = 1, 2, · · · , b. (2)

For this model, we are interested in the following three null hypotheses:

H0A : α1 = α2 = · · · = αa = 0,
H0B : β1 = β2 = · · · = βb = 0,
H0AB : γ11 = · · · = γ1b = · · · = γa1 = · · · = γab = 0.

(3)

The first two null hypotheses aim to test if the main effects of the two factors are statistically significant
while the last one aims to test if the interaction effect between the two factors is statistically significant.
The model (2) is not identifiable since the parameters µ0,αi,βj and γij are not uniquely defined unless
some constraints are imposed. Given a sequence of positive weights wij , i = 1, 2, · · · , a; j = 1, 2, · · · , b,
we impose the following constraints

a∑
i=1

wi·αi = 0,
b∑
j=1

w·jβj = 0, (4)

b∑
j=1

wijγij = 0, i = 1, 2, · · · , a− 1, (5)

a∑
i=1

wijγij = 0, j = 1, 2, · · · , b− 1, (6)

a∑
i=1

b∑
j=1

wijγij = 0, (7)

where wi· =
∑b
j=1 wij and w·j =

∑a
i=1 wij . Notice that we here use only a + b + 1 constraints which

imply the a+ b+ 2 constraints suggested by [28] and adopted by [22]. This is because the constraint (5)
[resp. (6)], jointly with the constraint (7), implies that the constraint (6) [resp. (5)] holds for j = b [resp.
for i = a]. Set

α = [αT1 , · · · ,αTa ]T ,β = [βT1 , · · · ,β
T
b ]T ,γ = [γT11, · · · ,γT1b, · · · ,γTa1, · · · ,γTab]T .

Then under the constraints (4)∼(7), simple algebra shows that the three null hypotheses (3) can be
equivalently written as

H0A : [Ha ⊗ Ip]α = 0, with Ha =
(
Ia−1,−1a−1

)
,

H0B : [Hb ⊗ Ip]β = 0, with Hb =
(
Ib−1,−1b−1

)
,

H0AB : [Hab ⊗ Ip]γ = 0, with Hab =
(
Ia−1,−1a−1

)
⊗
(
Ib−1,−1b−1

)
,

(8)

where and throughout, Ir and 1r denote the identity matrix of size r and the r-dimensional vector of
ones, respectively, and ⊗ denotes the Kronecker product operation. The matrices Ha,Hb, and Hab are
full rank contrast matrices, having ranks (a− 1), (b− 1) and (a− 1)(b− 1), respectively.

When the weights can be written as wij = uivj , i = 1, 2, · · · , a; j = 1, 2, · · · , b, such that ui >
0,
∑a
i=1 ui = 1 and vj > 0,

∑b
j=1 vj = 1, we can easily identify the parameters µ0,αi,βj and γij as

µ0 =
∑a
i=1
∑b
j=1 uivjµij , αi =

∑b
j=1 vjµij−µ0, βj =

∑a
i=1 uiµij−µ0, and γij = µij−αi−βj−µ0. Let
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u = [u1, · · · , ua]T ,v = [v1, · · · , vb]T , and µ = [µT11, · · · ,µT1b, · · · ,µTa1, · · · ,µTab]T . Denote an l-dimensional
unit vector whose r-th component is 1 and others are 0 as er,l. Then we have

µ0 = [(uT ⊗ vT )⊗ Ip]µ, αi = [(ei,a − u)T ⊗ vT ⊗ Ip]µ,
βj = [uT ⊗ (ej,b − v)T ⊗ Ip]µ, γij = [(ei,a − u)T ⊗ (ej,b − v)T ⊗ Ip]µ,
i = 1, 2, · · · , a; j = 1, 2, · · · , b.

(9)

In matrix notation, we can further write

α = [Aa ⊗ Ip]µ, with Aa = (Ia − 1auT )⊗ vT ,
β = [Ab ⊗ Ip]µ, with Ab = uT ⊗ (Ib − 1bvT ),
γ = [Aab ⊗ Ip]µ, with Aab = (Ia − 1auT )⊗ (Ib − 1bvT ),

(10)

where the matrices Aa,Ab, and Aab are not full rank matrices, having ranks (a − 1), (b − 1), and
(a− 1)(b− 1), respectively.

Notice that each of the testing problems associated with the three null hypotheses (8) can then be
equivalently expressed in the form of the general linear hypothesis testing (GLHT) problem (12) as
described in next subsection with C, respectively, being

Ca = (HaAa)⊗ Ip, Cb = (HbAb)⊗ Ip, Cab = (HabAab)⊗ Ip. (11)

There are a few methods which can be used to specify the weights wij , i = 1, 2, · · · , a; j = 1, 2, · · · , b;
see for example, [28]. In this paper, we use the following two simple methods: the equal-weight method
and the size-adapted-weight method. Both methods specify the weights as wij = uivj , i = 1, 2, · · · , a; j =
1, 2, · · · , b, with the equal-weight method specifying u and v as ui = 1/a, vj = 1/b, i = 1, 2, · · · , a; j =
1, 2, · · · , b, while the size-adapted-weight method specifying u and v as ui =

∑b
j=1 nij/N, i = 1, 2, · · · , a,

and vj =
∑a
i=1 nij/N, j = 1, 2, · · · , b, where N =

∑a
i=1
∑b
j=1 nij . When the two-way MANOVA design is

balanced, i.e., when all the cell sizes nij , i = 1, 2, · · · , a; j = 1, 2, · · · , b, are the same, the size-adapted-
weight method reduces to the equal-weight method. In practice, both weight methods can be used when
the cell sizes are near the same. However, when the cell sizes are quite different, the size-adapted-weight
method is recommended so that the effect of the cell sizes can be taken into account.

2.2 Wald-type Test Statistic for Linear Hypotheses

Using the cell mean vector µ defined in the previous subsection, we can write the GLHT problem under
the two-way MANOVA model (2) as

H0 : Cµ = c, vs H1 : Cµ 6= c, (12)

where C = C0 ⊗ Ip : q × (abp) is a known matrix of full rank with rank(C0) = q0 and q = q0p, and
c : q×1 is a known constant vector, often specified as 0. For the three testing problems (3), the associated
C-matrices are given in (11).

To construct the test statistic for the GLHT problem (12), we denote the usual unbiased estimators of
the cell mean vectors and cell covariance matrices of the random sample (1) as

µ̂ij = n−1
ij

∑nij

k=1 yijk, Σ̂ij = (nij − 1)−1∑nij

k=1(yijk − µ̂ij)(yijk − µ̂ij)T ,
i = 1, 2, · · · , a; j = 1, 2, · · · , b. (13)

Set µ̂ = [µ̂T11, · · · , µ̂
T
1b, · · · , µ̂

T
a1, · · · , µ̂

T
ab]T as the estimator of µ. Then µ̂ ∼ Nabp(µ,Σ) where Σ =

diag(Σ11
n11

, Σ12
n12

, · · · , Σ1b

n1b
, · · · , Σa1

na1
, Σa2
na2

, · · · , Σab

nab
). Since Cµ̂−c ∼ Nq(Cµ−c,CΣCT ), the associated

Wald-type test statistic is
T = (Cµ̂− c)T

(
CΣ̂CT

)−1
(Cµ̂− c), (14)

where Σ̂ = diag(Σ̂11
n11

, Σ̂12
n12

, · · · , Σ̂1b

n1b
, · · · , Σ̂a1

na1
, Σ̂a2
na2

, · · · , Σ̂ab

nab
). Notice that the test statistic T is affine

invariant with respect to the GLHT problem (12) in the sense that for any nonsingular q × q matrix B,
T is invariant if the constant matrix C and the constant vector c in (12) are replaced with BC and Bc,
respectively.
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2.3 MB Test for Heteroscedastic Two-way MANOVA Models

To construct the MB test, following [18], we re-express T as

T = zTW−1z, (15)

where
z = (CΣCT )−1/2(Cµ̂− c), W = (CΣCT )−1/2(CΣ̂CT )(CΣCT )−1/2. (16)

Notice that z ∼ Nq(µz, Iq), where µz = (CΣCT )−1/2(Cµ− c), and under the null hypothesis, z is a
standard q-dimensional normal random vector, i.e., z ∼ Nq(0, Iq). Let nmin = minai=1 minbj=1 nij denote
the minimum cell size. To study the asymptotic distribution of T , we impose the following condition:

As nmin →∞,
nij
nmin

→ rij <∞, i = 1, 2, · · · , a; j = 1, 2, · · · , b. (17)

This condition indicates that all the cell sizes tend to infinity at about the same rate so that nmin(CΣCT )
tend to a non-singular matrix as nmin →∞. We then have the following result.

Theorem 1 Under the condition (17) and H0, as nmin →∞, we have

T
L−→ χ2

q.

The above theorem shows that T asymptotically follows a χ2-distribution with q degrees of freedom.
Similar results for some special C must have appeared in the literature but we here show that it is true for
the GLHT problem (12). Based on Theorem 1, a χ2-test for the GLHT problem can be constructed easily.
However, it is well known that a χ2-test for (12) usually converges very slowly. In fact, from our proof of
Theorem 1 in the Appendix, we can see that the convergence rate of T to χ2

q is of Op(n
−1/2
min ). This indicates

that the χ2-test directly based on T ’s asymptotic distribution can be very inaccurate when nmin is small or
moderate. In this case, the convergence of the mean and variance of T to those of the limit distribution χ2

q

is also very slow. To overcome this problem, we may use the well-known Bartlett correction which corrects
the mean of T to order O(n−2

min) to improve the convergence rate, but a better choice would be the modified
Bartlett (MB) correction proposed by [2] which corrects both the mean and variance of T to order O(n−2

min)
to improve the convergence rate further. Set Ωij = n−1

ij HijΣijH
T
ij , i = 1, 2, · · · , a; j = 1, 2, · · · , b,

where Hij = (CΣCT )−1/2Cij , i = 1, 2, · · · , a; j = 1, 2, · · · , b with C11,C12, · · · ,Cab being the (ab)-th
column of C. To apply the MB correction to T and propose the so called MB test, we need the following
result.

Theorem 2 Under the condition (17) and H0, as nmin →∞, we have

E(T ) = q(1 + α1

nmin
) +O(n−2

min) and E(T 2) = q(q + 2)(1 + α2

nmin
) +O(n−2

min),

where
α1 = nmin(∆1 +∆2)/q,
α2 = nmin[(2q + 8)∆1 + (2q + 6)∆2]/[q(q + 2)],
∆1 =

∑a
i=1
∑b
j=1 tr(Ω

2
ij)/(nij − 1),

∆2 =
∑a
i=1
∑b
j=1 tr2(Ωij)/(nij − 1).

Furthermore, we have

q2

(nmax − 1)abp ≤ ∆1 ≤
q

nmin − 1 and q2

(nmax − 1)ab ≤ ∆2 <
pq

(nmin − 1) . (18)

Notice that under the conditions of Theorem 2, α1 and α2 will tend to their finite limits as nmin →∞. Based
on Theorems 1 and 2, we can apply the modified Bartlett correction to T through the log-transformation

TMB = (nminβ1 + β2)log(1 + T

nminβ1
),
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where β1 = 2
α2−2α1

and β2 = (q+2)α2−2(q+4)α1
2(α2−2α1) .

By [2], we have TMB
L−→ χ2

q and E(TMB) = q+O(n−2
min) and E(T 2

MB) = q(q+2)+O(n−2
min) as nmin →∞.

On contrast, as seen from Theorem 2, we only have E(T ) = q +O(n−1
min) and E(T 2) = q(q + 2) +O(n−1

min).
It follows from [2] that TMB converges to χ2

q much faster than T does.
In real data analysis, β1 and β2 have to be estimated from the data. Proper estimators can be obtained

via replacing Ωij , i = 1, 2, · · · , a; j = 1, 2, · · · , b with their estimators:

Ω̂ij = n−1
ij (CΣ̂CT )−1/2CijΣ̂ijC

T
ij(CΣ̂CT )−1/2, i = 1, 2, · · · , a; j = 1, 2, · · · , b. (19)

Thus,

∆̂1 =
a∑
i=1

b∑
j=1

tr(Ω̂
2
ij)/(nij − 1) and ∆̂2 =

a∑
i=1

b∑
j=1

tr2(Ω̂ij)/(nij − 1). (20)

The estimators α̂1, α̂2, β̂1 and β̂2 are then obtained accordingly. By the law of large numbers, it is classical
to show that as nmin →∞, α̂1

α1
, α̂2
α2
, β̂1
β1

and β̂2
β2

all tend to 1 almost surely, so that as nmin →∞,

T̂MB = (nminβ̂1 + β̂2)log(1 + T

nminβ̂1
) L−→ χ2

q. (21)

Some simple algebra leads to nminβ̂1 = q(q+2)
2∆̂1+∆̂2

and nminβ̂1 + β̂2 = (q+2)(2q−∆̂2)
4∆̂1+2∆̂2

. From the proof of
Theorem 2, we can see that the ranges of ∆1 and ∆2 as given in (18) are also the ranges of ∆̂1 and
∆̂2 respectively. Thus, provided nmin ≥ p + 1, we always have nminβ̂1 > 0 and nminβ̂1 + β̂2 > 0. This
guarantees that T̂MB ≥ 0 and it is a monotonically increasing function of T . The critical value of the MB
test can then be specified as χ2

q(1− α) for any given significance level α. We reject the null hypothesis in
(12) when this critical value is exceeded by T̂MB. The MB test can also be conducted via computing the
P-value based on χ2

q. Thus, the MB test can be conducted easily via using the usual χ2-table.

2.4 Some Desirable Properties of the MB Test

Notice for hypotheses (8), the contrast matrices Ha,Hb and Hab which are used to specify the main
effect test and interaction effect test respectively are not unique. For example, H̃a = (−1a−1, Ia−1) is
also a contrast matrix for the first hypothesis in (8). It is known from [29] (Ch. 5, Sec. 4) that for any two
contrast matrices H̃∗ and H∗ which specify the same hypothesis, there is a nonsingular matrix P such
that H̃∗ = PH∗, where ∗ may be replaced with a, b or ab. By (11), the C-matrix associated with the
contrast matrix H∗ can be expressed as C∗ = (H∗A∗)⊗ Ip. Let C̃∗ be the C-matrix associated with
the contrast matrix H̃∗. Then we have C̃∗ = (H̃∗A∗)⊗ Ip = (PH∗A∗)⊗ Ip = (P ⊗ Ip)C∗. Theorem 3
shows that the MB test is invariant to different choices of the contrast matrix for the same hypothesis.

Theorem 3 The MB test is invariant when the coefficient matrix C and the constant vector c in (12)
are replaced with

C̃ = (P ⊗ Ip)C and c̃ = (P ⊗ Ip)c, (22)
respectively where P is any nonsingular matrix.

The MB test is also affine-invariant. That is, it is invariant under the following affine-transformation:

ỹijk = Byijk + ξ, k = 1, 2, · · · , nij ; i = 1, 2, · · · , a; j = 1, 2, · · · , b, (23)

where B is any nonsingular matrix and ξ is any given vector. This property is desirable since in practice,
the observed cell responses yij (1) are often re-centered or re-scaled before an inference is conducted. The
re-centering and re-scaling transformations are special cases of (23).

Theorem 4 The MB test is invariant under the affine transformation (23).

Finally, we have the following result.

Theorem 5 The MB test is invariant under different labeling schemes of the cell mean vectors µij , i =
1, 2, · · · , a; j = 1, 2, · · · , b.
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3 Simulation Studies

It is well known ([1]) that for homogeneous data, the WLR, LHT and BNP tests are asymptotically
equivalent and they perform similarly for finite samples with the LHT test outperforming the other two
in many situations. [3] showed that for heteroscedastic data, the large-a asymptotics of the three tests
are also equivalent. Based on some simulations, [3] further showed that their modified WLR, LHT and
BNP tests also perform similarly for finite samples, with the modified LHT test, namely LHTm, slightly
outperforming the BNP test. Therefore, in this section, we only need to compare the MB test with the
LHT and LHTm tests via comparing their empirical sizes (Type I error rates) and powers for the main
and interaction effects of two factors in two-way MANOVA models via simulations.

Let the two factors be A and B with a and b levels respectively. Let n = [n11, n12, · · · , nab] denote
the vector of cell sizes. For given n and covariance matrices Σij , i = 1, 2, · · · , a; j = 1, 2, · · · , b, we first
generate ab multivariate random samples as

yijk = µij +Σ1/2
ij εijk, k = 1, 2, · · · , nij , (24)

where the cell mean vectors µij = µ11 + ijδh/(ab) with µ11 being the first cell mean vector, h a constant
unit vector specifying the direction of the cell mean differences, and δ a tuning parameter controlling the
amount of the cell mean differences. We independently generate the p entries of the error terms εijk using
two schemes: (1) from the N(0, 1) distribution and (2) from the t4/

√
2 distribution, so that we always

have E(εijk) = 0 and Cov(εijk) = Ip. This means that (24) will generate the (ij)-th multivariate normal
or non-normal sample yijk, k = 1, 2, · · · , nij with the given mean vector µij and covariance matrix Σij .
Without loss of generality, we specify µ11 as 0 and h as h0/‖h0‖ where h0 = [1, 2, · · · , p]T for any given
dimension p and ‖h0‖ denotes the usual L2-norm of h0. We then apply the three tests to the generated
data, and record their P-values. This process is repeated N = 10000 times. The empirical sizes (when
δ = 0) and powers (when δ > 0) of the three tests are the proportions of rejecting the null hypothesis,
i.e., when their P-values are less than the nominal significance level α. In all the simulations conducted,
we used α = 5% for simplicity.

For space saving, here we just report the simulation results for interaction effect tests. Similar
conclusions can be drawn from the simulation results for main effect tests. We used the equal-weight
method to specify the weights of the LHT and MB tests so that their simulation results are comparable
with those of the LHTm test. The empirical sizes and powers of the three tests for interaction effect
tests, together with the associated tuning parameters, are presented in Tables 1 – 3, in the columns
labeled with LHT, LHTm, and MB under “δ = 0” and “δ > 0” respectively. As seen from the three
tables, three sets of the tuning parameters for the cell covariance matrices are examined, with the first
set specifying the homogeneous cases; four sets of the cell sizes are specified, with the first two sets
specifying the balanced cell size cases; and the two error schemes are considered. To measure the overall
performance of a test in terms of maintaining the nominal size α, we define the average relative error as
ARE = M−1∑M

j=1 |α̂j −α|/α× 100 where α̂j denotes the j-th empirical size for j = 1, 2, · · · ,M , α = .05
and M is the number of empirical sizes under consideration. The smaller ARE value indicates the better
overall performance of the associated test. Usually, when ARE ≤ 10, the test performs very well; when
10 < ARE ≤ 20, the test performs reasonably well; and when ARE > 20, the test does not perform well
since its empirical sizes are either too liberal or too conservative and hence may be unacceptable. Notice
that for a good test, the larger the cell sizes, the smaller the ARE values. The ARE values of the three
tests under the two error schemes are also presented in these three tables. Notice that for simplicity, in
the specification of the covariance and size tuning parameters, we often use (ur) to denote “u repeats
r times ”. For simplicity and space saving, following [30], the cell covariance matrices and the cell sizes
were specified the same as for the b levels of factor B but they may be different for the a levels of factor
A. That is, for each i = 1, 2, · · · , a, we have Σij = Σi1, nij = ni1, j = 1, 2, · · · , b. The above method for
specifying the cell covariance matrices and the cell sizes will have no effect on our methodologies and
conclusions on general designs. Table 1 shows the empirical sizes and powers of the three tests for a
bivariate case with a = 2 and b = 20. With b = 20, one may be able to check how the three tests behave
when one of the factors has a large number of levels. Tables 2 and 3 show the empirical sizes and powers
of the three tests for a 3-variate case with a = 3 and b = 10 and a 10-variate case with a = 3 and b = 5
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Table 1. Empirical sizes and powers of the three tests for interaction effect tests for bivariate two-way MANOVA.

a = 2, b = 20, Σ1j = I2, Σ2j = diag(λ), j = 1, 2, · · · , 20.

δ = 0 δ = 1.8 δ = 3.6 δ = 5.4

Error λ n LHT LHTm MB LHT LHTm MB LHT LHTm MB LHT LHTm MB

N(0, 1) λ1 n1 .053 .036 .042 .130 .093 .093 .532 .457 .381 .948 .923 .857
n2 .053 .041 .047 .182 .151 .148 .755 .718 .668 .996 .994 .988
n3 .044 .030 .041 .155 .114 .122 .656 .557 .533 .983 .968 .957
n4 .054 .049 .052 .437 .330 .402 .996 .986 .994 1.00 1.00 1.00

λ2 n1 .066 .028 .042 - .050 .078 - .134 .235 - .391 .621
n2 .068 .032 .046 - .063 .108 - .237 .436 - .658 .895
n3 .039 .036 .046 - .062 .089 - .221 .309 - .595 .739
n4 .194 .035 .051 - .095 .303 - .480 .968 - .958 1.00

λ3 n1 .078 .027 .044 - .038 .068 - .078 .218 - .222 .574
n2 .076 .029 .045 - .049 .104 - .139 .403 - .418 .864
n3 .039 .033 .043 - .049 .082 - .131 .278 - .369 .688
n4 .253 .031 .049 - .074 .287 - .311 .958 - .808 1.00

ARE 79.2 31.4 9.02

t4/
√

2 λ1 n1 .047 .018 .024 .132 .062 .078 .553 .379 .464 .949 .860 .933
n2 .050 .024 .032 .182 .112 .150 .770 .650 .762 .995 .978 .996
n3 .049 .022 .029 .161 .076 .108 .673 .475 .624 .982 .924 .983
n4 .051 .036 .040 .442 .289 .444 .995 .973 .997 1.00 .999 1.00

λ2 n1 .064 .017 .023 - .031 .054 - .104 .264 - .337 .728
n2 .064 .021 .031 - .046 .092 - .202 .504 - .595 .945
n3 .032 .018 .027 - .041 .075 - .170 .354 - .536 .830
n4 .191 .029 .041 - .073 .313 - .441 .978 - .926 1.00

λ3 n1 .072 .017 .024 - .022 .055 - .058 .240 - .178 .684
n2 .071 .018 .029 - .032 .090 - .107 .467 - .363 .921
n3 .037 .022 .030 - .037 .075 - .105 .325 - .324 .795
n4 .252 .023 .038 - .057 .305 - .274 .968 - .773 1.00

ARE 75.2 55.1 37.7

λ1 = (1, 1), λ2 = (1, 5), and λ3 = (1, 10). n1 = (7, 7)20, n2 = (10, 10)20, n3 = (7, 10)20, and n4 = (30, 15)20.

respectively. These two tables allow us to compare the three tests for higher-dimensional normal and
non-normal data.

First of all, let us compare the LHT and MB test via examining their empirical sizes and powers. It is
seen from the three tables that under homogeneous cases, the LHT test generally outperforms the MB
test under both N(0, 1) and t4/

√
2 error schemes. Its empirical sizes are closer to 5% and powers are

bigger. The MB test also performs reasonably well, but not so well as the LHT test. It is not surprising
since the MB test does not take the homogeneity assumption into account while the LHT test does. On
the other hand, for the heteroscedastic cases, the LHT test no longer performs well. Under the N(0, 1)
error scheme, its empirical sizes are either too conservative or too liberal, ranging from 3.9% to 25.3% in
Table 1, from 4.5% to 15.4% in Table 2 and from 0% to 75.0% in Table 3 as listed in Table 4. However,
the MB test still maintains the nominal sizes quite well, with the empirical sizes ranging from 4.1% to
5.2% in Table 1, from 4.3% to 6.9% in Table 2 and from 4.6% to 7.2% in Table 3 as given in Table 4.
Since the empirical sizes of the LHT and MB tests are very different, it does not make too much sense to
compare their powers for the heteroscedastic cases. That is why we replaced the power values of the LHT
test with “-” in these cases. Under t4/

√
2 error scheme, the MB test also outperforms the LHT test with
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Table 2. Empirical sizes and powers of the three tests for interaction effect tests for 3-variate two-way MANOVA.

a = 3, b = 10, Σ1j = I3, Σ2j = diag(λ), Σ3j =
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
, j = 1, 2, · · · , 10.

δ = 0 δ = 1.8 δ = 3.6 δ = 5.4

Error (λ, ρ) n LHT LHTm MB LHT LHTm MB LHT LHTm MB LHT LHTm MB

N(0, 1) (λ1, ρ1) n1 .051 .031 .043 .138 .095 .105 .577 .490 .435 .968 .951 .906
n2 .050 .036 .045 .199 .165 .173 .830 .792 .760 1.00 .999 .997
n3 .045 .029 .060 .269 .152 .238 .945 .807 .890 1.00 .999 1.00
n4 .053 .035 .064 .260 .150 .238 .936 .806 .881 1.00 .999 1.00

(λ2, ρ2) n1 .077 .020 .053 - .054 .124 - .316 .538 - .868 .958
n2 .069 .021 .049 - .099 .208 - .630 .847 - .993 1.00
n3 .104 .036 .066 - .135 .320 - .736 .976 - .998 1.00
n4 .103 .037 .069 - .134 .317 - .710 .975 - .997 1.00

(λ3, ρ3) n1 .074 .025 .048 - .059 .126 - .319 .514 - .844 .947
n2 .075 .030 .053 - .110 .199 - .616 .824 - .988 .999
n3 .154 .037 .066 - .143 .301 - .743 .967 - .998 1.00
n4 .093 .038 .062 - .134 .308 - .676 .970 - .994 1.00

ARE 60.7 36.5 18.6

t4/
√

2 (λ1, ρ1) n1 .049 .017 .031 .140 .061 .101 .591 .399 .528 .969 .895 .957
n2 .049 .022 .035 .203 .126 .176 .835 .729 .833 .998 .988 .998
n3 .054 .022 .045 .281 .113 .259 .942 .736 .935 1.00 .986 1.00
n4 .054 .020 .045 .265 .116 .243 .936 .734 .936 1.00 .986 1.00

(λ2, ρ2) n1 .070 .012 .033 - .035 .131 - .262 .654 - .798 .985
n2 .070 .017 .035 - .076 .229 - .577 .912 - .976 1.00
n3 .106 .024 .050 - .109 .357 - .696 .989 - .986 1.00
n4 .109 .026 .045 - .102 .354 - .668 .987 - .980 1.00

(λ3, ρ3) n1 .066 .012 .029 - .039 .116 - .264 .631 - .773 .988
n2 .071 .017 .035 - .079 .211 - .571 .896 - .971 1.00
n3 .166 .028 .052 - .115 .328 - .698 .982 - .985 1.00
n4 .095 .025 .048 - .110 .337 - .636 .985 - .975 1.00

ARE 61.3 59.1 19.8

(λ1, ρ1) = (13, 0), (λ2, ρ2) = (1, 15, .1, .1), and (λ3, ρ3) = (1, 10, .1, .5). n1 = (10, 10, 10)10, n2 = (15, 15, 15)10, n3 = (10, 20, 40)10, and
n4 = (40, 20, 10)10.

the LHT test’s performance really unacceptable. This also shows that without the normality assumption,
the classical LHT test is much more sensitive to the homogeneity assumption, that is why we need to
propose new procedures which can work well under heteroscedastic cases.

We now compare the LHTm and MB tests via examining their empirical sizes and powers under the
two error schemes. In terms of size controlling, the MB test generally outperforms the LHTm test for all
the cases under consideration as shown by their empirical sizes and associated ARE values presented in
the three tables. The LHTm test is generally too conservative, especially under the t4/

√
2 error scheme. It

is probably due to the fact that the LHTm test is not affine-invariant and its degrees of freedom can not
be accurately estimated using the method proposed by [3]. In terms of power, the MB test outperforms
the LHTm test for almost all the cases except for some homogeneous cases under the N(0, 1) scheme.
The LHTm test can have higher powers in these cases probably due to the fact that the LHTm test uses
the similar test statistic to the one used by the LHT test.
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Table 3. Empirical sizes and powers of the three tests for interaction effect tests for 10-variate two-way MANOVA.

a = 3, b = 5, Σ1j = I10, Σ2j = diag(λ), Σ3j = diag(η), j = 1, 2, ..., 5.

δ = 0 δ = 2.1 δ = 4.2 δ = 6.3

Error (λ,η) n LHT LHTm MB LHT LHTm MB LHT LHTm MB LHT LHTm MB

N(0, 1) (λ1,η1) n1 .052 .031 .046 .162 .111 .137 .701 .617 .597 .994 .989 .977
n2 .049 .037 .048 .334 .300 .304 .987 .983 .978 1.00 1.00 1.00
n3 .051 .033 .056 .234 .152 .208 .916 .819 .853 1.00 1.00 1.00
n4 .051 .038 .052 .271 .234 .251 .961 .950 .936 1.00 1.00 1.00

(λ2,η2) n1 .095 .030 .065 - .044 .113 - .130 .336 - .386 .760
n2 .086 .043 .054 - .089 .166 - .380 .727 - .888 .996
n3 .138 .036 .052 - .064 .128 - .202 .478 - .590 .923
n4 .324 .037 .054 - .082 .153 - .334 .658 - .841 .989

(λ3,η3) n1 .106 .028 .072 - .035 .088 - .042 .120 - .064 .204
n2 .094 .040 .053 - .048 .082 - .074 .179 - .159 .448
n3 .000 .033 .048 - .043 .066 - .073 .131 - .143 .284
n4 .750 .036 .066 - .041 .077 - .057 .158 - .107 .347

ARE 217 29.0 14.0

t4/
√

2 (λ1,η1) n1 .048 .017 .039 .159 .077 .141 .720 .565 .658 .994 .977 .988
n2 .050 .034 .047 .346 .275 .326 .988 .980 .986 1.00 1.00 1.00
n3 .051 .022 .048 .238 .122 .214 .924 .792 .896 1.00 .998 1.00
n4 .052 .030 .052 .276 .203 .268 .962 .933 .954 1.00 1.00 1.00

(λ2,η2) n1 .091 .019 .054 - .026 .102 - .098 .362 - .333 .817
n2 .083 .032 .048 - .074 .171 - .366 .780 - .869 .998
n3 .142 .029 .051 - .048 .121 - .179 .526 - .550 .951
n4 .312 .027 .048 - .063 .164 - .305 .707 - .809 .992

(λ3,η3) n1 .102 .021 .064 - .022 .076 - .030 .109 - .046 .212
n2 .086 .028 .047 - .038 .077 - .065 .187 - .134 .468
n3 .000 .029 .043 - .036 .058 - .057 .128 - .122 .305
n4 .759 .031 .060 - .030 .081 - .049 .163 - .084 .377

ARE 214 46.0 9.97

λ1 = (110)5, η1 = (110)5; λ2 = (123, 13, 243, 1)5, η2 = (13, 0.13, 22, 24, 21)5; and λ3 = (13, 33, 93, 20)5, η3 = (53, 153, 453, 100)5.
n1 = (253)5,n2 = (503)5, n3 = (25, 35, 50)5, and n4 = (70, 40, 35)5.

We also notice that our MB test may perform relatively worse when the cell sizes are very different
from each other and when nmin is too small. It is probably because the MB test is based on the test
statistic’s asymptotic properties and Theorem 1 requires all cell sizes tend to infinity proportionally.

In summary, in terms of size controlling, overall speaking, the MB test generally outperforms the
LHT and LHTm tests as shown by the ARE values listed in the three tables under the two error schemes.
In terms of power, the MB test generally outperforms the LHTm test for almost all the heteroscedastic
cases under consideration. Thus, one may recommend to use the MB test in real data analysis.

4 An Example

In this section, for illustration and comparison, the MB test, together with the LHT and LHTm tests, is
applied to a real multivariate data set collected from a smoking cessation trial conducted by Dr. Kari J.
Harris in her Greek Health Project. The project aimed to assess the efficacy of a motivational interviewing
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Table 4. The empirical size ranges (in percentage) of the three tests, taken from Tables 1–3.

LHT LHTm MB

Error Tab1 Tab2 Tab3 Tab1 Tab2 Tab3 Tab1 Tab2 Tab3

N(0,1) 3.9–25.3 4.5–15.4 0–75.0 2.7–4.9 2.0–3.8 2.8–4.3 4.1–5.2 4.3–6.9 4.6–7.2
t4/
√

2 3.2–25.2 4.9–16.6 0–75.9 1.7–3.6 1.2–2.8 1.7–3.4 2.3–4.1 2.9–5.2 3.9–6.4

versus an attention matched control on smoking quit rate. The subjects for the research are students from
20 individual fraternity or sorority chapters (Greek houses) of the University of Missouri-Colombia and
with 2 levels (low and high) of depression. The researchers believed that the level of depression of each
subject is associated with the nicotine dependence of the subject and they also wanted to know if the
nicotine dependence of the subjects depended on the chapter they came from. The nicotine dependence
of the subjects was measured by three well-known scales, namely, the Fagerstŕ’om Test for Nicotine
Dependence ([31]), the Hooked on Nicotine Checklist ([32]), and the Minnesota Tobacco Withdrawal Scale
([33]). The resulting data may be referred to as the smoking cessation data. For the detailed description
about the background of the smoking cessation trial and the interpretation of the variables, the reader is
referred to [3] who analyzed the data using their modified WLR,LHT and BNP tests.

Table 5 shows the test results of applications of the LHT, LHTm and MB tests to the smoking cessation
data for checking the significance of the main and interaction effects of the two factors “Chapter” and
“Depression”. Both the equal-weight and the size-adapted-weight methods, as described in Section 2.1, were
considered. Note that the P-values of the LHT and LHTm tests were computed using the F-approximation
method widely adopted in SAS and SPSS.

Table 5. P-values for the smoking cessation data.

LHT LHTm MB

Equal-weight method
Chapter .015 .350 .211
Depression .000 .000 .000
Chapter× Depression .075 .465 .601

Size-adapted-weight method
Chapter .124 - .204
Depression .000 - .000
Chapter× Depression .075 - .601

We first examine the test results of the three tests under the equal-weight method. It is seen that all
the three tests suggest that the main effect of “Depression” is highly significant. However, both MB and
LHTm tests suggest that the main effect of “Chapter” and the interaction effect between “Chapter” and
“Depression” are not significant, while LHT test indicates that “Chapter” is significant at 5% level and the
interaction is significant at 10% level. Application of the Box’s M test ([7]) to the smoking cessation data
suggests that the cell covariance matrices for the two-way MANOVA model are significantly different. In
this case, the conclusion made by the LHTm and MB tests is more credible than that made by the LHT
test since both LHTm and MB tests take the data heteroscedasticity into account.

The LHTm is not defined for the size-adapted method in [3]. The test results of the MB test for the
main and interaction effects of “Chapter” and “Depression” are consistent under both weight methods.
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However, it is not the case for the LHT test. Actually, for the main effect of “Chapter”, the conclusion
made by the LHT test under the equal-weight method is opposite to the one under the size-adapted-weight
method, showing some impact of the cell covariance matrices heteroscedasticity on the LHT test. It is
well known ([28]) that if the cell covariance matrices were homogeneous, the test results of the LHT
test would not be affected by the weight method used. Thus, the LHT test’s inconsistent results under
different weight methods indicate a serious impact of the cell covariance matrices heteroscedasticity on
the LHT test.
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APPENDIX: Technical Proofs

Proof of Theorem 1 Under the given conditions, we have

Σ̂ij ∼Wq(nij − 1,Σij/(nij − 1)), i = 1, 2, · · · , a; j = 1, 2, · · · , b, (A.1)

where Wq(m,V ) denotes a q-dimensional Wishart distribution with m degree of freedom and covariance
matrix V . It follows that (Σ̂ij −Σij)/nij = Op(n−3/2

ij ), i = 1, 2, · · · , a; j = 1, 2, · · · , b. Thus Σ̂ −Σ =
Op(n−3/2

min ). Notice that Σ = O(n−1
min), we further have

R = H(Σ̂ −Σ)HT = Op(n−1/2
min ), (A.2)

where H is defined in (16) and H = O(n1/2
min). This implies that

W = Iq +H(Σ̂ −Σ)HT = Iq +R = Iq +Op(n−1/2
min ). (A.3)

Theorem 1 holds from Slutsky’s theorem and the fact that under H0, z
Tz ∼ χ2

q.
Proof of Theorem 2 Notice that under H0, we have z ∼ Nq(0, Iq). Applying the conditional expectation
rule, some simple algebra leads to

E(T ) = E tr(W−1) and E(T 2) = 2E tr(W−2) + E tr2(W−1). (A.4)

From the proof of Theorem 1, we have that W = Iq +R with R = Op(n−1/2
min ); see (A.2). Then we have

W−1 = (Iq +R)−1 = Iq −R+R2 −R3 +Op(n−2
min),

W−2 = (Iq +R)−2 = Iq − 2R+ 3R2 − 4R3 +Op(n−2
min).

It is easy to see from (A.2) that E(R) = 0 and Etr(R) = 0. Thus

Etr(W−1) = q + Etr(R2)− Etr(R3) +O(n−2
min),

Etr(W−2) = q + 3Etr(R2)− 4Etr(R3) +O(n−2
min),

Etr2(W−1) = q2 + Etr2(R) + 2qEtr(R2)− 2qEtr(R3)− 2Etr(R)tr(R2) +O(n−2
min).

(A.5)
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To find Etr(R2) and Etr2(R) among others, we need some results from [34]. They showed that if
Y ∼Wq(m,V ), then

Etr2[Y − E(Y )] = 2mtr(V 2), Etr[Y − E(Y )]2 = m[tr(V 2) + tr2(V )],
Etr[Y − E(Y )]3 = mtr3(V ) + 3mtr(V )tr(V 2) + 4mtr(V 3),
Etr[Y − E(Y )]tr[Y − E(Y )]2 = 4mtr(V )tr(V 2) + 4mtr(V 3).

(A.6)

By (A.2), R =
∑a
i=1
∑b
j=1(W ij − Ωij) =

∑a
i=1
∑b
j=1Rij where Rij = W ij − EW ij with W ij =

n−1
ij HijΣ̂ijH

T
ij , i = 1, 2, · · · , a; j = 1, 2, · · · , b. Since W 11, · · · ,W ab are independent and ERij =

0, i = 1, 2, · · · , a; j = 1, 2, · · · , b, we have

Etr(R2) =
∑a
i=1
∑b
j=1 Etr(R

2
ij),

Etr2(R) =
∑a
i=1
∑b
j=1 Etr2(Rij),

Etr3(R) =
∑a
i=1
∑b
j=1 Etr3(Rij),

Etr(R)tr(R2) =
∑a
i=1
∑b
j=1 Etr(Rij)tr(R2

ij).

By (A.1) and applying (A.6), we have

Etr(R2) =
∑a
i=1
∑b
j=1[tr(Ω2

ij) + tr2(Ωij)]/(nij − 1) = ∆1 +∆2,

Etr2(R) = 2
∑a
i=1
∑b
j=1 tr(Ω

2
ij)/(nij − 1) = 2∆1,

Etr3(R) =
∑a
i=1
∑b
j=1[tr3(Ωij) + 3tr(Ωij)tr(Ω2

ij) + 4tr(Ω3
ij)]/(nij − 1)2 = O(n−2

min),
Etr(R)tr(R2) =

∑a
i=1
∑b
j=1[4tr(Ωij)tr(Ω2

ij) + 4tr(Ω3
ij)]/(nij − 1)2 = O(n−2

min),

(A.7)

where ∆1 and ∆2 are as defined in Theorem 2 and we have used the fact that 0 ≤ tr(Ωij) < q since∑a
i=1
∑b
j=1 tr(Ωij) = q. Combining (A.5) and (A.7) gives that

Etr(W−1) = q +∆1 +∆2 +O(n−2
min),

Etr(W−2) = q + 3(∆1 +∆2) +O(n−2
min),

Etr2(W−1) = q2 + (2q + 1)∆1 + 2q∆2 +O(n−2
min).

(A.8)

These, together with (A.4), yield that E(T ) = q
[
1 + α1

nmin

]
+O(n−2

min) and E(T 2) = q(q + 2)
[
1 + α2

nmin

]
+

O(n−2
min) where α1 = nmin(∆1 +∆2)/q and α2 = nmin[(2q + 8)∆1 + (2q + 6)∆2]/[q(q + 2)] as desired.
We now find the lower and upper bounds of ∆1 and ∆2 as given in (18). For i = 1, 2, · · · , a; j =

1, 2, · · · , b, set Bij = n
−1/2
ij HijΣ

1/2
ij , a q × p full rank matrix so that Ωij = BijB

T
ij . It follows that

Ωij ’s are nonnegative, so are their eigenvalues. Notice that Ωij and Qij = BT
ijBij : p × p have the

same nonzero eigenvalues. Thus, Ωij has at most p nonzero eigenvalues. Denote the largest p eigenvalues
of Ωij by λij,r, r = 1, 2, · · · , p which include all the nonzero eigenvalues of Ωij . It is easy to verify
that

∑a
i=1
∑b
j=1Ωij = Iq. Therefore, we have

∑a
i=1
∑b
j=1 tr(Ωij) = q and Iq −Ωij =

∑
s6=i
∑
t6=jΩst.

Therefore Iq − Ωij is nonnegative, showing that the eigenvalues of Ωij are less than 1. It follows
that tr(Ω2

ij) =
∑p
r=1 λ

2
ij,r ≤

∑p
r=1 λij,r = tr(Ωl) and tr(Ωij) =

∑p
r=1 λij,r ≤ p. These, together

with
∑a
i=1
∑b
j=1 tr(Ωij) = q, imply that ∆1 =

∑a
i=1
∑b
j=1 tr(Ω

2
ij)/(nij − 1) ≤ q/(nmin − 1) and

∆2 =
∑a
i=1
∑b
j=1 tr2(Ωij)/(nij − 1) ≤ pq/(nmin − 1).

Notice that for any nonnegative numbers a1, a2, · · · , am, we always have
m∑
l=1

a2
l ≥ (

m∑
l=1

al)2/m. (A.9)

It follows that tr(Ω2
ij) =

∑p
r=1 λ

2
ij,r ≥ (

∑p
r=1 λij,r)2/p = tr2(Ωij)/p. So ∆1 ≥

p−1∑a
i=1
∑b
j=1 tr2(Ωij)/(nij − 1) = ∆2/p. Using (A.9) again and the fact that

∑a
i=1
∑b
j=1 tr(Ωij) = q,

we have ∆2 ≥ [
∑a
i=1
∑b
j=1 tr(Ωij)]2/[(nmax − 1)ab] = q2

(nmax−1)ab . It follows that ∆1 ≥ q2

(nmax−1)abp . The
theorem is then proved.
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Proof of Theorem 3 From the definition (14) of T , it is easy to see that T is invariant under the
transformation (22). Then by (21), we only need to show that β̂1 and β̂2, or equivalently, ∆̂1 and ∆̂2 are
invariant under the transformation (22).

Under (22), we have C̃ = (P ⊗Ip)C. Define C11, · · · ,Cab as the ab matrices of size q×p so that C =
[C11, C12, · · · ,Cab]. Define C̃11, · · · , C̃ab similarly so that C̃ = [C̃11, · · · , C̃ab]. It follows that C̃ij = (P⊗
Ip)Cab, i = 1, 2, · · · , a; j = 1, 2, · · · , b. Set Gij = CT

ij(CΣ̂CT )−1Cij , i = 1, 2, · · · , a; j = 1, 2, · · · , b.
Then it follows that G̃ij = C̃T

ij(C̃Σ̂C̃T )−1C̃ij = CT
ij(CΣ̂CT )−1Cij = Gij , i = 1, 2, · · · , a; j =

1, 2, · · · , b. Therefore, Gij , i = 1, 2, · · · , a; j = 1, 2, · · · , b are invariant under (22). By (19) and (20), we
have

∆̂1 =
a∑
i=1

b∑
j=1

tr(Ω̂
2
ij)/(nij − 1) =

a∑
i=1

b∑
j=1

tr([n−1
ij GijΣ̂ij ]2)/(nij − 1)

and

∆̂2 =
a∑
i=1

b∑
j=1

tr2(Ω̂ij)/(nij − 1) =
a∑
i=1

b∑
j=1

tr2(n−1
ij GijΣ̂ij)/(nij − 1),

showing that ∆̂1 and ∆̂2 are also invariant under (22). Theorem 3 is then proved.
Proof of Theorem 4 The theorem will be proved if we can show that T, ∆̂1 and ∆̂2 are affine
invariant. Let µij ,Σij and µ̃ij , Σ̃ij denote the mean vectors and covariance matrices of the responses
xijk, k = 1, · · · , nij and the affine-transformed responses x̃ijk, k = 1, 2, · · · , nij respectively. Then we
have µ̃ij = Bµij + ξ and Σ̃ij = BΣijB

T . It follows that µij = B−1(µ̃ij − b). As we defined the
long mean vector µ and the big covariance Σ in Section 2, we define µ̃ and Σ̃ similarly. Then we have
µ = B̃−1(µ̃ − ξ̃) and Σ̃ = B̃ΣB̃T where B̃ = Iab ⊗ B and ξ̃ = 1ab ⊗ ξ. It follows that the GLHT
problem (12) can be equivalently expressed as H̃0 : C̃µ̃ = ξ̃, vs H̃1 : C̃µ̃ 6= b̃, where C̃ = CB̃−1 and
c̃ = CB̃−1ξ̃ + c.

Since µ̂ij and Σ̂ij denote the unbiased estimators of µij and Σij for the original responses xijk, k =
1, 2, · · · , nij , we denote ̂̃µij and ̂̃Σij as the unbiased estimators of µ̃ij and Σ̃ij for the affine-transformed
responses x̃ijk, k = 1, 2, · · · , nij . Then by the affine-transformation (23), it is easy to see that ̂̃µij =
Bµ̂ij + ξ and ̂̃Σij = BΣ̂ijB

T . It follows that ̂̃µ = B̃µ̂+ ξ̃ and ̂̃Σ = B̃Σ̂B̃T . Using the above, we have
C̃̂̃µ− c̃ = CB̃−1(B̃µ̂+ ξ)− (CB̃−1ξ + c) = Cµ̂− c and C̃ ̂̃ΣC̃T = CB̃−1B̃Σ̂B̃T (CB̃−1)T = CΣ̂CT .
Thus, both Cµ̂− c and CΣ̂CT are affine-invariant. It follows that T in (14) is affine-invariant.

We now turn to show that ∆̂1 and ∆̂2 are affine-invariant. It is sufficient to show that tr(Ω̂ij) and
tr(Ω̂

2
ij) are affine-invariant. Since we have showed that CΣ̂CT is affine-invariant, we only need to show

that n−1
ij CijΣ̂ijC

T
ij , i = 1, 2, · · · , a; j = 1, 2, · · · , b are affine-invariant. This is obvious since C̃ = CB̃−1

implies C̃ij = CijB
−1, i = 1, 2, · · · , a; j = 1, 2, · · · , b and ̂̃Σ = B̃Σ̂B̃T implies ̂̃Σij = BΣ̂ijB

T , i =
1, 2, · · · , a; j = 1, 2, · · · , b. The theorem is then proved.
Proof of Theorem 5 To show this theorem, it is sufficient to show that T , ∆̂1 and ∆̂2 are invari-
ant under different labeling schemes of the mean vectors µij , i = 1, 2, · · · , a; j = 1, 2, · · · , b. Let
l1, l2, · · · , la be any permutation of 1, 2, · · · , a, and r1, r2, · · · , rb be any permutation of 1, 2, · · · , b. Then
it is easy to see that

∑a
i=1
∑b
j=1Cijµ̂ij =

∑a
u=1

∑b
v=1Clurv µ̂lurv

, and
∑a
i=1
∑b
j=1 n

−1
ij CijΣ̂ijC

T
ij =∑a

u=1
∑b
v=1 n

−1
lurv

ClurvΣ̂lurvC
T
lurv

, showing that

Cµ̂ =
a∑
i=1

b∑
j=1

Cijµ̂ij and CΣ̂CT =
a∑
i=1

b∑
j=1

n−1
ij CijΣ̂ijC

T
ij

are invariant under different labeling schemes of the mean vectors and so is T .
We now show that ∆̂1 and ∆̂2 are invariant under different labeling schemes of the mean vectors.

Set Sij = n−1
ij CijΣ̂ijC

T
ij , i = 1, 2, · · · , a; j = 1, 2, · · · , b and S = CΣ̂CT . By (20), we have ∆̂1 =∑a

i=1
∑b
j=1 tr([SijS

−1]2) and ∆̂2 =
∑a
i=1
∑b
j=1 tr2(SijS−1). Since S is previously shown to be invariant

under different labeling schemes of the mean vectors, so are ∆̂1 and ∆̂2. This completes the proof of the
theorem.
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